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Diabetes is the most common metabolic disorder and is recognized as one of the most important health threats of our time. MicroRNAs

(miRNAs) are a novel group of non-coding small RNAs that have been implicated in a variety of physiological processes, including glucose

homeostasis. Recent research has suggested that miRNAs play a critical role in the pathogenesis of diabetes and its related cardiovascular

complications. This review focuses on the aberrant expression of miRNAs in diabetes and examines their role in the pathogenesis of endo-

thelial dysfunction, cardiovascular disease, and diabetic retinopathy. Furthermore, we discuss the potential role of miRNAs as blood biomar-

kers and examine the potential of therapeutic interventions targeting miRNAs in diabetes.

This article is part of the Review Focus on: The Role of MicroRNA in Cardiovascular Biology and Disease

1. Introduction

Diabetes mellitus (DM) is a complex, multisystem disease that repre-
sents the most common metabolic disorder,™ affecting around 8% of
the US population.® Type 1 diabetes mellitus (T1DM) results from
insulin deficiency,* usually secondary to autoimmune B-cell destruc-
tion; and type 2 diabetes mellitus (T2DM) is characterized by
insulin resistance, with or without abnormal insulin secretion.” Al-
though T2DM is far more prevalent, both types can result in compli-
cations. Many of the complications of diabetes are vascular in origin,
be they macrovascular and/or microvascular (nephropathy, retinop-
athy, and microangiopathy in several organs), and this puts diabetics
at an increased risk of ischaemic heart disease, renal failure, stroke,
lower limb amputations, and blindness.®

MicroRNAs (miRNAs) are a family of small (~22 nucleotide), non-
coding single-strand RNA molecules that were first discovered in the
nematode Caenorhabditis elegans in 1993.”% Transcription of miRNAs
occurs through RNA polymerase 1I° and subsequent processing is
mediated by the nuclear ribonuclease lll (RNase lll) enzyme Drosha
to form precursor miRNAs (70—100 nucleotides). Following trans-
portation to the cytoplasm by exportin 5, a further cleavage occurs
via another RNase Ill enzyme, Dicer, to form the mature miRNA.™
miRNAs modulate both physiological and pathological pathways by
post-transcriptionally inhibiting the expression of a plethora of

target genes."’ Much work has been done on the role of miRNAs
in human disease, especially in cancers and infections.'>"

The aim of this review is to describe the role of miRNAs in diabetes
and its cardiovascular complications, with reference to the recent re-
search. Specifically, we look at changes in miRNA expression in dia-
betes, as well as their role in endothelial dysfunction, angiogenesis,
cardiac disease, and retinopathy. We do not discuss diabetic nephro-
pathy, as the role of miRNAs in this complication is well-described in
another review." We also discuss the potential role of miRNAs as
biomarkers in diabetes and how aberrant pathways could be cor-
rected therapeutically. A literature search was performed using
PubMed and Embase to look for relevant papers. The last search
was performed in September 2011. The key search words used
were diabetes, glycaemia, microRNA, and miRNA. References of eli-
gible papers were screened for further relevant studies.

2. MicroRNAs, insulin secretion,
and -cell function

The pancreatic B-cell and its endocrine product insulin play a central
role in glucose homeostasis and the pathogenesis of diabetes. A
large number of mMiRNAs have been implicated in normal pancreatic
development and function. Moreover, given the complex interplay
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between many miRNAs in normal pancreatic cells, it is expected that ab-
errant miRNA expression or mutations could result in 3-cell pathology.
miR-375, one of the most abundant miRNAs present in islet cells, is
extensively studied in this context. miR-375 negatively regulates
glucose-stimulated insulin secretion (GSIS).” In fact, inhibition of
miR-375 enhances insulin secretion, while miR-375 overexpression
impairs the insulin secretory pathway by reducing expression of myo-
trophin (Mtpn), a protein involved in insulin—granule fusion.''® The
effects of miR-375 on Mtpn expression may involve the transcription
factor nuclear factor-kappaB (NF-kB), the activation of which is asso-
ciated with improved GSIS."” Indeed, myotrophin functions as a tran-
scription activator of NF-kB in cardiomyocytes, suggesting that the
regulation of myotrophin by miR-375 may lead to changes in NF-kB ac-
tivity.'® miR-375 also targets insulin gene expression, downregulating ex-
pression of phosphoinositide-dependent protein kinase-1, a key
component in the phosphatidylinositol 3-kinase (Pl 3-kinase) signalling
cascade, thus resulting in decreased insulin-induced phosphorylation
of AKT and GSK3 (glycogen synthase kinase 3)." High levels of
miR-375 are found in the pancreatic islet of ob/ob mice (which represent
amodel of obesity, insulin resistance, and T2DM),?® and in patients with
T2DM.*" Surprisingly, miR-375 knockout mice are hyperglycaemic and
glucose intolerant; changes that occurred secondary to a decrease in
B-cell mass. They also show increased numbers of a-cells and an
elevated plasma glucagons.*

Several other miRNAs have been shown to have inhibitory roles in
insulin secretion. miR-9 targets the transcription factor Onecut 2,
which inhibits the expression of Granuphilin—a negative regulator
of insulin exocytosis.”> Overexpression of miR-9 therefore decreases
GSIS. miR-96 also downregulates insulin secretion by decreasing the
expression of nucleolar complex protein 2 (Noc2), a Rab GTPase ef-
fector required for insulin exocytosis, as well as by upregulation of
granuphilin, although this appears to occur via a distinct mechanism
not involving Onecut-2.2*> miR-124a, which is thought to be vital for
pancreatic B-cell development,** also modulates several components
of the exocytotic system by directly targeting forkhead box protein
A2 (Foxa2)—a transcription factor involved in glucose metabolism
and insulin secretion.”> Modulation of miR-124a in MIN6 (mouse insu-
linoma) cells causes changes in Foxa2 and its downstream target gene
PDX-1 (which regulates insulin transcription). miR-124a overexpres-
sion also correlates with downregulation of Kir-6.2 and Sur-1 (sulfo-
nylurea receptor 1), both significant regulators of pancreatic
development and function. Overexpression of mir-124a in MIN6
cells leads to increased insulin secretion in response to basal
glucose concentrations and reduced secretion in response to stimula-
tory glucose concentrations.”?

The destruction of pancreatic 3-cells is the primary cause of T1DM.
In the early stages, pancreatic islets are infiltrated by immune cells,
hence B-cells are exposed to proinfllammatory cytokines, resulting
in altered insulin content, insulin secretion, and sensitisation to apop-
tosis.”® High levels of miR-34a were seen in islets from T2DM db/db
mice.”” Moreover, MIN6 cells treated with proinflammatory cytokines
show significant induction of miR-21, miR-34a, and miR-146.>® Subse-
quent blockade of these miRs prevented cytokine-induced reduction
in GSIS and protected B-cells from cytokine-induced cell death. Ex-
perimental chronic exposure to the free fatty-acid palmitate mimics
the adverse environmental conditions that promote failure of
B-cells, arising in defective GSIS. A further study found that exposure
of insulin-secreting cell lines or pancreatic islets to palmitate led to an
increase in miR-34a and miR-146 expression.”’ Overexpression of

miR-34a in MIN6 cells resulted in a decreased GSIS, along with a re-
duction in the expression of the antiapoptotic protein Bcl2 and of
VAMP2 (vesicle-associated membrane protein 2), which is involved
in B-cell exocytosis.”’ While antagonism of either miR-34a or
miR-146 activity partially prevented palmitate-induced B-cell apop-
tosis, normal secretory activity was not restored,”’ suggesting that
palmitate may affect other components of the exocytotic machinery
that are not targeted by the two studied miRNAs.

Diabetes results in prolonged periods of hyperglycaemia. Prolonged
exposure of MIN6 cells to high glucose (HG) results in differential
expression of large numbers of miRNAs, including upregulation of
miR-30d.”” Overexpression of miR-30d increases insulin gene expres-
sion, whereas its inhibition attenuates glucose-stimulated insulin gene
transcription.”” In contrast, miR-30d does not modulate insulin secre-
tion.?” miR-15a promotes insulin biosynthesis by inhibiting endogen-
ous UCP-2 (uncoupling protein-2) expression in mouse B-cells.*
UCP-2 is a member of the mitochondrial inner membrane family,
and has previously been shown to inhibit GSIS.>' miR-15a levels
have been shown to increase in parallel with insulin in mouse islets
after short-term exposure to HG concentrations.*® However, pro-
longed exposure to hyperglycaemia resulted in a downregulation of
both miR-15a and insulin. Transfection of MIN6é cells with miR-15a
increases insulin secretion, and inhibition of miR-15a decreases
insulin levels.®® Esguerra et al.*” studied the differential expression
of miRNAs in the pancreatic islets of Wistar and Goto-Kakizaki
(GK) rats—a non-obese model of T2DM that displays hypergly-
caemia, impaired glucose tolerance (IGT), insulin resistance, and
defects in insulin secretion. miR-335 was upregulated in the pancreatic
islets of GK rats, and was shown to target the messenger RNA
(mRNA) for the exocytotic protein Stxbp1.*> However, many of
the differentially expressed miRNAs had predicted target genes that
are known to be involved in insulin exocytosis.

Figure 1 summarizes the known targets of miRNAs in (-cell
function.

3. MicroRNA:s in insulin target
tissues: energy metabolism and
insulin resistance

miRNAs also control insulin signalling in target tissues, including the
liver, skeletal muscle, and adipose tissues. Insulin resistance describes
the failure of target tissues to respond adequately to circulating
insulin. Insulin resistance in adipose tissue and skeletal muscle
reduces glucose uptake and the local storage of triglycerides and
glycogen. Insulin resistance in liver cells leads to reduced glycogen syn-
thesis and storage and concomitant failure to suppress glucose pro-
duction. The end results are elevated blood glucose and free fatty
acid levels, along with raised insulin levels—hallmarks of the metabolic
syndrome. If there is no sufficient compensatory increase in pancreat-
ic B-cell function to counteract the insulin resistance, then T2DM
results.>

3.1 Adipose tissue

Early studies in Drosophila melanogaster implicated miRNAs in energy
metabolism. Xu et al.** found that miR-14 regulates adipocyte droplet
size and triglyceride levels, with miR-14-null flies showing increased
lipid droplet accumulation in adipose tissue that reverted on
re-introduction of the mIiRNA. Another miRNA of Drosophila
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Figure | Schematic overview of the role of microRNAs in B-cell function.

energy homeostasis, miR-278, may control insulin sensitivity in
adipose tissue: miR-278-knockout flies are lean and display hypergly-
caemia despite having an elevated insulin production, indicating a
loss of insulin sensitivity.>> This idea is supported by the inappropri-
ately high levels of insulin target genes found in the mutants.
miR-278 acts by regulating the target gene expanded, and overexpres-
sion of this gene resulted in the same features. Although miR-14 and
miR-278 have only been found in insects, a loss of insulin signalling in
mammalian adipose tissue may result in a similar insulin-resistant
phenotype. For example, mice that have had the insulin receptor
gene deleted from adipose tissue are lean.*

He et al®” examined the miRNA expression profiles of skeletal
muscle from healthy Wistar and GK rats.>” The miR-29 family was sig-
nificantly upregulated in the context of diabetes. Further in vitro study
on 3T3-L1 adipocytes suggested that miR-29a and miR-29b were
upregulated by HG and insulin levels. Moreover, miR-29a/b/c overex-
pression reduced insulin-induced glucose import by 3T3-L1 adipo-
cytes, signifying a role in insulin resistance, and this was paralleled
by a decrease in Akt activation, suggesting that the miR-29 family
acts by silencing components of the insulin signalling pathway.>’
However, while in vitro inhibition of the miR-29 family improved Akt
activation, it had little effect on glucose uptake. This may be due in

part to a relatively low endogenous expression of miR-29, but
could also be explained by miR-29 acting on other targets within
the insulin signalling pathway, as yet undetermined, rather than
having a direct effect on Akt.>” Two genes were also validated as
direct targets of the miR-29 family: Insig? (insulin-induced gene 1)—an
endoplasmic reticulum membrane protein involved in the control of
cholesterol biosynthesis; and Cav2 (caveolin 2), which is involved
with lipid metabolism, cellular growth, and apoptosis.>’

Insulin stimulates lipogenesis in adipose tissue, transforming blood
glucose into fatty acids for storage of energy. Obesity triggers macro-
phage infiltration and cytokine release in adipose tissue, and many of
these cytokines, such as TNFa, interfere with insulin signalling and
inhibit adipogenesis.*® Some miRNAs that are induced during adipo-
genesis are downregulated in obesity.>* For example, miR-103 and
miR-143 are upregulated during in vitro and in vivo adipogenesis, and
inhibition of miR-143 inhibits adipocyte differentiation.*”* Both
miR-103 and miR-143 are downregulated in the adipocytes from ob/
ob mice®® miR-143  antagonism adipocytes
upregulation of the miR-143 target mitogen-activated protein kinase
ERK5/MAPK7,* which is known to promote cell proliferation and
differentiation, although the role of ERK5/MAPK7 in adipocytes has
not been investigated. miR-107 has also been shown to accelerate

in results in
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adipogenesis and is predicted to target pathways that regulate lipid
levels.*" Levels of miR-143, miR-103, and miR-107 are reduced in adi-
pocytes after treatment with TNFe, suggesting that cytokines contrib-
ute to reduced adipogenesis in obesity.>’ These data indicate that
obesity leads to a loss of mMIRNA function that is required for adipo-
genesis, and suggest a mechanism for obesity-induced insulin resist-
ance. Other miRNAs that may be involved in insulin resistance
include miR-320 and miR-27b. miR-320 expression in insulin-resistant
adipocytes is 50-fold that of normal 3T3-L1 adipocytes. Ling et al.**
found that treatment of insulin-resistant adipocytes with
anti-miR-320 increases the insulin sensitivity by targeting p85, which
contributes to cell growth by increasing Akt phosphorylation and
GLUT4 levels. miR-27b is downregulated during adipogenesis from
human multipotent adipose-derived stem cells.** Moreover, overex-
pression of miR-27b impairs human adipocyte differentiation and inhi-
bits the peroxisome proliferator-activated receptor (PPARYy), the
receptor target for thiazolidinediones—insulin-sensitising agents
used for treating T2DM.**** More recently, miR-130 overexpression
was also found to impair adipogenesis and to repress PPARy.* These
connections between miRNA expression and adipogenesis may be
exploited as therapeutic targets in the management of insulin
resistance.

3.2 Liver

Once secreted from the islet, insulin travels via the portal circulation
to the liver, to control hepatic glucose and lipid metabolism, and liver
insulin resistance contributes to the development of the metabolic
syndrome. miR-122 is the most abundant miRNA in the liver.* Inhib-
ition of miR-122 in mice results in decreased hepatic fatty acid and
cholesterol synthesis, along with a reduction in plasma cholesterol.*’
In addition, hepatic inhibition of miR-122 in diet-induced obese mice
led to decreased plasma cholesterol, as well as a significant improve-
ment in hepatic steatosis. While the authors noted an increase in
phosphorylated AMP-activated protein kinase (AMPK) in the livers
of these mice, they were unable to clarify whether miR-122 directly
regulated AMPK signalling. In any case, targeting miR-122 therapeutic-
ally may correct the imbalances seen in liver insulin resistance.

miR-33a and miR-33b have been shown to regulate cholesterol
homeostasis through interaction with sterol regulatory element-
binding proteins.*® Davalos et al.*’ have recently reported the role
of these two miRNAs in regulating fatty acid metabolism and insulin
signalling. miR-33a/b inhibit the expression of insulin receptor
substrate-2 (IRS-2) in hepatic cells, subsequently reducing the activa-
tion of downstream insulin signalling pathways, including AKT and
ERK. Antagonism of endogenous miR-33-a/b upregulates fatty acid
oxidation and the response to insulin in hepatocytes, suggesting its
therapeutic potential in the metabolic syndrome.*

The insulin receptor substrate-1 (IRS-1), like IRS-2, is a significant
mediator of insulin signalling. Indeed, IRS-1 knockout mice are insulin-
resistant.>® Mitochondrial dysfunction is associated with the develop-
ment of insulin resistance as well as with downregulation of IRS-1 in
myocytes.”’ Ryu et al.>* found that miR-126 was upregulated in the
context of mitochondrial dysfunction in SK-Hep-1 (hepatic cancer)
cells, and reduced expression of IRS-1. miR-145 has been shown to
downregulate IRS-1 protein expression in human colon cancer cells,
resulting in adverse growth and proliferation,>® although this
miRNA needs further study in the context of diabetes.

A summary of the miRNAs involved in insulin resistance is given in
Figure 2.

3.3 Skeletal muscle

Huang et al>* found that miR-24 was significantly downregulated in
the skeletal muscle of GK rats. p38 mitogen activated protein kinase
(MAPK) is activated by hyperglycaemia,>
rats,”® and is involved in early diabetic nephropathy in T2DM.>’
Huang et al>* confirmed that p38 MAPK is a direct target of
miR-24 in rat tissue.

is overexpressed in GK

A list of miRNAs differentially expressed in diabetic models can be
found in Table 1.

4. Endothelial function
and angiogenesis

Vascular complications associated with hyperglycaemia in diabetes
often begin with endothelial dysfunction.”® Altered expression of mul-
tiple factors results in capillary and arteriole rarefaction in limbs and
heart modifications®” and a reduced post-ischaemic angiogenic and
collateral vessel formation.®~> Conversely, a pro-angiogenic patho-
genic phenotype is found in the retina.®®> Wang et al.%* were the first
to describe that miRNAs are differently expressed in endothelial cells
(ECs) in the presence of HG. They studied myocardial microvascular
ECs (MMVEC) and compared miRNA expression in GK and Wistar
rats. Of those differentially expressed, miR-320 may target several
angiogenic factors and their receptors, including vascular endothelial
growth factor (VEGF)-A, fibroblast growth factors (FGFs), insulin-like
growth factor 1 (IGF-1), and the IGF-1 receptor.®>*® Moreover, ele-
vated miR-320 level in diabetic MMVECs was accompanied by
decreased cell proliferation and migration. Subsequent transfection
of an miRNA-320 inhibitor in MMVECs of GK rats improved both
proliferation and migration of these cells and increased the expression
of IGF-1, which is known to promote angiogenesis.®” The correlation
between elevated miR-320 and suppressed IGF-1 may play a role in
the impaired angiogenesis in diabetes.

Li et al.®® studied the role of miR-221 in diabetes-induced endothe-
lial dysfunction. miR-221, which is present in human umbilical vein ECs
(HUVEC:S), participates in angiogenesis regulation by altering the ex-
pression of c-kit (CD117), the receptor for stem cell factor which
additionally promotes endothelial progenitor cell (EPC) migration
and homing.*’ Incubating HUVECs in HG increased miR-221 expres-
sion and reduced c-kit expression, while a miR-221 inhibitor reversed
this inhibitory effect of HG on c-kit expression.°® Another study by
Togliatto et al’® examined the role of miR-221 and miR-222 in HG
and advanced glycation end-product (AGE)-mediated vascular
damage, both in HUVECs and in a model of angiogenesis (Matrigel
plugs) in diabetic mice. They found that HG and high AGEs inhibited
cell cycle progression and resulted in impaired EC and EPC prolifer-
ation as well as reduced angiogenesis. These conditions were also
associated with downregulation of both miR-221 and miR-222 ex-
pression. Additionally, miR-221 and miR-222 were found to directly
inhibit P27KIP1 and P57KIP2 (cyclin-dependent kinase inhibitor pro-
teins that inhibit the cell cycle). Hence, these miRNAs are likely to
be directly involved in AGE/HG-related cell cycle changes.”® The
results regarding the regulation of miR-221 by glucose levels in
HUVECs are contradictory. While there were some differences in
the cell culture methods, the results in Togliatto et al’®
firmed in vivo. Clearly, further research is needed regarding the role
of miR-221 in the context of HG. Villeneuve et al.”" examined the

were con-

role of miR-125b in vascular smooth muscle cells (VSMCs) cultured
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Figure 2 MicroRNAs involved in insulin resistance.

from T2DM db/db mice. They found that HG upregulated miR-125b,
with parallel downregulation of its predicted target Suv3%h1, a
histone-lysine N-methyltransferase. The reduced recruitment of
Suv3%h1 at inflammatory gene promoters is a key mechanism under-
lying the enhanced inflammatory gene expression in db/db micro-
vascular VSMCs (MVSMCs).”? miR-125b mimics inhibited Suv39h1
protein levels and miR-125b inhibitors had the opposite effect. Fur-
thermore, miR-125b-mediated Suv39h1 knockdown resulted in the
increased expression of inflammatory proteins (interleukin 6 and
monocyte chemotactic protein 1) and increased monocyte-MVSMC
binding in hyperglycaemia, thus exhibiting a role for miR-125b in ac-
celerating atherosclerosis.””

miR-503 is upregulated in myocardial ECs from GK rats®* in
3T3-L1 insulin-resistant adipocytes,™ and in the muscles of T2DM
and insulin-resistant patients.73 We further examined the role of
miR-503 in angiogenesis in diabetes.”* miR-503 was upregulated in
HUVECs and human microvascular ECs (HMVECs) cultured in HG/
low growth factor conditions (that mimic ischaemia-induced tissue
starvation in the context of diabetes). HUVECs infected with a lenti-
viral vector expressing premiR-503 showed impaired proliferation, mi-
gration, and cell networking capacities. Under similar conditions,
miR-503 reduced expression of the cell cycle regulators cdc25A

and cyclin E1 (CCNE1). Furthermore, miR-503 inhibition in HG/low
growth factor conditions restored normal EC proliferation and angio-
genesis.”* We went on to examine the role of miR-503 in diabetic
limb ischaemia to find that diabetes increased miR-503 expression
in the ischaemic muscles and ECs extracted from them in comparison
to non-diabetic/non-ischaemic controls. Moreover, in diabetic mice
with induced limb ischaemia, local miR-503 inhibition by injection of
an adenoviral vector containing a decoy sequence for miR-503
improved capillary and arteriolar density, promoted blood flow recov-
ery, and normalized the expression of cdc25 and CCNE1. Important-
ly, miR-503 expression is also increased in the limb muscles and
plasma of diabetic patients undergoing amputation for critical limb is-
chaemia compared with calf biopsies of non-diabetic/non-ischaemic
controls.”* Our study demonstrates that miR-503 may be a suppres-
sor of post-ischaemic neovascularization in diabetes and thus a poten-
tial therapeutic target. The roles of miRNAs in endothelial dysfunction
and angiogenesis in diabetes are summarized in Figure 3A.
Atherosclerosis is a major vascular complication of diabetes.
Although there is little research on miRNAs in atherosclerosis in
the context of diabetes, the role of miRNAs in the pathogenesis of
atherosclerosis in general has been the subject of two recent

reviews.”>’®
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Table | List of microRNAs differentially expressed in diabetic models, by tissue, and their potential targets

Tissue Reference Model miRNA changes Up/down-regulated in Potential targets
diabetes?
Skeletal muscle  He et al’*’ GK rat miR29 family (a/b/c) Up Akt
Huang et al.>* GK rat miR24 Down p38 MAPK
Herrera et al.""’ GK rat miR10b Down
Gallagher et al.”? Humans miR133 Down
Caporali et al.”* Humans and diabetic miR503 Up CDC25a,CCNE1
mice
Liver Herrera et al."® GK rat miR195, miR103 Up
Herrera et al.""’ GK rat miR125a Up MAPK pathway
Adipose Tissue  Herrera et al.'* GK rat miR222, miR 27a Up
Herrera et al."* GK rat miR125a Up MAPK pathway
Omentum Kloting et al. "’ Humans miR181a Up
miR17-5p, miR132miR 134 Down
Subcutaneous fat  Kloting et al."?! Humans miR147, miR197 Up
miR27a, miR30e, miR140, Down
miR155, miR210
Endothelial Cells Wang et al.* MMVECs miR320 Up VEGF, FGF, IGF-1,
IGF-1-R
Li et al.®® HUVECS miR221 Up ckit, p27kip1, p57kip2
Villeneuve et al.”’ VSMC miR125b Up suv39ht
Caporali et al.”* HUVECS/HMVECS ~ miR503 Up CDC, CCNE1
Cardiomyocytes Feng et al.®! STZ mouse miR133a Down IGF-1-R and SGK1
Zhang et al®* Diabetic rabbit miR133, miR1 Up HERG (133 only)
Yu et al.®® Rat miR1 Up IGF-1
Katare et al.”" STZ mouse miR1 Up Pim-1
Shan et al.*’ Rat miR1, miR206 Up Hsp60
Retina McArthur et al.” STZ rat miR200b Down VEGF
Kovacs et al.” STZ rat miR146, miR155, miR132, miR21  Up NF-kB

5. Cardiac disease

miR-133 is believed to be expressed specifically in cardiac and skeletal
muscle, with its function in skeletal muscle being to modulate myo-
blast proliferation and differentiation.”” Moreover, miR-133 controls
cardiac hypertrophy and is downregulated in failing and hypertrophic
hearts.”® The GLUT4 glucose transporter is the major mechanism by
which glucose uptake into cardiomyocytes can be increased.”” Horie
et al.®® found that miR-133 overexpression lowered GLUT4 levels and
reduced insulin-induced glucose uptake in cardiomyocytes. Addition-
ally, increased miR-133 also reduces the Krippel-like transcription
factor KLF15, which induces GLUT4 expression. Furthermore, trans-
fection of cardiac myocytes with a miR-133 decoy increased expres-
sion of both KLF15 and GLUTH4, suggesting a direct role in cardiac
glucose transport.

Feng et al®" looked at the role of miR-133a in cardiomyocytes in
the context of streptozotocin (STZ)-induced T1DM in mice. Haemo-
dynamic studies confirmed that the T1DM model resulted in cardiac
hypertrophy and poor contractility, and the diabetic hearts displayed
increased expression of MEF2A and MEF2C, two transcription factors
associated with myocardial hypertrophy. Cardiac tissue from the dia-
betic mice displayed significant downregulation in miR-133a expres-
sion. In addition, culturing rat neonatal cardiomyocytes in HG also
resulted in downregulation of miR-133a expression.®’ In contrast,
transfection of rat neonatal cardiomyocytes with miR-133a mimics
prevented HG-induced cardiomyocyte hypertrophy, and miR-133a
was shown to mediate its effects by preventing HG-induced upregula-
tion of IGF-1 receptors and SGK1.2?

A prolonged QT interval, an adverse cardiac feature of diabetes,
can result in arrhythmias and has been suggested as an independent
predictor of mortality in DM.®* Zhang et al.®* confirmed a 20% pro-
longation of the QT interval in diabetic rabbits compared with con-
trols. This occurs as a result of dysfunction of multiple ion currents/
channels, predominantly the I¢/HERG (human ether-a-go-go)
channel. The same group found that levels of miR-133 and miR-1
were significantly upregulated in the hearts of diabetic rabbits com-
pared with controls.®** Furthermore, miR-133 overexpression
reduced HERG protein levels, while miR-133 inhibition partially
reversed this. This suggests a role for miR133 dysfunction in prolong-
ing the QT interval, and causing the resultant arrhythmias, in diabetic
hearts.®> The above two studies suggest that miR-133 has two poten-
tial roles in the diabetic heart, depending upon whether expression is
increased or decreased. While the significance of the differing findings
has not been determined, there may be species- and/or age-specific
differences determining the cardiac expression and function of
miR-133 under hyperglycaemia.

Hyperglycaemia-induced apoptosis of cardiomyocytes is related to
diabetic complications,?® although the mechanisms for this are not
well-defined. IGF-1 is an anti-apoptosis factor which is mediated
through mitochrondria and the cytochrome-c pathway.!” Yu
et al® studied the effects of IGF-1 and miRNAs in HG-induced
mitochondrial dysfunction. They found that IGF-1 exerted a protect-
ive effect towards apoptosis in rat cardiomyocytes by decreasing the
cytotoxic effects of glucose. miR-1 is overexpressed in the hearts of
diabetic patients.®> HG increased miR-1 expression, and miR-1 over-
expression inhibits the antiapoptotic action of IGF-1.%8 Heat shock
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HG on miR-221 from two separate studies (green arrows®® and red arrows’®). (B) microRNAs in cardiovascular disease in diabetes.

protein (Hsp) 60 prevents apoptotic cardiomyocyte death, but has rescued

been shown to be underexpressed in the diabetic heart.®

both forced Pim-1 expression and miR-1 inhibition
Pim-1 levels in cardiomyocytes under HG conditions, and this

Shan et al® examined miR-1 and miR-206 expression in the
hyperglycaemic rat myocardium as well as in rat neonatal cardiomyo-
cytes exposed to HG. They found that HG induced upregulation of
miR-1 and miR-206, and that both miRNAs negatively regulated
Hsp60 expression. Pim-1 (proviral integration site for Moloney
murine leukaemia virus-1) plays a key role in the cardiac response
to stressors.”® We found that in STZ-T1IDM mice, Pim-1 levels
decline during progression of diabetic cardiomyopathy, and
this was associated with a rise in miR-1 expression.”’ Furthermore,

resulted in a restoration of prosurvival signalling and reduction in
cardiomyocyte apoptosis, suggesting a direct role of miR-1 in inhibit-
ing Pim-1.%"

Another study looking into cardiomyocyte glucose metabolism
found that miR-223 was upregulated in the left ventricle of T2DM
patients. Moreover, miR-223 overexpression induces GLUT4
protein levels in cardiomyocytes,”” and in vivo miR-223 inhibition sig-
nificantly decreased GLUT4 expression. Given that GLUT4 is down-

regulated in the diabetic heart, it is possible that increasing miR-223
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levels is an adaptive response aimed to restore normal glucose uptake
in the insulin-resistant heart.

The miRNAs involved in cardiovascular disease in diabetes are
summarized in Figure 3B.

6. Retinopathy

Diabetic retinopathy (DR), one of the leading causes of blindness in
developed countries,”® is a microvascular complication of diabetes
with multiple underlying pathogenic mechanisms. The altered expres-
sion of growth factors in sustained hyperglycaemia results in both
structural and functional changes in the retina.®® Elevated VEGF-A
levels, increasing both vessel permeability and neovascularization,
have long been associated with diabetic retinopathy.”* Only two pub-
lished studies have specifically looked at the role of miRNAs in DR.
McArthur et al®® investigated whether miRNA alterations are
involved in DR in a STZ-T1DM rat model, which is known to result
in early changes of DR. miR-200b, which targets VEGF-A, was
found downregulated in the retinas of diabetic rats. Moreover, in
vitro exposure of HUVECs and bovine retinal capillary ECs (BRECs)
to HG resulted in a downregulation of miR-200b and an upregulation
in VEGF-A mRNA.”® Subsequent transfection of a miR-200b inhibitor
in HUVECs cultured under normal conditions resulted in a gluco-
mimetic effect of upregulating VEGF-A.”> VEGF-A-mediated vascular
permeability and tube formation in HUVECs exposed to HG were
reduced upon miR-200b mimic transfection.”® Additional experimen-
tation was performed in animal models: miR-200b mimic injection into
the vitreous humour of one eye of diabetic mice resulted in local
decreased VEGF-A expression and vascular. Conversely, intravitreal
injection of miR-200b antagomir increased VEGF-A expression, thus
suggesting a role for miR-200b in the pathogenesis of diabetic retinop-
athy and raising support for intravitreal injections as a possible thera-
peutic route for this condition.”®

Kovacs et al.”® performed miRNA expression profiling in the retina
and retinal ECs of STZ-T1DM rats. NF-kB is a regulator of the
immune response and is known to play an important role in the
early pathogenesis of DR by triggering a pro-apoptotic program in
retinal pericytes.”” miRNAs which are thought to be transcriptionally
regulated by NF-kB (miR-146, miR-155, and miR- 21)?6~"% were also
demonstrated to be upregulated in the retinal ECs of diabetic rats.”®
The authors confirmed that NF-kB was able to directly activate
miR-146 expression. Furthermore, miR-146 overexpression inhibited
interleukin-1B-induced NF-kB activation in retinal ECs, representing a
regulatory negative feedback loop to control NF-kB and miR-146
expression.”® Thus, overexpression of miR-146 could be exploited
therapeutically through inhibition of NF-kB activation in DR.

7. Biomarkers

There are currently no reliable plasma biomarkers for vascular disease
and endothelial dysfunction. Furthermore, current imaging methods
can visualize the latter stages of macrovascular disease, e.g. athero-
sclerotic plaque, but not endothelial dysfunction, particularly at the
level of microcirculation. Levels of miRNAs in the serum of humans
have been shown to be stable, reproducible, and consistent
amongst healthy individuals, allowing them to be of potential value
as biomarkers of disease.’®" The stability of circulating miRNAs may

be explained by their being carried in membrane-bound vesicles,'®

2'103,104

complexed with Argonaute or transported by high-density

lipoproteins.'® The potential role of miRNAs as biomarkers in
wider cardiovascular disease is the subject of another review in this
issue. The discovery of potential-specific biomarkers may help
predict or detect the development and progression of diabetes and/
or diabetes complications at an early stage, and therefore allow
timely intervention to delay severe complications.

Zampetaki et al.'® aimed to understand if there is a plasma miRNA
signature for T2DM using a prospective population-based cohort.
They studied 80 patients with T2DM and a further 80 age- and
gender-matched  controls.'®® In T2DM, miR-28-3p  was
overexpressed, and a further 12 miRNAs were underexpressed.
These findings were confirmed in T2DM ob/ob mice. A decrease in
circulating miR-126 in non-diabetic people was found to be a signifi-
cant predictor of DM. In fact, the authors detected a gradual
decline in plasma levels of miR-126 from normal glucose tolerance,
through IGT, to diabetes. Some additional miRNAs were predictive
of the future development of diabetes: miR-15a, miR-29b, miR-126,
and miR-223 were lower in those subjects who went on the
develop DM."® Using expression profiles of the five most significantly
different miRNAs (miR-15a, miR-126, miR-320, miR-223, and
miR-28-3p), controls and diabetics were correctly identified in 92
and 70% of cases, respectively.'”® Of note, the diabetic patients
who were not detected by the profiling method had lower fasting
glucose levels or had well-controlled diabetes. This research suggests
that the use of a miRNAs signature as a biomarker may be a useful
predictive tool in diabetes, although this theory will require confirm-
ation in larger prospective populations and in groups with T1DM.
miR-126 is known to be highly expressed in ECs and to regulate
angiogenesis.'%"% It facilitates VEGF-A signalling by inhibiting two
of the negative regulators of the VEGF pathway, the Sprouty-related
protein SPRED1 and phosphoinositol-3 kinase regulatory subunit 2
(PIK3R2)."%¢ miR-126 is also the most abundant miRNA in endothelial
apoptotic bodies, which are thought to be a novel form of communi-
cation between cells.'® Zampetaki et al. showed that HG conditions
reduced the miR-126 content in endothelial apoptotic bodies pro-
duced by HUVECs in vitro. The authors speculate that, as a conse-
quence of the aforementioned, low delivery of miR-126 to
monocytes in diabetes may result in the previously described
reduced VEGF-A and subsequent endothelial dysfunction, resulting
in defective collateral vessel development.'®® Furthermore, decreasing
miR-126 levels in plasma were associated with a low ankle brachial
pressure index and subsequent new-onset peripheral vascular disease.

Another study explored seven diabetes-related serum miRNAs
(miR-9, miR-29a, miR-34a, miR-30d, miR-124a, miR-146a, and
miR-375) in patients with diabetes, IGT, and in people susceptible
to T2DM with a normal oral glucose tolerance test."'® While all
seven of the tested miRNAs were significantly upregulated in T2DM
cases, there was no difference in the expressed levels between IGT
cases and normal susceptible controls."’® However, the use of con-
trols that were susceptible to T2DM, rather than those without this
susceptibility, may have had a bearing on this result.

8. Therapeutic applications

The deregulation of miRNA function has been linked to diabetes, al-
though it is not yet fully certain whether this is a cause or effect of the
pathology. If MiRNAs are indeed active in the pathogenesis of diabetes
and its related complications, the restoration of normal function by
modifying the expression of specific miRNAs may be a therapeutic
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target for managing this disease. Chemically modified siRNA-like oli-
gonucleotides have been used to decrease miRNA expression (antag-
omirs) in vivo.""""? However, due to the hypothetical transient nature
of their effects, it is likely that frequent doses may be required to
sustain benefit. Given the chronic nature of diabetes, this would
require the need for repeated injections with their associated costs.
However, a recent study treating chimpanzees with locked nucleic
acid-modified oligonucleotides complimentary to miR-122 found
that serum cholesterol remained low for over 10 weeks after cessa-
tion of treatment, suggesting that longer-lasting effects may be pos-
sible.""® Adeno-associated virus (AAV) vectors containing miRNA
mimics have been found to promote miRNA expression in vivo.""*
For example, Kota et al.'™® injected mice with AAV.miR-26a in the
context of hepatic cancer. The rise in miR-26a resulted in protection
from cancer progression without signs of toxicity. Delivery of these
agents to specific tissue targets poses a further problem. Different
AAV serotypes have been shown to favour specific tissues, for
example serotypes 6, 8, and 9 are predominantly directed to skeletal
muscle, liver, and the heart, respectively."'® These results suggest the
promises of AAV-mediated miRNA therapeutics. We have also
successfully used an adenoviral vector to convey a decoy to inhibit
miR-503, which is pathogenic in the setting of diabetic limb ischae-
mia.”* However, for their short transgene expression, adenovirus
may not be the best approach to treat diabetes and its chronic
complications in the clinical arena. Another therapeutic strategy
involves ‘miRNA sponges’. These artificial miRNA decoys bind
native miRNA to create a loss of function of a particular miRNA.
These sponges contain multiple binding sites directed against a
particular miRNA or against an miRNA seed sequence family.""”
miRNA sponges have already been used in vivo to decrease the activity
of miR-31 and its role in cancer development.'”® The use of miRNA
sponges in an AAV vector delivery system maybe a potential
novel strategy for miRNA therapeutics. While the first reports on
miRNA therapeutics are encouraging, the fact that a typical miRNA
targets several genes suggests that clinical intervention may be very
complex.

9. Conclusions

miRNAs belong to a class of non-coding RNAs which are involved in
the pathogenesis of several diseases. Although many miRNAs have
already been identified, their predicted target genes need to be fully
researched and functionally characterized. The complexities in the
pathogenesis of diabetes make this more challenging. Emerging evi-
dence suggests that miRNAs are differentially expressed, and indeed
have a potential causative role, in diabetes and its related cardiovascu-
lar complications. In future, these mechanisms may be exploited to
help define specific clinical biomarkers and allow appropriate thera-
peutic intervention in the management of diabetes.

Conflict of interest: none declared.

Funding

S.S. is a British Heart Foundation (BHF) PhD student and C.E. is a BHF
Senior Research Fellow. This article was supported by BHF grants
(FS/10/001/27959 and FS/10/61/28566 to CE.). Funding to pay the
Open Access publication charges for this article was provided by the BHF.

References

1. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R et al. Over-
weight, obesity, and mortality in a large prospective cohort of persons 50 to 71
years old. N Engl | Med 2006;355:763-778.

2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for
2010 and 2030. Diabetes Res Clin Pract 9999;87:4—14.

3. Centers for Disease Control and Prevention. National Diabetes Factsheet: National
Estimates and General Information on Diabetes and Prediabetes in the United States.
Atlanta, GA: Department of Health and Human Services, Centers for Disease
Control and Prevention; 2011.

4. llonen J, Akerblom HK. New technologies and genetics of type 1 diabetes. Diabetes
Technol Ther 1999;1:205—-207.

5. Kahn SE. Clinical review 135: the importance of beta-cell failure in the development
and progression of type 2 diabetes. | Clin Endocrinol Metab 2001;86:4047—-4058.

6. Winer N, Sowers JR. Epidemiology of diabetes. | Clin Pharmacol 2004;44:397—-405.

7. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes
small RNAs with antisense complementarity to lin-14. Cell 1993;75:843—854.

8. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic
gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;
75:855-862.

9. Zeng Y, Cullen BR. Recognition and cleavage of primary microRNA transcripts.
Methods Mol Biol 2006;342:49—56.

10. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat
Rev Genet 2004;5:522—531.

11. van Rooij E. The art of microRNA research. Circ Res 2011;108:219-234.

12. Yang W, Lee DY, Ben-David Y. The roles of microRNAs in tumorigenesis and angio-
genesis. Int | Physiol Pathophysiol Pharmacol 2011;3:140—155.

13. Nicolas FE, Lopez-Martinez AF. MicroRNAs in human diseases. Recent Pat DNA Gene
Seq 2010;4:142—154.

14. Lorenzen JM, Haller H, Thum T. MicroRNAs as mediators and therapeutic targets in
chronic kidney disease. Nat Rev Nephrol 2011;7:286—294.

15. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE et al. A pancreatic
islet-specific microRNA regulates insulin secretion. Nature 2004;432:226—-230.

16. Li Y, Xu X, Liang Y, Liu S, Xiao H, Li F et al. miR-375 enhances palmitate-induced
lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1)
protein expression. Int | Clin Exp Pathol 2010;3:254—-264.

17. Norlin S, Ahlgren U, Edlund H. Nuclear factor-{kappa}B activity in {beta}-cells is
required for glucose-stimulated insulin secretion. Diabetes 2005;54:125—-132.

18. Gupta S, Sen S. Myotrophin-kappaB DNA interaction in the initiation process of
cardiac hypertrophy. Biochim Biophys Acta 2002;1589:247—-260.

19. El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E.
miR-375 targets 3’-phosphoinositide-dependent protein kinase-1 and regulates
glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008;57:
2708-2717.

20. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P et al. miR-375 main-
tains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 2009;106:
5813-5818.

21. Zhao H, Guan J, Lee HM, Sui Y, He L, Siu ] et al. Up-regulated pancreatic tissue
microRNA-375 associates with human type 2 diabetes through beta-cell deficit
and islet amyloid deposition. Pancreas 2010;39:843—846.

22. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R.
MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory re-
sponse of insulin-producing cells. | Biol Chem 2006;281:26932—-26942.

23. Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the
exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 2008;389:
305-312.

24. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R et al.
MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic
beta-cell lines. | Biol Chem 2007;282:19575—-19588.

25. Puigserver P, Rodgers |T. Foxa2, a novel transcriptional regulator of insulin sensitiv-
ity. Nat Med 2006;12:38—39.

26. Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. Diabetes mellitus, a
microRNA-related disease? Transl Res 2011;157:253-264.

27. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C et al. Alterations in
microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunc-
tion. Diabetes 2008;57:2728—-2736.

28. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P et al. Involve-
ment of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines
on pancreatic beta-cells. Diabetes 2010;59:978—-986.

29. Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs
from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA
2009;15:287-293.

30. Sun LL, Jiang BG, Li WT, Zou J}, Shi YQ, Liu ZM. MicroRNA-15a positively regulates
insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract
2011;91:94-100.



59

2

S. Shantikumar et al.

31

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

. Chan CB, De Leo D, Joseph JW, McQuaid TS, Ha XF, Xu F et al. Increased uncoup-
ling protein-2 levels in beta-cells are associated with impaired glucose-stimulated
insulin secretion: mechanism of action. Diabetes 2001;50:1302—1310.

Esguerra JL, Bolmeson C, Cilio CM, Eliasson L. Differential glucose-regulation of
MicroRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki
rat. PLoS ONE 2011;6:¢18613.

Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of
obesity-related insulin resistance. Physiol Behav 2008;94:206—218.

Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses
cell death and is required for normal fat metabolism. Curr Biol 2003;13:790—-795.
Teleman AA, Maitra S, Cohen SM. Drosophila lacking microRNA miR-278 are de-
fective in energy homeostasis. Genes Dev 2006;20:417-422.

Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB et al. Adipose tissue
selective insulin receptor knockout protects against obesity and obesity-related
glucose intolerance. Dev Cell 2002;3:25-38.

He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid
29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipo-
cytes. Mol Endocrinol 2007;21:2785-2794.

Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha
inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA 1994;91:
4854-4858.

Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat
cell development are downregulated in obesity. Diabetes 2009;58:1050—1057.
Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al.
MicroRNA-143 regulates adipocyte differentiation. | Biol Chem 2004;279:
52361-52365.

Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role
of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human
metabolic pathways. Mol Genet Metab 2007;91:209—-217.

Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX et al. Changes in micro-
RNA profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin
Exp Pharmacol Physiol 2009;36:e32.

Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G et al. micro-
RNA miR-27b impairs human adipocyte differentiation and targets PPARgamma.
Biochem Biophys Res Commun 2009;390:247-251.

Krishnaswami A, Ravi-Kumar S, Lewis JM. Thiazolidinediones: a 2010 perspective.
Perm | 2010;14:64—72.

Lee EK, Lee M), Abdelmohsen K, Kim W, Kim MM, Srikantan S et al. miR-130 sup-
presses adipogenesis by inhibiting peroxisome proliferator-activated receptor
gamma expression. Mol Cell Biol 2011;31:626—638.

Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA et al. miR-122, a mam-
malian liver-specific microRNA, is processed from PCR mRNA and may downregu-
late the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004;1:
106-113.

Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of
lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006;3:87—-98.
Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE et al.
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeo-
stasis. Science 2010;328:1566—1569.

Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U et al.
miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling.
Proc Natl Acad Sci USA 2011;108:9232-9237.

White MF. Regulating insulin signaling and beta-cell function through IRS proteins.
Can | Physiol Pharmacol 2006;84:725—737.

Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance.
Circ Res 2008;102:401-414.

Ryu HS, Park SY, Ma D, Zhang J, Lee W. The induction of microRNA targeting IRS-1
is involved in the development of insulin resistance under conditions of mitochon-
drial dysfunction in hepatocytes. PLoS ONE 2011;6:e17343.

Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145
targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells.
J Biol Chem 2007;282:32582-32590.

Huang B, Qin W, Zhao B, Shi Y, Yao C, Li ] et al. MicroRNA expression profiling in
diabetic GK rat model. Acta Biochim Biophys Sin (Shanghai) 2009;41:472—-477.
Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T et al. Glucose or
diabetes activates p38 mitogen-activated protein kinase via different pathways. | Clin
Invest 1999;103:185—-195.

Imai G, Satoh T, Kumai T, Murao M, Tsuchida H, Shima Y et al. Hypertension accel-
erates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus,
via mitogen-activated protein kinase cascades and transforming growth factor-betal.
Hypertens Res 2003;26:339—347.

Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen
species cause apoptosis of podocytes and podocyte depletion at the onset of diabet-
ic nephropathy. Diabetes 2006;55:225-233.

Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP. Endothelial dys-
function in diabetes: the role of reparatory mechanisms. Diabetes Care 2011;
34(Suppl. 2):5285-5290.

59.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Emanueli C, Salis MB, Pinna A, Stacca T, Milia AF, Spano A et al. Prevention of
diabetes-induced microangiopathy by human tissue kallikrein gene transfer. Circula-
tion 2002;106:993-999.

. Waltenberger . Impaired collateral vessel development in diabetes: potential cellular

mechanisms and therapeutic implications. Cardiovasc Res 2001;49:554—560.

Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B et al. Rescue of
diabetes-related impairment of angiogenesis by intramuscular gene therapy with
adeno-VEGF. Am | Pathol 1999;154:355—363.

Emanueli C, Graiani G, Salis MB, Gadau S, Desortes E, Madeddu P. Prophylactic gene
therapy with human tissue kallikrein ameliorates limb ischemia recovery in type 1
diabetic mice. Diabetes 2004;53:1096—1103.

Khan ZA, Chakrabarti S. Growth factors in proliferative diabetic retinopathy. Exp
Diabesity Res 2003;4:287—-301.

Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM. MicroRNA-320 expression
in myocardial microvascular endothelial cells and its relationship with insulin-like
growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 2009;36:181-188.
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mamma-
lian microRNA targets. Cell 2003;115:787—-798.

John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA
targets. PLoS Biol 2004;2:e363.

Rabinovsky ED, Draghia-Akli R. Insulin-like growth factor | plasmid therapy pro-
motes in vivo angiogenesis. Mol Ther 2004;9:46—55.

Li Y, Song YH, Li F, Yang T, Lu YW, Geng Y]. MicroRNA-221 regulates high
glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 2009;381:
81-83.

Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K et al. MicroRNAs
modulate the angiogenic properties of HUVECs. Blood 2006;108:3068—-3071.
Togliatto G, Trombetta A, Dentelli P, Rosso A, Brizzi MF. MIR221/MIR222-driven
post-transcriptional regulation of P27KIP1 and P57KIP2 is crucial for high-glucose-
and AGE-mediated vascular cell damage. Diabetologia 2011;54:1930—1940.
Villeneuve LM, Kato M, Reddy MA, Wang M, Lanting L, Natarajan R. Enhanced levels
of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to
increased inflammatory gene expression by targeting the histone methyltransferase
Suv3%h1. Diabetes 2010;59:2904—2915.

Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic
histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype
of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci USA 2008;105:
9047-9052.

Gallagher 1), Scheele C, Keller P, Nielsen AR, Remenyi ], Fischer CP et al. Integration
of microRNA changes in vivo identifies novel molecular features of muscle insulin
resistance in type 2 diabetes. Genome Med 2010;2:9.

Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R et al. Deregu-
lation of microRNA-503 contributes to diabetes mellitus-induced impairment of
endothelial function and reparative angiogenesis after limb ischemia. Circulation
2011;123:282-291.

Vickers KC, Remaley AT. MicroRNAs in atherosclerosis and lipoprotein metabolism.
Curr Opin Endocrinol Diabetes Obes 2010;17:150—155.

Najafi-Shoushtari SH. MicroRNAs in Cardiometabolic Disease. Curr Atheroscler Rep
2011;13:202-207.

Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al. The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation.
Nat Genet 2006;38:228—-233.

Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al. MicroRNA-133
controls cardiac hypertrophy. Nat Med 2007;13:613-618.

Tian R, Abel ED. Responses of GLUT4-deficient hearts to ischemia underscore the
importance of glycolysis. Circulation 2001;103:2961-2966.

Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M et al. MicroRNA-133
regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic
control in cardiac myocytes. Biochem Biophys Res Commun 2009;389:315-320.
Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte
hypertrophy in diabetes. Diabetes Metab Res Rev 2010;26:40—49.

Aoyama T, Matsui T, Novikov M, Park ], Hemmings B, Rosenzweig A. Serum and
glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hyper-
trophic response. Circulation 2005;111:1652—1659.

Rossing P, Breum L, Major-Pedersen A, Sato A, Winding H, Pietersen A et al. Pro-
longed QTc interval predicts mortality in patients with type 1 diabetes mellitus.
Diabet Med 2001;18:199—205.

Zhang Y, Xiao ], Lin H, Luo X, Wang H, Bai Y et al. lonic mechanisms underlying
abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: a
role of rapid delayed rectifier K+ current. Cell Physiol Biochem 2007;19:225-238.
Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N et al. MicroRNA miR-133 represses
HERG K+ channel expression contributing to QT prolongation in diabetic hearts.
J Biol Chem 2007;282:12363-12367.

Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC et al. Progressive attenu-
ation of myocardial vascular endothelial growth factor expression is a seminal event
in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery
of cardiac function in diabetic cardiomyopathy after replenishment of local vascular
endothelial growth factor. Circulation 2005;111:2073-2085.



miRNA in diabetes-related cardiovascular diseases

593

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

Li Y, Higashi Y, Itabe H, Song YH, Du }, Delafontaine P. Insulin-like growth factor-1
receptor activation inhibits oxidized LDL-induced cytochrome C release and apop-
tosis via the phosphatidylinositol 3 kinase/Akt signaling pathway. Arterioscler Thromb
Vasc Biol 2003;23:2178-2184.

Yu XY, Song YH, Geng Y], Lin QX, Shan ZX, Lin SG et al. Glucose induces apoptosis
of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun 2008;
376:548-552.

Shan YX, Liu T}, Su HF, Samsamshariat A, Mestril R, Wang PH. Hsp10 and Hsp60
modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin
in cardiac muscle cells. ] Mol Cell Cardiol 2003;35:1135—-1143.

Muraski JA, Fischer KM, Wu W, Cottage CT, Quijada P, Mason M et al. Pim-1 kinase
antagonizes aspects of myocardial hypertrophy and compensation to pathological
pressure overload. Proc Natl Acad Sci USA 2008;105:13889—13894.

Katare R, Caporali A, Zentilin L, Avolio E, Sala-Newby G, Oikawa A et al. Intraven-
ous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of
diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 2011;
108:1238—-1251.

Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardio-
myocyte glucose metabolism. Cardiovasc Res 2010;86:410—420.

Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic
study of diabetic retinopathy. Ill. Prevalence and risk of diabetic retinopathy when
age at diagnosis is 30 or more years. Arch Ophthalmol 1984;102:527—-532.

Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and
receptor-2 in angiogenesis. | Biochem Mol Biol 2006;39:469—-478.

McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S. MicroRNA-200b regulates vas-
cular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes
2011;60:1314-1323.

Kovacs B, Lumayag S, Cowan C, Xu S. microRNAs in Early Diabetic Retinopathy in
Streptozotocin-induced Diabetic Rats. Invest Ophthalmol Vis Sci 2011;52:4402—-4409.
Kowluru RA, Koppolu P, Chakrabarti S, Chen S. Diabetes-induced activation of
nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free
Radic Res 2003;37:1169-1180.

Taganov KD, Boldin MP, Chang K], Baltimore D. NF-kappaB-dependent induction of
microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune
responses. Proc Natl Acad Sci USA 2006;103:12481—12486.

Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M. Epstein-Barr virus
latent membrane protein 1 trans-activates miR-155 transcription through the
NF-kappaB pathway. Nucleic Acids Res 2008;36:6608—6619.

Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q et al.
Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor
PDCD4 by the microRNA miR-21. Nat Immunol 2010;11:141—-147.

Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N et al. Serum micro-
RNAs are promising novel biomarkers. PLoS ONE 2008;3:e3148.

Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L et al. Detection of microRNA
expression in human peripheral blood microvesicles. PLoS ONE 2008;3:3694.
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF et al. Argonaute?2
complexes carry a population of circulating microRNAs independent of vesicles in
human plasma. Proc Natl Acad Sci USA 2011;108:5003—-5008.

104.

105.

106.

107.

108.

109.

110.

1.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Vickers AC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs
are transported in plasma and delivered to recipient cells by high-density lipopro-
teins. Nat Cell Biol 2001;13:423—-433.

Zampetaki A, Kiechl S, Drozdov |, Willeit P, Mayr U, Prokopi M et al. Plasma micro-
RNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2
diabetes. Circ Res 2010;107:810-817.

Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe |D et al. miR-126 regulates
angiogenic signaling and vascular integrity. Dev Cell 2008;15:272-284.

Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA et al. The endothelial-
specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell
2008;15:261-271.

Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B et al. Deliv-
ery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular
protection. Sci Signal 2009;2:ra81.

Waltenberger |, Lange J, Kranz A. Vascular endothelial growth factor-A-induced
chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential
predictor for the individual capacity to develop collaterals. Circulation 2000;102:
185-190.

Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y et al. Significance of serum microRNAs
in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol
2011;48:61—69.

Kolfschoten |G, Roggli E, Nesca V, Regazzi R. Role and therapeutic potential of
microRNAs in diabetes. Diabetes Obes Metab 2009;11(Suppl. 4):118—129.
Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing
of microRNAs in vivo with ‘antagomirs’. Nature 2005;438:685—689.

Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al.
Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus
infection. Science 2010;327:198-201.

Snove O Jr, Rossi J). Expressing short hairpin RNAs in vivo. Nat Methods 2006;3:
689-695.

Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW
et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver
cancer model. Cell 2009;137:1005—-1017.

Alexander |E, Cunningham SC, Logan GJ, Christodoulou J. Potential of AAV vectors
in the treatment of metabolic disease. Gene Ther 2008;15:831—-839.

Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small
RNAs in mammalian cells. Nat Methods 2007;4:721-726.

Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC et al. A pleio-
tropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009;137:
1032-1046.

Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S et al. Global
microRNA expression profiles in insulin target tissues in a spontaneous rat model
of type 2 diabetes. Diabetologia 2010;53:1099-1109.

Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A et al. Micro-
RNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of
Type 2 Diabetes. BMC Med Genomics 2009;2:54.

Kloting N, Berthold S, Kovacs P, Schon MR, Fasshauer M, Ruschke K et al. MicroRNA
expression in human omental and subcutaneous adipose tissue. PLoS One 2009;4:
e4699.



