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INTRODUCTION

On the basis that “a picture is worth a thousand words,”
data are often presented graphically in order to convey some
of the information that they contain. Modelers use graphical
representations of data for numerous purposes, two of the
most important being, to inform and drive the modeling
process and to communicate with their clients who are the
end users of their models. However, it is not always clear
which graphic should be used for a particular set of data and
for a particular purpose. As such, it is very well possible that
choosing the wrong graph may mislead rather than enlighten,
which is obviously a situation to be avoided if at all possible.
Part of the difficulty lies in the fact that exploratory data
analysis (EDA), which incorporates graphical exploration of
the data, is perceived to be as much an art as it is a science.
The artistic aspect of EDA is based on human creativity and
intuition, and it is our intuition that can sometimes fail on us.

One of the most intuitive graphs is one in which the data
are averaged in some way and the averages plotted. This use
of averages is so intuitive that it is frequently used without
very much thought or consideration. It must be acknowledged
that in many cases, this proves to be a good strategy though
there are occasions when it can be misleading. This paper
examines some commonly encountered situations in which
such graphics may be misleading. The reasons why they are
misleading are explored and explained. In addition, an
alternative strategy is suggested.

In order to maintain the confidence of the end users in a
model, it is important that any apparent contradiction
between the model and the graphical presentation of the
data is carefully explained. It is hoped that the following
sections will go some way in helping with that explanation.

For the purposes of the following discussion, it will be
assumed that the response variable (Y) is recorded on a
continuous scale. The independent variable (x) may be
continuous or discrete.

The next section describes a general approach to
building a mixed effects model. The following two sections
discuss the use of data averages and their limitations. An
alternative to data averaging is introduced in the following
section. The data averaging and alternative methods are
compared by means of a simulated trial and a real case
example. The paper finishes with a discussion.

MIXED EFFECTS MODEL

When the data are grouped in such a way that
observations within a group are correlated, the model needs
to take account of such correlation. Longitudinal data are, of
course, grouped and correlated in this way because repeated
observations on the same subject (experimental unit) are
correlated. This correlation is due to the fact that such
observations reflect the individual characteristics of the
subject. There are several options available for modeling
correlated data (1), one of which is the use of a mixed effects
model incorporating both random and fixed effects. The use
of mixed effects models is limited to situations where the
correlation between observations within a group is positive,
which is the case for many datasets. These mixed effects
models are widely used in pharmacometrics and will form the
basis of our discussion.

Consider a situation where data were collected from n
subjects with mi observations being made on the ith subject.
For the sake of simplicity, a single discrete valued independent
variable will be considered with r distinct values denoted
by xk k=1,2,…,r. Note that it is not being assumed that
each subject has one observation at each distinct value of x,
and consequently, mi is not necessarily equal to r. If x is
continuous, it can be discretized using intervals that span the
range of x with xk being the middle of the kth interval. Let the
observations be denoted by Yij where the subscript i represents
the subject and the subscript j indicates a particular observation
recorded for that subject. The vector of random effects
associated with the ith subject will be denoted by ηi. These
random effects are constant across all observations for a
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particular subject but vary from subject to subject and are
included in the model to account for the positive correlation
between observations within a group and for the variation
between groups.

The modeling objective is to construct a suitable model
of the general form

Yij ¼ f x; �; �i;2ij
� �

i ¼ 1; 2; . . . ; n j ¼ 1; 2 . . . ;mi

E �ið Þ ¼ 0 E 2ij
� � ¼ 0 Var �ið Þ ¼ w2 Var 2ij

� � ¼ �2

Cov �i;2ij
� � ¼ 0

ð1Þ

where θ is a vector of fixed effect parameters and the random
part of Yij is described by the random effect ηi and by the
noise ∈ij. The E(.) notation stands for the expected value
(mean or average) of a random variable, while Var(.) and
Cov(.) represent the variance and covariance, respectively
(2). In addition to Eq. 1, the model usually includes some
distributional assumptions about the random effects and the
noise. Note that the number of observations that each subject
has at any particular value of x is not specified and might vary
from subject to subject.

The first problem is to find a function f(.) which would be
suitable to describe the data under consideration. The most
common approach is to select a function based on knowledge
of the processes giving rise to the data, or based on previous
experience with similar data. The choice of a function is
frequently supported by plotting the data to show that it
conforms to the general shape of the function selected. When
no information is available about the processes giving rise to
the data and there is no previous experience to call upon, the
data are plotted and an empirical or a semi-mechanistic
function that describes the shape of the plot is selected. In all
of these scenarios, the plot used is frequently the one which
uses the average value of Y at each distinct value of x, plotted
versus x. The question to be addressed is whether or not such
a plot is appropriate in any given situation.

THE AVERAGE

The problem of finding a suitable function f(.) for the
data can be somewhat simplified by dividing it into two steps.
The first step consists of identifying the appropriate function
to use to describe the non-random part of the model. This
amounts to deciding what function to use to describe noise-
free data (∈ij=0) from a typical subject (ηi=0). The second
step is to decide how the random effects (ηi, ∈ij) enter the
function f(.).

The first step amounts to considering a simplified
problem in which the random effects (ηi, ∈ij) are replaced
by their means, both of which are zero. Essentially, what we
are trying to do here is to identify the function f(x, θ, 0, 0). If
the value of f(x, θ, 0, 0) were known for each value of x, then
plotting f(x, θ, 0, 0) versus x would indicate the shape
required and would hopefully suggest a suitable function or
set of functions for f(x, θ, 0, 0) and/or might be used to justify
the use of a particular function. Of course, the value of f(x, θ,
0, 0) is unknown but might be estimated at each distinct value
of x, and the estimates plotted versus x to produce the
required graph. Since f(x, θ, 0, 0) represents the model for Yij

in Eq. 1 with ηi and ∈ij replaced by their mean values of zero,
it seems intuitive to use the sample mean of the Yij, averaged

across i and j as an estimate of f(x, θ, 0, 0). These sample
means (one for each value of xk) are written as Yk where

Yk ¼
P n

i¼1

Pmi
j¼1 Yijjx ¼ xk

nk
k ¼ 1; 2; . . . ; r ð2Þ

and nk is the number of observations in the dataset with x = xk.
A plot of the Yk values against the independent variable xk is
used as an indicator of the shape of f(x, θ, 0, 0) and also to
suggest suitable functions that might be used or to support the
use of a particular function for f(x, θ, 0, 0).

The second step is to decide how the random effects (ηi,∈ij)
enter the function f(.). The choice of a model for the noise is
largely empirical (3). Some commonly employed structures (4)
are the additive error model

f x; �; 0;2ij
� � ¼ f x; �; 0; 0ð Þ þ 2ij i ¼ 1; 2; . . . ; n j ¼ 1; 2; . . . ;mi

ð3Þ
the proportional error model

f x; �; 0;2ij
� � ¼ f x; �; 0; 0ð Þ: 1þ 2ij

� �
i ¼ 1; 2; . . . ; n j ¼ 1; 2; . . . ;mi

ð4Þ
and the multiplicative error model

f x; �; 0;2ij
� � ¼ f x; �; 0; 0ð Þ exp 2ij

� �
i ¼ 1; 2; . . . ; n j ¼ 1; 2; . . . ;mi

ð5Þ
Themultiplicative error model can be approximated by the

proportional errormodel. Finally, the random subject effects are
usually based on the idea of between-subject variation of the
parameters defining the shape of f(x, θ, 0, 0). For example, if

f x; �; 0;2ij
� � ¼ �1x

�2 þ x
þ 2ij

then the model

f x; �; �i; 2ij
� � ¼ �1 exp �i1ð Þx

�2 exp �i2ð Þ þ x
þ 2ij

or

f x; �; �i; 2ij
� � ¼ �1 þ �i1ð Þx

�2 þ �i2ð Þ þ x
þ 2ij ð6Þ

might be considered because each of them describes subject
to subject variation in the elements of θ.

THE MODEL FOR THE AVERAGE

Now, let us examine in more detail the use of Yk as an
estimate of f(xk, θ, 0, 0). This step was described above as
“intuitive,” but we will look at it from a statistical point of
view and assess how good an estimate of f(xk, θ, 0, 0) the data
average Yk really is.

The rationale for averaging lies in the fact that we are
interested in f(xk, θ, 0, 0) which is the model in Eq. 1 with ηi and
∈ij replaced by their mean values of zero. If we could compute
f xk; �; �; 2ð Þ where � and 2 represent sample averages of ηi
and ∈ij, respectively, and if we could assume that both � and 2
are close to zero, then we have an estimate of f(xk, θ, 0, 0).
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The first consideration is the linearity of f(x, θ, ηi, ∈ij) in
terms of ηi and ∈ij. It is well-known (1,5,6) that if the function
is nonlinear in these random variables, then the mean of the
function is not equal to the same function of the means.
Consider the logarithm as an example of a nonlinear function.
The mean of the natural logarithm of data values (5, 62, 37,
18, 46) is 3.2 while the natural logarithm of the mean of these
data values is 3.5, which demonstrates that the mean of the
logarithm is not equal to the logarithm of the mean.
Averaging the values of the response variable Yij at a fixed
x corresponds to averaging f(x, θ, ηi, ∈ij) at a fixed x across
values of ηi and ∈ij and is not equal to f xk; �; �; 2ð Þ where �
and 2 represent the averages of ηi and ∈ij, respectively, when
the function is nonlinear in ηi and ∈ij. Because this property
of the average has been well documented (1,5,6), we will not
dwell on it here except to point out that nonlinearity is one
reason why plotting data averages could be misleading.

The function f(x, θ, ηi, ∈ij) can be approximated by
means of a first-order linearization as follows:

f x; �; �i; 2ij
� � ffi f x; �; 0; 0ð Þ þ �if

0
� x; �; 0; 0ð Þ þ 2ijf

0
2 x; �; 0; 0ð Þ

ð7Þ
where the prime denotes partial differentiation with respect
to the subscript. If the function f(.) is linear in ηi and ∈ij, the
approximation is exact. How good this approximation is
depends on the form of the function f(.) and on the size of
the variances of ηi and ∈ij (6). In the following discussion,
it will be assumed that the linear approximation is at least
“reasonable” if not exact. Substituting Eq. 7 into Eq. 1
gives

Yij ffi f x; �; 0; 0ð Þ þ �if
0
� x; �; 0; 0ð Þ þ 2ijf

0
2 x; �; 0; 0ð Þ

i ¼ 1; 2; . . . n j ¼ 1; 2; . . .mi

ð8Þ

Substituting this into Eq. 2 will give us a model for Yk .
Let us proceed in steps by summing over the j subscript first.

Xmi

j¼1

Yij x ¼ xkj� � ffi mikf xk; �; 0; 0ð Þ þmik �i x ¼ xkjf gf 0
� xk; �; 0; 0ð Þ

þ
Xmi

j¼1

2ij x ¼ xkj� �
f
0
2 xk; �; 0; 0ð Þ

i ¼ 1; 2; . . .n k ¼ 1; 2; . . . ; r

ð9Þ
where mik represents the number of observations recorded
for the ith subject with x = xk. Now sum over the i subscript to
get

Xn
i¼1

Xmi

j¼1

Yij x ¼ xkj� � ffi
Xn
i¼1

mikf xk; �; 0; 0ð Þ

þ
Xn
i¼1

mik �i x ¼ xkjf gf 0
� xk; �; 0; 0ð Þ

þ
Xn
i¼1

Xmi

j¼1

2ij x ¼ xkj� �
f
0
2 xk; �; 0; 0ð Þ

k ¼ 1; 2; . . . r

ð10Þ

Now dividing across by nk and noting that nk ¼ Pn
i¼1 mik

yields

Yk ffi f xk; �; 0; 0ð Þ þ �f
0
� xk; �; 0; 0ð Þ þ 2f 0

2 xk; �; 0; 0ð Þ ð11Þ

where

� ¼ 1
nk

Xn

i¼1
mik �i x ¼ xkjf g 2 ¼ 1

nk

Xn

i¼1

Xmi

j¼1
2ij x ¼ xkj� �

ð12Þ
If both � and 2 are close to zero, then Yk would be

approximately equal to f(xk, θ, 0, 0). Consequently, we can
see that there are two conditions for the data averages to be
used as estimates of f(xk, θ, 0, 0), namely

1. The model should be linear or approximately linear in
both the random effects and the residual error.

2. The mean values � and 2 in Eq. 12 should be
expected to be close to E(ηi)=0 and E(∈ij)=0,
respectively.

This latter condition can be examined by considering
E �ð Þ , which is the mean of the sampling distribution of � .
This mean can be derived (2) from Eq. 12 as

E �ð Þ ¼ 1
nk

Xn

i¼1
mikE �i x ¼ xkjð Þ ¼ E �i x ¼ xkjð Þ ð13Þ

where E �i x ¼ xkjð Þ is the mean of ηi conditional on x = xk
and is also described as the regression function of ηi on x (7).
If ηi and x are independent of each other, we can write

E �ð Þ ¼ E �i x ¼ xkjð Þ ¼ E �ið Þ ¼ 0 ð14Þ
i.e., the conditional mean of ηi is equal to its marginal mean
which is zero and we could expect � to be close to E(ηi)=0.
However, when ηi and x are dependent on each other, Eq. 14
does not hold and � could be different from zero.

Similarly, we can write

E 2ð Þ ¼ 1
nk

Xn

i¼1

Xmi

j¼1
Ii jkE 2i j x ¼ xkj� � ¼ E 2i j x ¼ xkj� � ð15Þ

where Iijk is an indicator variable taking a value of 1 for each
observation with x = xk and a value of zero otherwise. When
∈ij and x are independent of each other, then

E 2ð Þ ¼ E 2ij x ¼ xkj� � ¼ E 2ij

� � ¼ 0 ð16Þ

and 2 would be expected to be close to zero. On the other
hand, when ∈ij and x are dependent on each other, 2 could
be different from zero.

The results in Eqs. 11, 14, and 16 show that in a situation
where the model is approximately linear in both the random
effects and the residual error and both the random effects
and the residual error are independent of x, plotting Yk

versus xk would give a reasonable representation of the
function f(x, θ, 0, 0). However, when these conditions do
not hold, the plot could be misleading.

An example of a situation in which the random effects
are correlated with x is a dose titration study in which the
drug dose administered to a subject at each dosing occasion is
represented by x and is dependent on the response of the
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subject to earlier doses. Because the response to earlier doses
depends on the individual subject’s random effects, there will
be a correlation between the dose administered and the
random effects. Consequently, in this circumstance one
should not expect � to be close to zero and plotting Yk

versus xk would not be expected to yield a reasonable
representation of the function f(x, θ, 0, 0).

AN ALTERNATIVE APPROACH

Combining Eqs. 1 and 7 gives Eq. 8 which can be written as

Yij ffi
Xr

k¼1

Iijk f xk; �; 0; 0ð Þ þ �if
0
� xk; �; 0; 0ð Þ þ 2ijf

0
2 xk; �; 0; 0ð Þ

h i

E �ið Þ ¼ 0 E 2ij
� � ¼ 0 Var �ið Þ ¼ w2 Var 2ij

� � ¼ �2

Cov �i;2ij
� � ¼ 0

ð17Þ
where Iijk is as defined in Eq. 15. Since interest centers on
estimating f(xk, θ, 0, 0), we can think of the values of
this function at the discrete values of x as parameters to
be estimated. In other words, the values of f(xk, θ, 0, 0)
k=1, 2,…,r become parameters that can be written as

b1k ¼ f xk; �; 0; 0ð Þ k ¼ 1; 2; . . . ; r ð18Þ

At this stage of the model building process, we do not
know the form of the function f(.), and as a result, we have no
information about the random effects. Consequently, we use a
single random effect which acts as a surrogate for all of the
random effects. The derivatives with respect to the random
effect and the residual error at the discrete values of x can
also be considered as parameters and written as

b2k ¼ f
0
n xk; �; 0; 0ð Þ b3k ¼ f

0
2 xk; �; 0; 0ð Þ k ¼ 1; 2; . . . ; r ð19Þ

Combining Eqs. 17, 18, and 19 gives a linear mixed effects
model

Yij ffi
Xr

k¼1

Iijk b1k þ �ib2k þ 2ijb3k
� �

E �ið Þ ¼ 0 E 2ij
� � ¼ 0 Var �ið Þ ¼ w2 Var 2ij

� � ¼ �2

Cov �i;2ij
� � ¼ 0

ð20Þ

which can be fitted to the data in order to estimate the values
of all of the β parameters. However, the model in Eq. 20 is
over-parameterized because the variance of the random
effect (ω2) and the residual variance (σ2) cannot be
uniquely estimated. This is due to the fact that the variance
of Yij includes a term that is equal to β2k

2ω2 and a term equal
to β3k

2σ2, and only these products are estimable (identifiable),
not the individual components, and consequently, ω2 and σ2

cannot be uniquely estimated. This over-parameterization can
be dealt with by fixing the values of the two variances. Once
the β parameters have been estimated, the required plot can
be produced by plotting bb1k versus xk.

SIMULATION STUDY

In order to demonstrate the effects described above, a
dose–response study was simulated with two treatment arms.
The doses studied ranged from 10 to 50 mg in 10 mg
increments. Each subject received ten doses of drug, and
their response was recorded on a continuous (arbitrary) scale
following each dose. In one treatment arm, the subjects
underwent a forced dose titration following every second
dose, i.e., their first two doses were 10 mg, the next two were
20 mg, etc. In the other treatment arm, a controlled dose
adjustment regimen was used. In this arm, subjects were
administered a 10-mg dose on the first dosing occasion. All
subsequent doses were dependent on the responses to the
previously administered doses. If the responses were below a
pre-determined threshold, the dose was escalated by 10 mg,
and once a subject recorded at least one response above the
threshold, their dose was maintained at that level for the rest
of the trial. The model used to simulate the jth response for
the ith subject was an Emax model and can be described by

Yij ¼ E0 þ Emax � E0ð Þe�i xij
ED50 þ xij

þ 2ij i ¼ 1; 2; . . . ;n j ¼ 1; 2; . . . ; 10

�i � N 0;w2� � 2ij � N 0; �2
� �

Cov �i;2ij
� � ¼ 0

ð21Þ
where Yij is the response and xij represents the dose
administered. The maximum effect varies from subject to
subject and may be described as the sensitivity of the subject
to the drug because subjects with large values of Emax

experience greater responses than those with smaller Emax

values. Note that this model is nonlinear in the random effect,
and as a consequence, the alternative approach, described
above, is based on a linear approximation. In order to minimize
the effect of sampling variation on the results, a very large
sample of 10,000 subjects was simulated in each armwithE0=20,
Emax=100, ED50=30, ω

2=0.08, and σ2=100. In the controlled
dose adjustment arm, the threshold response was 50 units.

The result of plotting the average response at each dose
versus dose is shown for both treatment arms in Fig. 1 along with
the noise-free dose–response curve for a typical (ηi=0) subject.
Then themixed effects model of Eq. 20 was fitted to each dataset
using NONMEM®VI (8) and the estimates of bb1k were plotted
versus xk for each treatment arm, and the results are illustrated in
Fig. 2 which also includes the noise-free dose–response curve for
a typical (ηi=0) subject for reference purposes.

EXAMPLE

Data collected during a phase 3 study of an ER formulation
of tapentadol hydrochloride, which has been developed for the
management of moderate to severe chronic pain in patients
18 years or older, will be used to illustrate the points discussed
above. This centrally active analgesic agent has an apparent
dual mode of action, being both a mu-opioid receptor agonist
and an inhibitor of norepinephrine (re)uptake. The study was a
randomized, multicenter, double-blind, parallel-group trial
with controlled dose adjustment regimens of tapentadol ER,
placebo, and active comparator (oxycodone CR) in subjects
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withmoderate to severe chronic pain due to osteoarthritis of the
knee. The eligible populations included opioid naïve and opioid
experienced subjects who presented with moderate to severe
pain based on pain intensity scores. The trial consisted of
five periods: screening, washout, titration, maintenance,
and follow-up. The doses of tapentadol investigated ranged
from 100 to 250 mg twice daily (b.i.d.). Doses of tapentadol
50 mg were used for the purpose of titration only.

Throughout the trial, each individual subject recorded
twice daily (morning and evening) their average pain
intensity over the previous 12 h using an 11-point (0–10)
numerical rating scale (NRS). Following screening, subjects
proceeded to a washout period lasting 3 to 7 days. At
completion of the washout period, subjects were randomized
to their double-blind treatment arm (tapentadol, oxycodone
or placebo). Determination of baseline pain intensity was
defined as an average of the pain intensity score measured
over the last 3 days prior to randomization with an average
NRS score of ≥5 required for randomization. Following
randomization, subjects were individually titrated over
3 weeks to the optimal individual dose of the investigational
drug. The optimal dose is defined as the dose providing a
meaningful improvement of pain with acceptable side effects
in the subject’s perception. Subjects initiated treatment with
tapentadol ER (base) 50 mg b.i.d., oxycodone CR 10 mg b.i.d.,
or placebo b.i.d. After 3 days, the dose was increased to
tapentadol ER 100 mg b.i.d., oxycodone CR 20 mg b.i.d., or
placebo b.i.d., respectively. This was the minimum dose allowed
for the remainder of the trial. Upward titration at a
minimum of 3-day intervals (six consecutive doses) in
increments of tapentadol ER 50 mg b.i.d., oxycodone CR
10 mg b.i.d., or placebo b.i.d. was permitted. The maximum
doses of active treatment allowed were tapentadol ER
250 mg b.i.d. and oxycodone CR 50 mg b.i.d. Downward
titration (not below the minimum dose) was also permitted
using the same decrements without a time restriction.
Subjects continued their investigational drug intake for a
12-week maintenance period. Medication could be adjusted
up or down in increments of tapentadol ER 50 mg b.i.d.,
oxycodone CR 10 mg b.i.d., or placebo b.i.d. Adjustment of
dose took place in agreement with the investigator, with a
minimum of 3 days between each dose adjustment. A post-
treatment follow-up period of 2 weeks followed treatment
discontinuation.

Along with the twice daily NRS pain scores and the
baseline pain score, the doses of medication administered, the
patient’s age, body weight, gender, and opioid experience
were also recorded. Because each pain score represents the
average pain in the 12-h time period immediately preceding
the recording of the pain score, the dose associated with each
pain score was that administered 12 h prior to the recording
of the pain score.

Consider a modeling exercise whose objective is to
establish a dose–response model for tapentadol based on
the pain scores recorded in the morning (for the sake of
simplicity). For this purpose, the data collected for subjects
who received the active comparator do not contain useful
information and are ignored.

Because of the titration and dose adjustment nature of
the trial design and the fact that subjects were blinded to
the medication received, the placebo was administered at
different “dose” levels, each identical in appearance with
the corresponding tapentadol tablet. Consequently, the
data collected from placebo-treated subjects also includes
dose information corresponding with the dose that the
subject believed had been administered, i.e., five “dose”
levels of placebo were used in the study (50, 100, 150, 200,
and 250 mg). This aspect of the study design must be taken
into account when modeling the data.
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Fig. 1. The noise-free dose–response relationship for the typical subject
along with mean response plotted versus drug dose for each arm of the
simulated trial. The solid curve with no symbols represents the noise-free
dose–response relationship for the typical subject, the circles with dashed
lines refer to the forced titration arm, and triangles with dotted lines
correspond with the controlled dosage adjustment arm
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Fig. 2. Estimates of the β1k parameters in Eq. 20 plotted versus drug
dose for each arm of the simulated trial. Circles with dashed lines refer
to the forced titration arm, and triangles with dotted lines correspond
with the controlled dosage adjustment arm. The noise-free dose–response
relationship for the typical subject is represented by the solid curve with
no symbols
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The controlled dose adjustment nature of the study
implies that subjects have varying sensitivity to their medication
and this ought to be part of the random subject effect. Following
the early doses (50 and 100 mg of tapentadol or placebo), the
dose of medication administered to a subject depends on that
subject’s responses to previous doses which in turn depends on
the subject’s sensitivity to the medication. Consequently, the
dose administered is correlated with the subject’s sensitivity to
the medication. For example, a very sensitive subject will
receive a meaningful improvement of pain with acceptable side
effects at low doses and will seldom if ever be administered the
higher doses. On the other hand, a relatively insensitive subject
will very rapidly escalate the dose of medication to the higher
dose range and will be administered few low doses and lots of
high doses.

The dataset was divided into four subsets as follows:

1. Opioid naïve subjects administered the placebo
2. Opioid experienced subjects administered the placebo
3. Opioid naïve subjects administered tapentadol
4. Opioid experienced subjects administered tapentadol

Since interest centers on dose–response relationships, the
dose of medication was treated as x in the analyses conducted.
Percentage change from baseline pain score was the response
variable (Y) with negative values corresponding with a reduc-
tion in pain score. Each dataset was first analyzed by computing
themean of all responses at each dose level from 50 to 250mg in
increments of 50 mg. The mean response was plotted versus
dose, and the results are shown in Fig. 3 where the plots for the
four datasets are overlaid. Then the linear mixed model of
Eq. 20 was fitted to each dataset using NONMEM®VI (8), and
in each case, the estimates of bb1k were plotted versus xk and
these four plots are overlaid in Fig. 4. An extract from the code
used is given in the “Appendix.”

DISCUSSION AND CONCLUSIONS

The results of the simulated trial in Fig. 1 clearly
illustrate a big difference between the plots for the two arms
of the trial. In the forced titration arm, the dose administered
is independent of the random subject effects and the residual
error because the doses were administered according to a
fixed schedule incorporated into the trial design. Consequently,
Eqs. 14 and 16 indicate that we can expect that plotting the
average response versus dose would give a good represen-
tation of the noise-free dose–response curve for the typical
subject. This expectation is borne out by the results plotted
in Fig. 1. The difference between the curve describing
noise-free data in a typical subject and the means based on
the forced titration arm was shown to be due to the fact
that the model is nonlinear in the random effect (results
not shown).

The plot in Fig. 1 for the controlled dose adjustment arm
is clearly misleading in terms of the dose–response relationship
and demonstrates the potential to introduce a selection bias into
the dose–response analysis of the data, if such analysis does not
take proper account of the controlled dose adjustment design.
Use of such a design is likely to result in only the least drug
sensitive subjects receiving the highest doses. As a result of their
low sensitivity, the responses recorded for these doses would be
less than would be expected in the general population. On the
other hand, the most sensitive subjects will receive most of the
lower doses administered because they will reach the threshold
response at a low dose and continue with that dose for the
remainder of the trial. Consequently, as we move from left to
right in Fig. 1, not only is dose increasing but subject sensitivity is
effectively decreasing, although this is not shown on the graph.
A naïve interpretation of the mean responses in Fig. 1 attributes
the high level of response in the more sensitive subjects and the
low response in the least sensitive subjects to the dose rather
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Fig. 3. Mean percentage change in pain score from baseline (negative
values correspond with a reduction in pain score) plotted versus dose
of medication for each of four groups of subjects. Open symbols refer
to placebo-treated subjects, and solid symbols refer to tapentadol-
treated subjects. Opioid naïve and opioid experienced subjects are
indicated by circles and triangles, respectively
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Fig. 4. Estimates of the β1k parameters in Eq. 20 plotted versus dose of
medication for each of four groups of subjects. Open symbols refer to
placebo-treated subjects, and solid symbols refer to tapentadol-treated
subjects. Opioid naïve and opioid experienced subjects are indicated by
circles and triangles, respectively
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than the subjects receiving that dose. The association between
the dose administered and the subject’s drug sensitivity implies
that these two are correlated, and the dose–response analysis
needs to take this fact into account. The ICH guideline on
dose–response (9) highlights this issue and points out that a
crude analysis of such data can give a misleading inverted
“U-shaped” curve. Such a curve is clearly illustrated in
Fig. 1. The FDA Guidance for Industry on exposure–response
relationships (10) echoes these same points. This issue is also
discussed by Ting (11) who points out that the disadvantage of a
controlled dose adjustment design is the difficulty in data
analysis.

Using the alternative approach contained in Eq. 20
takes subject to subject variation in drug sensitivity into
account thus allowing for the fact that only the least
sensitive subjects receive the higher doses, etc. Figure 2
demonstrates that this approach is useful and that it
produces results that are very similar to those of the forced
titration study.

The tapentadol example illustrates the results of data
averaging and the alternative approach using four different
treatment groups in a real dataset. It is noteworthy that in this
trial, there was an initial forced dose titration from the 50-mg
dose to the 100-mg dose and controlled dose adjustment
thereafter. Consequently, the dose–response relationship
from 50 to 100 mg is quite clear in Fig. 3; however, there is
no apparent relationship at higher dose levels. On the
other hand, Fig. 4 clearly shows a dose–response relation-
ship in all four treatment groups, and this illustrates the
advantage of the alternative strategy based on Eq. 20. It is
obvious from Fig. 4 that placebo-treated subjects exhibit a
clear relationship between their response and the “dose”
of placebo administered. Furthermore, the tapentadol-
treated subjects also have an obvious dose–response
relationship with larger reductions in their pain scores
than the placebo-treated subjects. It is also clear that for
each treatment, the opioid naïve subjects have greater
reductions in their pain scores than opioid experienced
subjects. In fact, Fig. 4 is in remarkably close agreement
with the results of an independently conducted modeling
exercise (unpublished work) and was used to support the
choice of model.

Both the simulated results and those of the tapentadol
trial confirm the assertion that plotting data-averaged
responses versus a variable of interest (dose in these
examples) can result in a very misleading graph. When the
underlying model is either linear or approximately linear in
the random effects and the residual error, the suggested
alternative plot may be a useful way to view the relationships
inherent in the data.

The methodology presented in this paper is not particular
to dose–response relationships, it applies generally. For
example, the independent variable could be “time,” and
the recording of a response variable may depend on the
response itself.
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APPENDIX

The following is an extract from the NONMEM® code
used to fit Eq. 20 to the data.
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