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Medical images often consist of low-contrast objects corrupted by random noise arising in the image acquisition process. Thus,
image denoising is one of the fundamental tasks required by medical imaging analysis. Nonlocal means (NL-means) method
provides a powerful framework for denoising. In this work, we investigate an adaptive denoising scheme based on the patch NL-
means algorithm for medical imaging denoising. In contrast with the traditional NL-means algorithm, the proposed adaptive
NL-means denoising scheme has three unique features. First, we use a restricted local neighbourhood where the true intensity
for each noisy pixel is estimated from a set of selected neighbouring pixels to perform the denoising process. Second, the weights
used are calculated thanks to the similarity between the patch to denoise and the other patches candidates. Finally, we apply the
steering kernel to preserve the details of the images. The proposed method has been compared with similar state-of-art methods
over synthetic and real clinical medical images showing an improved performance in all cases analyzed.

1. Introduction

Medical images obtained from Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT) and Ultrasound
imaging (US) are the most common tools for diagnosis.
These images are often affected by random noise arising in
the image acquisition process. The presence of noise not only
produces undesirable visual quality but also lowers the visi-
bility of low-contrast objects. Image denoising is one of the
classical problems in digital image processing. As a primary
basis image processing procedure, noise removal has been
extensively studied and many denoising schemes have been
proposed, from the earlier smoothing filters and frequency
domain denoising methods to the lately developed wavelet-
[1–5], curvelet- [6], and ridgelet- [7] based methods, sparse
representation [8] and K-SVD [9] methods, shape adaptive
transform [10], bilateral filtering [11], NL-means based
methods [12, 13], and more recently proposed nonlinear
variational methods like the total variation minimization
[14–16]. With the rapid development of modern digital
imaging devices and their increasingly wide applications
in our daily life, there are increasing requirements of new
denoising algorithms for higher image quality. Particularly,
in medical imaging, denoising is challenging since all kinds

of noise cannot be easily modeled and are known to be
tissue dependent, such as ultrasound images. Although noise
gives an image a generally undesirable appearance, the most
significant factor is that noise can cover and reduce the
visibility of certain features within the image. The presence
of noise gives an image a mottled, grainy, textured, or
snowy appearance. In the imaging process, the energy of the
high-frequency waves is partially reflected and transmitted
at the boundaries between tissues having different acoustic
impedances. Nevertheless, the diagnosis quality is often low
and reducing speckle while preserving anatomic information
is necessary to delineate reliably and accurately the regions
of interest. Recently, it has been demonstrated that image
patches are relevant features for denoising images in adverse
situations. The related methodology can be adapted to
derive a robust filter for medical images. Accordingly, in this
paper we introduce a novel restoration scheme for medical
images, inspired from the NL-means approach introduced by
Buades et al. [12] to denoise 2D natural images corrupted by
an additive white Gaussian noise.

The rest of this paper is organized as follows. The noise
distribution and estimation in medical images are depicted in
Section 2.1. The brief description of NL-means algorithm is

mailto:luk@gucas.ac.cn


2 Computational and Mathematical Methods in Medicine

discussed in Section 2.2 while the improved NL-means algo-
rithm and the denoising performance under Rician noise are
analyzed Section 2.3. The supporting experimental results of
improved NL-means algorithm compared to other denois-
ing methods under various conditions are illustrated in
Section 3. Finally, concluding remarks are given in Section 4.

2. Improved NL-Means Denoising Method

2.1. Noise Distribution and Estimation in Medical Images.
The most MR images acquired in the Fourier domain are
characterized by a zero-mean Gaussian probability density
function (PDF). After the inverse Fourier transform, the
noise distribution in the real and imaginary components will
still be Gaussian due to the linearity and the orthogonality
of the Fourier transform. However, due to the subsequent
transform to a magnitude image, the noise distribution will
be no longer Gaussian but Rician distributed. For an MR
magnitude image defined on a discrete grid Ω, M = {mi |
i ∈ Ω}, then the PDF of mi is

p(mi | A, σ) = mi

σ2
e−(m2

i +A2/2σ2)I0(Ami/σ2)ε(mi), (1)

where I0(·) is the 0th-order modified Bessel function of
the first kind and ε(·) is the Heaviside step function. σ2

denotes the variance of the Gaussian noise in the complex
MR data, which can be independently estimated. When the
underlying intensity A equals zero, the Rician PDF simplifies
to a Rayleigh distribution:

p(mi | A, σ) = mi

σ2
e−(m2

i /2σ
2)ε(mi). (2)

At high SNR, the Rician PDF approaches to a Gaussian PDF
with a mean A and variance σ2 (see Figure 1):

p(mi | A, σ) = 1√
2πσ2

e−((mi−A)2/2σ2)ε(mi). (3)

That is, Rician noise in magnitude MR images behaves
like Gaussian distributed when SNR is high and Rayleigh
distributed for low SNR.

Now we discuss how to measure the noise variance from
an MR image without the need for high SNR regions or a
background region.

Let m1,m 2 , . . . ,mn be the n Rician distributed magni-
tude data points, and region of constant signal intensity is A.
Then the joint PDF of the observations is

p({mi} | A, σ) =
n
Π
i=1

mi

σ2
e−(m2

i +A2)/2σ2
I0

(
Ami

σ2

)
, (4)

where {mi} are the magnitude variables corresponding to the
magnitude observations mi. The maximum likelihood (ML)
estimate of A and σ is then found from the global maximum
of logL:

ÂML =
n∑
i=1

ln
(
mi

σ2

)
−

n∑
i=1

m2
i + A2

2σ2
+

n∑
i=1

ln I0

(
Ami

σ2

)
. (5)

Since the noise is estimated from the available piecewise con-
stant regions in the image, this estimation neither depends
on the image background nor on the SNR of the image.

2.2. NL-Means Filter. We focus on the problem of denoising:
an observed image Y is assumed to be a noisy version of an
unobserved image f corrupted by white Gaussian noise. Let
Ω ⊂ Z2 be the indexing set of the pixels. For any pixel x ∈ Ω,

Y(x) = f (x) + ε(x), (6)

where ε is a centered Gaussian random variable with known
variance σ2 and the noise components ε(x) are independent.
For each pixel the output of the procedure is a weighted
average of the whole image. The weights used are selected
using a “metric” which determines whether two pixels
are similar or not. The core idea of the NL-means is to
create a metric governed by patches surrounding each pixel,
regardless of their position, that is, nonlocal in the image
space. For a fixed (odd) width p, a patch Px is a subimage
of width p, centered around the pixel x, and the NL-means
estimator of f (x) is:

f̂ (x) =
∑

x′∈Ωw(x, x′)Y(x′)∑
x′∈Ωw(x, x′)

, (7)

where w(x, x′) = exp(−‖Px − Px′‖2
2,a/2h

2), which measures
the proximity between patches. h > 0 is the bandwidth,
which has a smoothing effect and plays the same role as
the bandwidth for kernel methods in statistics. The larger
the bandwidth is, the smoother the image becomes. ‖ · ‖2,a

is a weighted Euclidean norm in R|P|(|P| = p2) using the
Gaussian kernel, a controlling the concentration of the norm
around the central pixel. The denominator is a normalizing
factor ensuring the weights sum to one. The patch size P is
generally chosen equal to 5, 7, or 9. From the patch estimator,
it is possible to recover a pixel estimator by reprojection.

In the following, the proposed filter is realized in three
steps: (a) finding the image patches similar to a given patch;
(b) applying the Rician estimation on the 3D block; (c)
collaborative adaptive filtering.

2.3. Adaptation to Rician Noise Denoising Model. In case of
Rician noise, there is no closed form for the ML estimate of
the true signal μ given n such measures xi. However, the even
order moments of the Rician law have very simple expres-
sions. In particular, the second-order moment is E(X2

i ) =
μ2+2σ2 where σ2 is the variance of the Gaussian noise of MRI
data. The measured value of x2

i (and that of xi) is thus usually
overestimated compared to its true, unknown value, which
is termed the Rician bias in the following. Using the same
remark as in the Gaussian case, that is, E(

∑
i wiX

2
i ) = μ2 +

2σ2, it then seems natural to restore x as
√∑

i wix
2
i − 2σ2, the

weights wi summing to (1). The voxel value x can be restored
as

NLMR(x) =

√√√√√
⎛
⎝ ∑
xi∈V

wix
2
i

⎞
⎠− 2σ2, (8)

where σ2 is the noise variance. As noted by others in case if
i.i.d random variables Xi and with wi = 1/n, the term under
the square root has a nonnull probability to be negative,
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Figure 1: At high SNR, Rician data is approximately Gaussian. At low-medium SNR, neither Gaussian nor Rayleigh is a great approximation.

which decreases when n is large. In such cases the restored
value is set to zero. In practice, on real data, negative values
are mainly found in the background of the images.

On the other hand, we should identify features that
capture the underlying geometry of the image patches,
without regard to the average intensity of the patches. For
this, we make use of the data adaptive steering kernels
developed by Takeda et al. [17]. In that work on Steering
Kernel Regression (SKR), robust estimates of the local
gradients are taken into account in analyzing the similarity
between two pixels in a patch. The gradients are then used to
describe the shape and size of the kernel. The steering kernel
weight at the jth pixel in ith patch, which is a measure of
similarity between the two pixels, is then given by

w
(
i, j
) =

√
det
(
Cj

)

2πh2
exp

⎧⎪⎨
⎪⎩−

(
xi − xj

)T
Cj

(
xi − xj

)

2h2

⎫⎪⎬
⎪⎭,

(9)

where h is a global smoothing parameter also known as
the bandwidth of the kernel. The matrix Cj denotes the
gradient covariance formed from the estimated vertical and
horizontal gradient of the jth pixel that lies in the ith patch.
The 3×3 data-dependent steering matrixCj can be defined as

Cj = h(Hi)
−1/2, where h is a global smoothing parameter and

Hi is a 3×3 covariance matrix based on the sample variations
in a local neighborhood around sample xi. The weightw(i, j)
is calculated for each location in the ith patch to form the
weight matrix (or kernel). It is interesting to see that the
weight matrix thus formed is indicative of the underlying
image geometry. This fact is illustrated in Figure 2. Note that
in each point of the weight matrix a different Cj is used

Figure 2: Steering kernels at different locations of the Lena image.
The patch size is chosen to be 11× 11.

to compute the weight, and hence, the kernels do not have
simple elliptical contours.

However, when dealing with nonstationary noise the use
of a global noise variance across the image will lead to
suboptimal results. To deal with this situation, local noise
estimation should be introduced.

Such estimation can be obtained by observing that the
expectation of the squared Euclidean distance of two noisy
patches as pointed out by Buades et al. is [12]

d
(
Ni,Nj

)
= E

∥∥∥u(Ni)− u
(
Nj

)∥∥∥2

2

=
∥∥∥u0(Ni)− u0

(
Nj

)∥∥∥2

2
+ 2σ2,

(10)
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where u0 is the noise-free image. Therefore, d(Ni,Nj) = 2σ2

if Ni = Nj . If we assume that each 2D patch in the volume
has at least one patch equal to itself then the noise variance
can be estimated as

σ2 =
min

(
d
(
Ni,Nj

))

2
∀ j /= i. (11)

However, we found experimentally that this assumption
is not normally met in real clinical conditions. In order to
relax such an assumption we estimated the local variance as

σ2 =
min

(
d
(
Ri,Rj

))

2
∀ j /= i, R = u− ψ(u), (12)

where the distance is calculated from a volume R computed
as the subtraction of the original noisy volume u and the
lowpass filtered volume ψ(u). We have found experimentally
that the minimum distance in this case is approximately
equal to σ2 due to the removal of low-frequency information
and the application of the minimum operator.

This Rician adapted filter removes bias intensity using the
properties of the second-order moment of a Rice law. In fact,
the second-order moment of a random variable X following
a Rice distribution can be written as

E
(
X2) = μ2 + 2σ2. (13)

Consider a gray-scale image y = (y(x))x∈Ω defined over
a bounded domain Ω ⊂ R2, and y(x) ∈ R+ is the noisy
observed intensity at pixel x ∈ Ω. The weighting associated
to the patch P is computed from the steering kernel:

WP
(
i, j
)

=

√
det
(
Cj

)

σ2
exp−1

2

(∥∥y(x)− y(xi)
∥∥

σ2
−√2n− 1

)2

,

(14)

where ‖ · ‖ denotes the Euclidean distance. y(x) := (y(xk),
yk ∈ B(x)) ∈ Rn is a vectorized image patch. B(x) is a√
n × √n neighborhood centered at pixel x(n = 7). Δ(x)

is a square neighborhood of N = |Δ(x)| pixels. y(xi) is
a vectorized image patch such that xi ∈ Δ(x). σ2 is the
noise variance assumed to be known or estimated. The final
estimate is given by

INLσ ,ny(x) =
∑

P WP
(
i, j
)
y(xi)∑

P WP
(
i, j
) . (15)

The algorithm is divided in two identical separate steps,
the image is scanned pixel per pixel. Let us denote by P the
current reference patch which size is n×n (with k = 5) and xr
the current central pixel of P. The loop on the image is done
on xr .

This approach has two important benefits. On the one
hand, it allows finding more similar patches with the same
pattern but with different mean level compensating intensity
inhomogeneities typically present on MRI data, and on

the other hand, overestimation of the noise variance will
be minimized in cases with unique patches in the search
volume. Thus, the adaptive filter proposed will set the
parameter h2 equal to the minimum distance estimation as
described in (11).

3. Experiments and Results

To evaluate and compare the proposed method with state-
of-the-art methods, we did experiments on both synthetic
and real medical images. To conduct the experiments on
synthetic data, we use the standard MR images phantom
of the brain obtained from the BrainWeb database [18].
The proposed algorithm was compared with the following
recently proposed methods.

(1) NL-means: Nonlocal Means Image Denoising Method
[12]. The size of the patch and research window
depend on the value of σ . The search window size
used for experiments was 9 × 9 × 9, neighborhood
size was 3× 3× 3, and value of the decay parameter h
and σ were 0.4 σ , 20.

(2) NL-PCA: Nonlocal Principal Component Analysis
Method [19]. Local neighborhood size used for the
experiments was 3×3×3. Other parameters are fixed
to α = 2.1; Khard = Kwien = 3; nhard = nwien = 15.

(3) DCT: Local Discrete Cosine Transform Method [20].
The method decomposes the image into local
patches, and denoises the patches with thresholding
estimate in the DCT domain. The local patches of size
used for the experiments was

√
N = 16× 16.

(4) Proposed Method. The search window n for the exper-
iments was 5× 5× 5.

For quantitative analysis of the denoising methods, we
used the peak signal-to-noise ratio (PSNR), the structural
similarity index matrix (SSIM).

Figure 3 displays the results of the image denoised with
NL-means, NL-PCA, DCT, and proposed method. This
experiment was conducted on the 2D slice of the synthetic
images of the brain in the 3D environment after corrupting
the image by uniform Rician noise with σ = 20. The
proposed filter was executed using a neighborhood size for
denoising as 13 × 13 × 13 and a neighborhood size for the
local computation of range as 5 × 5 × 5. It can be observed
from Figure 3 that the image denoised with the proposed
method is closer to the original image than the images
denoised with other approaches. The graph in Figure 4
shows the quantitative analysis of the proposed method with
other recently proposed methods based on the similarity
measures PSNR, MSSIM, respectively. This experiment was
also conducted on the BrainWeb MR image with σ of the
noise ranging from 10 to 30. All the methods with which
the proposed method was compared are based on the Rician
noise model. In the quantitative analysis, the background
was excluded; that is, only the area of the image inside the
skull was considered. It can be seen from the graph that
the performance of the proposed method is best for each
similarity measure.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Denoising MRI with several methods: (a) original image; (b) original image corrupted by Rician noise of σ = 20; (c) denoised
with NL-means method; (d) denoised with DCT method; (e) denoised with NL-PCA method; (f) denoised with proposed method.
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Figure 4: Comparative analysis of the proposed method with other methods based on PSNR, MSSIM for different values of the noise
standard deviation.
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(a) (b) (c)

Figure 5: The denoising results obtained with the proposed filter. (a) The original noisy images (σ = 30); (b) the denoised images (PSNR is
38.9 and 37.7, resp.); (c) the differences of the images.

Figure 5 shows the extremely noisy data and we use the
proposed method to remove the noise. The absolute value
of the residuals of the filtering process clearly show the
capabilities of the proposed approach on the extremely noisy
data.

4. Conclusion

A new method to denoise the medical images by applying
NL-means method is proposed in this paper. To demonstrate
the efficiency of the proposed method, experiments were
conducted on both simulated and real medical images.
Comparative analysis with other recently proposed methods
based on the similarity measures, PSNR, MSSIM, proves that
the proposed method is superior to them in terms of image
quality.
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