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Meta-analyses of genome-wide association studies are often based on imputed single nucleotide polymorphism
(SNP) data, because component studies were genotyped using different platforms. One would like to include case-
parent triad studies along with case-control studies in suchmeta-analyses. However, there are no publishedmethods
for estimating relative risks from imputed data for case-parent triad studies. The authors propose a method for
estimating the relative risk for a variant SNP allele based on a log-additive model. Their simulations first confirm that
the proposed method performs well with genotyped SNP data. As an empirical test of the method’s behavior with
imputedSNPs, the authors thenapply it to chromosome22data from theMexicoCityChildhoodAsthmaStudy (1998–
2003). For chromosome 22, the authors had data on 7,293 SNPs that were both genotyped and imputed using the
softwareMACH,which relies on linkage disequilibriumwith nearbySNPs.Correlation between estimated relative risks
based on the actual genotypes and those based on the imputed genotypeswas remarkably high (r2¼ 0.95), validating
this method of relative risk estimation for the case-parent study design. This method should be useful to investigators
who wish to conduct meta-analyses using imputed SNP data from both case-parent triad and case-control studies.

epidemiologic methods; genome-wide association study; genotype; imputation; meta-analysis; risk

Abbreviation: SNP, single nucleotide polymorphism.

Genome-wide association studies are widely used for
mapping genes related to complex diseases, in both case-
control and family-based designs. Meta-analyses can then
be used to assess the consistency of results across studies,
both in the identified alleles and in the direction of their
estimated effects. Such analyses allow investigators to com-
bine the overall evidence in order to quantify the relative
risks associated with risk-related alleles. To efficiently pool
information from studies that used different genotyping
platforms with different sets of single nucleotide polymor-
phisms (SNPs), researchers impute genotypes at untyped
SNPs by modeling the correlation structure among SNPs
using a set of reference genotypes such as HapMap (1).
The software package MACH (2) implements one such im-
putation method. Instead of the 3 genotype categories 0, 1,
or 2, corresponding to the number of variant alleles present,
MACH gives posterior probabilities for the 3 genotypes as
well as the imputed genotype, as a numeric score in the

interval [0, 2], representing a probability-weighted average
of the 3 possible genotypes.

The scoring of imputed genotypes poses challenges for
combining data from case-control and family-based studies.
Traditionally, the analysis for case-parent data is transmission-
based, employing a log-linear (3) or conditional logistic (4)
regression model for estimation of relative risks. One can also
use the ratio of counts of heterozygous parents who do (nu-
merator) versus do not (denominator) transmit the variant
allele (5). However, such approaches cannot be readily imple-
mented with imputed genotypes. In this paper, we propose an
alternative approach that uses imputed genotypes to estimate
the relative risk for case-parent studies. We first develop the
method and subsequently assess its performance with simu-
lated genotype data. We then apply it to data from an actual
case-parent triad study, allowing us to compare results based
on imputed SNPs with results based on measured genotypes
for the same SNPs in the same triads.
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MATERIALS AND METHODS

Scenarios with measured genotypes

First, consider scenarios in which the SNP marker is
typed. Let M, F, and C represent the number of copies of
the designated allele carried by the mother, father, and
affected offspring in a triad, respectively. (It is of no con-
sequence which allele is enumerated, except that interpre-
tation of the relative risk is inverted under the alternative
choice.) We define the complement as the hypothetical
matched sibling who carries each pair of alleles that were
not transmitted to the affected child. The complement
would carry the genotype M þ F � C at each locus. Let
R1 and R2 denote the relative risks associated with inheri-
tance of 1 or 2 copies of the designated allele, respectively,
relative to inheritance of no copies. We assume a log-
additive model for risk such that R2 ¼ R1

2. Note that under
a case-parent triad design, it is relative risks that are being
estimated, not odds ratios.

Let Di represent the following adjusted case-complement
difference for the ith triad: Di ¼ (2Ci � Mi � Fi)I(MþF¼1 or 3)

þ (0.5) (2Ci � Mi – Fi)I(M¼F¼1). Here, we are using the
notation Ievent, which becomes 1 when the ‘‘event’’ state-
ment is true and 0 otherwise. One can then take the average
of these Di’s using only the triads that have at least 1 het-
erozygous parent, that is, the informative triads. (The triads
in which both parents are homozygous are noninformative
for relative risk estimation.) Under the log-additive model, it
can be shown algebraically that among informative triads
the expected value of Di is (R1 � 1)/(R1 þ 1) (Table 1). Let

�D denote this average, which has the expected value (R1� 1)/
(R1 þ 1). Note that, following standardization of �D , we can
square this statistic and compare it with tables for the 1-df
chi-squared distribution to perform a hypothesis test for as-
sociation. It also follows that under a log-additive model, we
can estimate R1 as (1 þ �D)/(1 � �D) and R2 as the square of
that. We base the standard error of �D on the empirical vari-
ance of Di. According to the central limit theorem (6), the
corresponding standardized statistic is approximately nor-
mally distributed, and 95% confidence intervals for (R1 �
1)/(R1 þ 1) can be constructed. The upper and lower bounds
of the 95% confidence interval for R1 can also be calculated
by back-calculating those bounds.

Scenarios with imputed genotypes

Unlike a measured genotype, an imputed genotype can be
any value between 0 and 2, and the triad type is no longer
confined to the 15 cells in Table 1. Another complication of
imputed genotypes is that many imputation methods do not
take family structure into account, and thus the imputed
genotypes may violate Mendelian inheritance or be close
to violation—for example, a triad with imputed genotypes
M ¼ 1.9, F ¼ 1.9, and C ¼ 0.05. To estimate the relative
risk, a method needs to exclude or down-weight such im-
plausible triads, as well as nearly noninformative triads,
while taking the uncertainty of the imputations into account.

Instead of the 15 cells of Table 1, now consider the 2 3
2 3 2 cube with 27 nodes, where the axes are imputed
genotypes M, F, and C (Figure 1). For a genotyped marker,
M, F, and C can each take 3 different values, and the triad

Table 1. Probabilities for Specific Case-Parent Triads Under a Log-Additive Genetic Modela

No. of Allele Copies
Complement 2C-M-F Probabilityb E(2C-M-FjParents)c

Mother (M) Father (F) Child (C)

2 2 2 2 0 l22R1
2 0

2 1 2 1 1 l12R1
2

(R1 � 1)/(R1 þ 1)
2 1 1 2 �1 l12R1

1 2 2 1 1 l12R1
2

1 2 1 2 �1 l12R1

2 0 1 1 0 l02R1

0
0 2 1 1 0 l02R1

1 1 2 0 2 l11R1
2

1 1 1 1 0 2l11R1 2(R1 � 1)/(R1 þ 1)

1 1 0 2 �2 l11

1 0 1 0 1 l01R1

(R1 � 1)/(R1 þ 1)
1 0 0 1 �1 l01

0 1 1 0 1 l01R1

0 1 0 1 �1 l01

0 0 0 0 0 l00 0

a R1 represents the relative risk with 1 copy of the risk allele.
b lij represents the mating type parameter for M ¼ i and F ¼ j or M ¼ j and F ¼ i.
c Expected case-complement difference given parental genotypes.
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genotype (M, F, C) is located at a node in the cube that
corresponds to one of the 15 cells of Table 1; 11 of these
nodes correspond to informative triad genotypes (solid cir-
cles) and 4 to noninformative triad genotypes (open circles
with solid borders). The remaining 12 nodes are impossible
under Mendelian transmission (open circles with dotted bor-
ders). For an imputed marker, the triad genotypes can be
located anywhere on or inside the cube. We seek to include
triads clustering around the 11 informative nodes (filled cir-
cles in Figure 1) for relative risk estimation, while discount-
ing triads that are farther away and closer to an open circle.

We achieve this differential weighting in the following
way. For each triad, we first measure the minimum distance
to one of the 16 non-Mendelian or noninformative nodes,
denoting this distance as S. We want to keep the triads that
are far away from such nodes (i.e., those with S larger than
a cutoff value, say L) and down-weight those with smaller S.
The weight is calculated as W ¼ (S/L)I(S<L) þ I(S�L). We
found empirically that a cutoff of L ¼ 0.75 works well, in
that it produces good correlation between the measured re-
sults and the imputed results. Triads having imputed geno-
types that are closest to a non-Mendelian node are particularly
subject to imputation error; therefore, we down-weight those
triads even more, by multiplying S by half before calculating
the weight. We then normalize the resulting weights across
triads to add up to 1, by dividing each by their sum.

As noted above, the expected case-complement differ-
ence is higher by a factor of 2 for triads with 2 heterozygous
parents. Therefore, we again must use a corrected Di,
obtained by multiplying the case-complement difference
by the factor

ki ¼ 0:5þ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMi � 1Þ2 þ ðFi � 1Þ2

q

For measured genotypes in informative triads, ki is equal to

the inverse of the number of heterozygous parents. For
imputed genotypes, ki takes a value between 0.5 and 1.3.

Using also the weights defined above, we now take the
weighted average of the corrected differences, denoted �Dw.
We can use �Dw to estimate R1 just as we use �D with mea-
sured genotypes, using the fact that R1 is approximately
equal to (1þ �Dw)/(1� �Dw). A hypothesis test of R1 equaling
1 can be based on testing of this average statistic against its
null expectation of 0.

An alternative and less statistically defensible approach
that is sometimes advocated simply treats the ‘‘most likely’’
genotype as if it were real data. After excluding evident
Mendelian inconsistencies among the triads, one then esti-
mates the relative risk using the number of transmissions of
the variant allele from heterozygous parents to the number
of nontransmissions from heterozygous parents.

Estimating R1 and R2 separately with imputed
genotypes

We have assumed that the overall analysis will be carried
out assuming a log-additive risk model, which will tend to
enhance efficiency of testing based on a large number of
SNPs. Once the meta-analysis has been completed and par-
ticular loci have been identified as related to risk for the
disease under study, one may wish to return to the data for
those particular SNPs and now estimate relative risks under
a codominant model, rather than impose the log-additive
constraint. To accomplish separate estimation of R1 and
R2, one can use a multiple imputation procedure (7). MACH
outputs the posterior probabilities of the 3 genotypes for
each individual at each SNP. One can use these for each
triad to sample the genotypes of the mother, father, and
offspring separately based on the corresponding probabili-
ties. This assigns each scored triad to one of the nodes in
Figure 1. We can then fit the imputed data with a log-linear
model with parameters R1 and R2 in the model. For the
ith imputation, one can compute the point and variance
estimates for the parameter vector ðR̂i

1; R̂
i
2Þ. After m such

imputations have been completed and analyzed, the average
of the m point estimates ( �R1, �R2) provides the overall esti-
mate (R1, R2). Let �U denote the average of the m within-
imputation variance-covariance matrices, and let B denote
the among-imputation variance-covariance matrix, which is
the empirical variance among the m vector estimates
ðR̂i

1; R̂
i
2Þ. Then the estimated variance associated with the

overall estimate ( �R1, �R2) is given by T ¼ �U þ ð1þ 1=mÞB.

Simulation study and results

We first confirmed the validity of our method by applying
it to measured genotypes. We generated triad data sets as
previously described (8). We randomly sampled alleles for
the 2 parents according to an assigned SNP frequency. We
then randomly created a child from the parents on the basis
of Mendel’s law and assigned a relative risk of disease to the
child based on the number of inherited copies of the risk
allele. We calculated the risk of the disease and assigned
disease status to the offspring at random on the basis of that
risk. Only families with an affected offspring were retained.

Figure 1. A 2 3 2 3 2 cube containing nodes that correspond to
possible triad genotypes for a diallelic single nucleotide polymorphism
(circles with solid edges), some of which are informative because
there is at least 1 heterozygous parent (filled-in circles). This cube
also contains nodes with Mendelian inconsistencies (open circles with
dotted edges). The imputed genotypes for triads lie within or on the
surface of the cube.
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For simulation efficiency, we imposed Hardy-Weinberg
equilibrium, though our method does not require this
assumption. We assumed a log-additive risk model and gen-
erated data sets with measured genotypes under 3 relative
risk scenarios: R1 ¼ 1, R1 ¼ 1.2, and R1 ¼ 1.5, each with 5
different allele frequencies: 0.1, 0.2, . . ., 0.5. For each sce-
nario, we simulated a data set with 400 families 1,000 times.
We checked for bias by calculating the simulation-based
overall confidence interval based on the empirical standard
deviation for R1 across simulations.

Under all simulation scenarios, our method estimated R1

with no evident bias, and the 95% coverage rates for study-
based confidence intervals were statistically consistent with
the nominal 95% coverage rates (Table 2). Log-linear anal-
ysis, being maximum-likelihood-based, is optimal for mea-
sured genotypes. The confidence interval for our proposed
method was 5%–6% wider, on average, than that of the log-
linear modeling approach. This simulation study demon-
strated the validity of our method for measured genotypes
and revealed the expected slight loss of information in com-
parison with the full likelihood method.

Example

A genome-wide association study based on 492 Mexican
children with asthma and their parents was conducted in
1998–2003 (9), using the Illumina HumanHap 550K Bead-
Chip (Illumina, Inc., San Diego, California) to identify
novel genetic variants associated with childhood asthma.
Nonparentage was excluded in these 492 trios by analyses
of the genome-wide association data using PLINK (10). To
enable pooling of genome-wide association data from
several studies, we conducted imputation to generate ap-

proximately 3 million autosomal SNP imputed genotypes.
The software MACH 1.0 (http://www.sph.umich.edu/csg/
abecasis/MaCH/index.html) was used to perform the impu-
tation, with the HapMap Phase 2 release 21 consensus hap-
lotypes used as the referent (ftp://ftp.hapmap.org/hapmap/
phasing/2006-07_phaseII/consensus/). We included the
CEU, YRI, JPT, and CHB HapMap populations as reference
groups and did not apply a minor allele frequency filter (11).
The total set of approximately 3 million SNPs targeted for
analysis was based on the SNPs included in HapMap for
those ethnic groups. To impute genotypes using MACH,
one compiles a list of SNPs and MACH uses the measured
SNPs to impute a genotype for each SNP on the list, using
the local linkage disequilibrium structure, even if the SNPs
were measured. We consequently had both measured and
imputed genotypes for a subset of the SNPs. We used the
SNPs on chromosome 22 as our example. There were 7,293
SNPs for which both imputed and measured genotypes were
available, plus an additional 28,116 that were imputed. We
applied our proposed approach with L ¼ 0.75 to estimate R1

using imputed genotypes and compared the estimates with
the corresponding estimates obtained from applying a log-
linear model (3) using the measured genotypes.

We investigated the sensitivity of the R1 estimation to the
selection of the cutoff value L by repeating the analysis on
the same set of 7,293 SNPs with L¼ 0.25. We also analyzed
the 22,074 chromosome 22 SNPs (restricting the data to
those with a minor allele frequency greater than 0.02) for
which only imputed genotypes were available, using 2 dif-
ferent cutoff values for L: 0.25 and 0.75.

We applied the multiple imputation approach to estimate
R1 and R2 separately, using data on the 5,391 SNPs that
had minor allele frequencies greater than 0.1 (to ensure
estimability of R2) and also had both measured and imputed
genotypes. We performed 100 imputations for each SNP.
For comparison, we also estimated R1 and R2 by means of
the log-linear model, using measured genotypes directly.

RESULTS

As Figure 2 shows, estimates from the proposed method
(with L ¼ 0.75) using imputed genotypes and the log-linear
model using measured genotypes were highly correlated
(r2 ¼ 0.95). The 95% confidence intervals based on imputed
genotypes contained the point estimates based on the
measured genotypes for all of the SNPs and vice versa. With
L ¼ 0.25, the correlation between the estimates obtained
using imputed genotypes and those obtained using measured
genotypes remained high (r2 ¼ 0.95) (Appendix Figure 1).
Results based on the ‘‘most likely’’ genotypes using the
transmission-based ratio were also highly correlated with
those based on the same ratio, but with the measured geno-
types (r2 ¼ 0.95) (see Web Figure 1, which is posted on the
Journal’s Web site (http://aje.oxfordjournals.org/)).

The R1 estimates obtained with different L’s were highly
correlated for the set of 7,293 SNPs with both measured and
imputed genotypes (r2¼ 0.999), as well as for the set of 22,074
SNPs with only imputed genotypes (r2¼ 0.95 when using this
set). Figure 3 shows the differences between the R1 estimates

Table 2. Relative Risk Estimates Based on Measured Genotypes

(0, 1, or 2) Under Simulated Scenarios With Varying Relative Risks

and Allele Frequenciesa

True R1
Allele

Frequency
R1

95% Confidence
Interval

Empirical
Coverage

1 0.1 1.01 1.00, 1.02 0.951

0.2 1.00 0.99, 1.01 0.956

0.3 1.01 1.00, 1.01 0.959

0.4 1.00 0.99, 1.01 0.952

0.5 1.00 0.99, 1.00 0.954

1.2 0.1 1.20 1.19, 1.21 0.944

0.2 1.20 1.19, 1.21 0.953

0.3 1.20 1.19, 1.21 0.950

0.4 1.20 1.19, 1.20 0.957

0.5 1.20 1.20, 1.21 0.949

1.5 0.1 1.50 1.48, 1.51 0.941

0.2 1.51 1.50, 1.52 0.956

0.3 1.51 1.50, 1.52 0.947

0.4 1.51 1.50, 1.52 0.951

0.5 1.49 1.48, 1.50 0.940

a Each simulated data set contained 400 triads, and 1,000 data

sets were simulated under each scenario.
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when they were estimated with L ¼ 0.25 versus L ¼ 0.75, for
the SNP set with only imputed genotypes. The differences
were between �0.2 and 0.2 for 99.85% of the SNPs. The 33
SNPs that showed a larger difference all had a minor allele
frequency less than 0.05. Thus, the results appeared to be
insensitive to the choice of the tuning parameter, L.

When we used multiple imputation to estimate R1 and R2

separately, 2 of the SNPs did not have enough data for esti-
mating R2 and were subsequently removed. As Figure 4 and
Figure 5 show, estimates from the multiple imputation ap-
proach using imputed genotypes and the log-linear model us-
ing measured genotypes for the remaining 5,389 SNPs were
highly correlated for both R1 and R2 (r

2¼ 0.98 and r2¼ 0.97,
respectively). These high correlations probably reflect a better
fit of the model allowing for 2 relative risk parameters.

DISCUSSION

Our proposed method can be used to estimate relative
risks under a log-additive model using imputed genotypes
from case-parent triads. These estimates can subsequently
be used for meta-analysis. This method also provides a way
to increase the number of triads that can be included for
a particular estimation of relative risk, by using imputation
software to fill in SNPs that are sporadically missing (those
that cannot be ‘‘called’’).

Perhaps the simplest available method for using imputed
genotypes involves simply selecting the most likely geno-
type at each locus and then treating that as if it were mea-
sured genotype data. That is, one selects the highest of the 3
posterior probabilities and treats the corresponding allele
count as if it were a measured genotype. In fact, for many

SNPs, the linkage disequilibrium structure is strong enough
that the most likely genotype corresponds to the actual ge-
notype most of the time. For our chromosome 22 data, there
was disagreement between the measured and ‘‘most likely’’
genotypes for approximately 1 in every 2,000 SNPs. The
corresponding proportion of SNPs/triads with apparent
Mendelian inconsistencies was 1/3,000. Thus, it is not sur-
prising that log-linear analyses yielded high correlations for
results based on our method and results based on these as-
signed values (excluding Mendelian inconsistencies). One
issue with using ‘‘most likely’’ genotypes, however, is pos-
sible underestimation of the uncertainties associated with
relative risk estimation. A related issue is that the accuracy
of the ‘‘most likely’’ genotypes can vary across SNPs. For
some SNPs in our chromosome 22 data, the percentage of
disagreement between the measured genotype and the
‘‘most likely’’ genotype was as high as 21%, and the per-
centage of apparent Mendelian inconsistencies ranged up to
4.7%. For these few badly imputed SNPs, which cannot
readily be identified, our method outperformed the ‘‘most
likely’’ method, presumably because it effectively removes
families with poor imputation genotype scores—those re-
siding far away from the 15 nodes.

Although our results suggest that imputed data performed
very well in these analyses, it is worth noting that relative
risks are estimated with case-parent data, while odds ratios
are estimated with case-control data. For a common disease
such as asthma, this distinction could require a nullward
correction of the case-control estimates (or an inflation away
from the null of the triad-based estimates) to ensure full
comparability before combining evidence across data from
case-control and case-parent study designs. One would need

Figure 2. Estimated R1 on a logarithmic scale based on the mea-
sured genotypes compared with that obtained using the imputed ge-
notypes instead. The estimates were based on a log-additive model,
and the cutoff value of the distance S was 0.75. There were 7,293
chromosome 22 single nucleotide polymorphisms represented with
both measured and imputed genotypes from the Mexico City Asthma
Study (9).
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Figure 3. Difference between 2 R1 estimates when they were
analyzed with 2 different cutoff values of the distance S, L ¼ 0.25 and
L ¼ 0.75 (see text for details). This histogram includes 22,074 single
nucleotide polymorphisms (SNPs) on chromosome 22 with minor allele
frequencies greater than 2% and no measured genotype. R25 is the R1

estimate with L ¼ 0.25, and R75 is the R1 estimate with L ¼ 0.75.
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a way to estimate b0, the baseline risk, in order to translate
a relative risk to the corresponding odds ratio. For example,
suppose that b is the proportion of children who develop
asthma in the population under study and p is the prevalence
of the putative risk-related variant allele, with a relative
risk of R1 for a single copy and R1

2 for 2 copies. We then
can apply Hardy-Weinberg equilibrium to approximate b ¼
(1� p)2b0þ 2p(1� p)b0R1þ p2R2b0, so the baseline risk b0
is approximately equal to b/[(1 � p)2 þ 2p(1 � p)R1 þ
p2R2]. Then, the odds ratio for inheritance of a single copy
would be estimated by plugging the estimates for b0 and R1

into R1(1 � b0)/(1 � R1b0).

The choice of the cutoff value L determines the weight
given to each triad with a non-nodal score. A high cutoff
value gives less weight to triads that are not very close to any
of the 11 informative nodes, while a low value allows triads
relatively far from those nodes to contribute. Our sensitivity
analysis suggests that results are not particularly sensitive to
the choice of this parameter.

It is possible to modify our method by instead using pos-
terior probabilities for the 3 possible genotypes directly. In
this alternative approach, each family in the sample contrib-
utes a sum of increments that are weighted by the product of
3 respective genotype probabilities. For example, the ith
family will contribute to the statistic an amount equal to

Di ¼
X

2c�m�f 6¼0

PrðMi ¼ mÞPrðFi ¼ f Þ

PrðCi ¼ cÞð1
2
Þ
Iðm¼f Þ

ð2c� m� f Þ:

Let the total weight for the ith triad be defined by

Wi ¼
X

2c�m�f 6¼0

PrðMi ¼ mÞPrðFi ¼ f ÞPrðCi ¼ cÞ:

Once contributions of all triads in the sample are added, the
statistic is estimated as �D ¼

P
i Di

�P
i Wi, and the risk

estimate is ð1þ �DÞ=ð1� �DÞ. This approach provides risk
estimates that are similar to those from the method de-
scribed in Materials and Methods assuming a log-additive
risk model, but its r2 with estimates based on genotyped
markers was not quite as high as that based on the method
described above (r2 ¼ 0.93 vs. r2 ¼ 0.95).

The current version of the MACH program does not make
inferential use of the family structure, and development of
software for imputation that exploits that structure could
presumably work even better for analysis of family data.
The posterior probabilities from such imputed genotypes,
together with multiple imputation, could also be used for
mapping of genetic variants associated with quantitative
traits (e.g., by employing a likelihood-based method, such
as quantitative polytomous logistic regression (12)) or could
be used for extended pedigrees (e.g., by employing a method
that can handle data with such pedigree structures, such as
the pedigree disequilibrium test (13)).

For a condition with onset in early life or for a pregnancy
complication, the maternal genome may also contribute to
risk, so it may be of interest to carry out meta-analyses based
on possible maternal effects (14). This can also be done
using the multiple imputation method we have described.
If both maternal and offspring-based effects are found for
the same SNP, one can fit log-linear models that include
both, as well as characterize possible synergistic effects
between the mother and her offspring (15).

In summary, we have shown via simulations and a real
data example that estimates based on our approach applied
to imputed genotypes agree well with results based on the
corresponding measured genotypes using maximum likeli-
hood estimation and a log-linear model. It is reassuring that

Figure 4. Estimated R1 on a logarithmic scale based on the mea-
sured genotypes compared with that obtained using instead the im-
puted genotypes based on multiple imputation.

Figure 5. Estimated R2 on a logarithmic scale based on the mea-
sured genotypes compared with that obtained using instead the im-
puted genotypes based on multiple imputation.
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estimation based on imputed genotypes is consistently very
close to what would have been estimated on the basis of
actual genotyping. This method will be useful to consortia
of investigators who wish to combine data from case-control
and case-parent genome-wide association studies in meta-
analyses.
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Appendix Figure 1. Estimated R1 on a logarithmic scale based on
the measured genotypes compared with that obtained using the im-
puted genotypes instead. The estimates were based on a log-additive
model, and the cutoff value of the distance S was 0.25. There were
7,293 chromosome 22 single nucleotide polymorphisms represented
with both measured and imputed genotypes from the Mexico City
Asthma Study (9).
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