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Abstract. When modeling pharmacokinetic (PK) data, identifying covariates is important in explaining
interindividual variability, and thus increasing the predictive value of the model. Nonlinear mixed-effects
modeling with stepwise covariate modeling is frequently used to build structural covariate models, and
the most commonly used software—NONMEM—provides estimations for the fixed-effect parameters
(e.g., drug clearance), interindividual and residual unidentified random effects. The aim of covariate
modeling is not only to find covariates that significantly influence the population PK parameters, but also
to provide dosing recommendations for a certain drug under different conditions, e.g., organ dysfunction,
combination chemotherapy. A true covariate is usually seen as one that carries unique information on a
structural model parameter. Covariate models have improved our understanding of the pharmacology of
many anticancer drugs, including busulfan or melphalan that are part of high-dose pretransplant
treatments, the antifolate methotrexate whose elimination is strongly dependent on GFR and
comedication, the taxanes and tyrosine kinase inhibitors, the latter being subject of cytochrome p450
3A4 (CYP3A4) associated metabolism. The purpose of this review article is to provide a tool to help
understand population covariate analysis and their potential implications for the clinic. Accordingly,
several population covariate models are listed, and their clinical relevance is discussed. The target
audience of this article are clinical oncologists with a special interest in clinical and mathematical
pharmacology.
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INTRODUCTION

The analysis of pharmacokinetic (PK) data using a
population approach has many advantages over traditional
methods, and key strengths are the potential for dosing
individualization and simulating dosing algorithms for a
certain drug under different conditions, e.g., organ dysfunc-
tion or combination chemotherapy (1). Inclusion and quan-
tification of individual-specific covariates facilitates our
understanding of the overall dose-exposure-response rela-
tionship, and helps determine if covariate-based dose indi-
vidualization is required to normalize exposure and minimize
variability in therapeutic outcomes or adverse events across
population subgroups. Resulting parameter estimates might
have a clear pathophysiological or mechanistic meaning, e.g.,
the volume of blood or plasma that is cleared of the drug, and
this is indeed the most common case with modeling drug
concentration—-time data. However, highly mechanistic models
might also include more hypothetical processes of drug ADME
(absorption, distribution, metabolism and elimination), such as
blood flow, organ size, chemical or molecular interactions
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between specific drugs. The latter is often referred to as
physiological-based PK (PBPK) modeling. A population model
quantifies interindividual variability in the model parameters, a
process that is crucial to be able to obtain an accurate
description of the typical individual within a population. In fact,
decisions in drug development are increasingly being made on
model-based population analyses, and this approach is also
encouraged by the regulatory agencies (2). One of the most
popular software tools for doing nonlinear mixed-effects
(NLME) modeling is NONMEM (3,4). However, there are
other software tools such as Phoenix (5), SAS (6), Monolix (7),
PKBUGS (8), and others. Guidelines on population pharmaco-
kinetics have been issued by the US Food and Drug Adminis-
tration (FDA) (9) and by the European Medicines Agency
(EMA) (10).

When modeling population PK data, identifying cova-
riates is important in explaining interindividual variability and
thus increasing the predictive value of the underlying model
(11-15). Nevertheless, covariate modeling is often of only
limited clinical use, and its main value is to provide a coherent
and rational framework for describing and predicting the
dose—concentration-response relationship and other key
features such as disease progression. Whereas a parameter
is a fixed quantity estimated according to the model, a
covariate is an independent variable that contains information
on a parameter, i.e., the parameter depends on the covariate.
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independent variables and included in the model as if they
were measured without any error.

Principally, all variability in a population model can be
viewed as predictable in the case a very large number of
latent variables are included, with the latter being unmea-
sured or unknown parameters. The actual covariates, howev-
er, are measurable and are partly correlated with the latent
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represents the proportional change in drug clearance in
patients belonging to category 2.

CONTINUOUS COVARIATES

Continuous covariates contain markedly more informa-
tion compared to binary or categorical data. Therefore,
covariates in a respective trial setting should be coded and
collected as continuous data if possible. The analysis of a
respective covariate in a continuous compared to a categor-
ical manner improves the chances of detecting a correlation
with the PK parameter that is described, provided there is
such a correlation. The effect of a continuous covariate such
as creatinine clearance or patient age on a specific PK
parameter is often expressed relative to its median, and this
scaling results in much improved interpretability of the
covariate formula. The most common functional forms of
covariate relations are linear, piece-wise linear, power func-
tion, and exponential (11). We may code a linear relationship
between a covariate (BSA in this case) and drug clearance
(CLp) as follows:

CLp = ©; - (BSA/1.8)%* . exp”! (3)

where CLp is the individual drug clearance, @, the typical
population value for drug clearance, patient BSA being the
continuous covariate centered to the population mean of
1.8 m?, and @, being a fixed-effects parameter in the
structural model, giving the proportional deviance of the
individual drug clearance from the population typical value.
Again, n; represents the interindividual error.

TIME-DEPENDENT COVARIATES

Time-dependent covariates are frequently observed in
clinical studies, can provide additional information to that
obtained from time-constant covariates, and should there-
fore be considered in the process of covariate model
building. This is especially true for patients with advanced
cancer, frequently suffering from changes of organ function,
body composition (cancer cachexia), and performance status
over time. However, the analysis of time-dependent
covariates adds an additional layer of complexity to the
model, why often it is chosen to treat intraindividual
variation the same way as interindividual variation in a
respective covariate.

The magnitude of the effect of the change in a covariate
may differ between patients. For example, a certain degree of
cholestasis may result in a substantial decrease of drug
elimination in one patient but not necessarily in another
patient. As a consequence, individual dose adjustments based
on a prespecified covariate should account for such interin-
dividual variability when predictions are made on some target
PK parameters such as drug exposure.

Waehlby and colleagues described two models for time-
dependent covariates (24). In the first model, different cova-
riate-parameter relationships were estimated for within- and
between-individual variation in covariate values, by splitting the
standard covariate model into a baseline covariate (BCOV)
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effect and a difference from the baseline covariate (DCOV)
effect, as exemplified in Eq. 4 (24):

prop = Op - [1 4+ Opcoy - (BCOV — BCOV yedian) + Opcov - DCOV]
4)

In which BCOV is the baseline value of the covariate and
DCOV is the individual difference (at each time point) in the
covariate from baseline (COV-BCOV). Opcoy describes the
effect of covariate variation within an individual, and is the
fractional change in ppop With individual changes in COV. If
Opcov and Opcoy are similar, there may be no indication of
distinctive inter- and intraindividual covariate models. The
modeler may fix either BCOV or DCOV to 0, and test the
performance of the respective models against each other. By
doing so, the reduced models provide information on whether
the data support relationships with BCOV or DCOV or both
(24). Information in the observed data related to the
parameter “P,” as well as the variability in the values of
BCOV and DCOV, determine the precision (SEs) of @gcov
and @DCOV-

In the second model, the magnitude of the covariate
effect was allowed to vary between individuals, by the
inclusion of interindividual variability in the covariate effect
(24):

pi =0 - [1 + Ocoy - exp"™ OV (COV — COV egian)]

~exp’”! (5)
where 1“°¥*! is a random variable with a mean of 0 and
variance @”, which allows the magnitude of the covariate
effect to differ between individuals. Accordingly, a change
of one unit in the covariate may cause substantial
alterations in the parameter in some individuals, whereas
the effect may be moderate or absent in others. To ensure
that P; remains positive when this model is implemented,
the parameters may need to be constrained, e.g., by logit
transformation. In the above model, COV could be replaced
by DCOV, and additional interindividual variability in
DCOV if appropriate.

SPECIAL CASE: PHARMACOGENETIC COVARIATE
MODELING

Pharmacogenetics studies the influence of variations in
DNA sequence on drug absorption, disposition, and drug
effects (25,26). The EMA has acknowledged the relevancy of
pharmacogenetics in the evaluation of clinical pharmacoki-
netics (27). Although pharmacogenetic data are mainly
studied using noncompartmental methods followed by anal-
ysis of variance (ANOVA) on the individual PK parameters
(28), NLME models have many advantages over ANOVA-
type calculations. In particular, NLME allows to perform an
integrated analysis of the knowledge accumulated on the drug
PK and pharmacogenetic data, and it is applicable with less
samples per patient as compared to less sophisticated
analytical methods. With respect to PK aspects, the highest
penetrance of genetic polymorphism is registered at the level
of drug metabolism, where about 40% of phase I metabolism
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of clinically used drugs is affected by polymorphic enzymes.
Well-known polymorphic cytochrome P450 (CYP) enzymes
include CYP2D6, CYP2C19, and CYP2C9. Regarding phase
II enzymes, the genetic variability of UDP-glucuronosyltrans-
ferases, N-acetyltransferase-2, and some methyltransferases
are known to play a role in the interindividual variability in
drug PK. The additional contribution of polymorphisms in
drug transporters has recently been recognized. In practice,
genetic variations are demonstrated by the identification of
single-nucleotide polymorphisms, insertions/deletions, and
variation in gene copy number (copy number variation)
(27). Respective study designs should include adequate
estimations of the number of patients of each genotype in
order to obtain valid data for population analysis. Accord-
ingly, the EMA recommends some kind of power calculations
before the initiation of respective studies to ensure a
sufficient population size (27). If a genotype is rare, studies
with selected inclusion of patients carrying this rare genotype
may be considered. Another strategy to deal with rare
genotypes is pooling of study data. In general, studies looking
at the (quantitative) impact of genotypes on drug PK should
focus on genetic alterations that are known to be functionally
relevant (candidate gene approach), and that clearly affect
the respective drug metabolic pathway.

Because the respective functional gene mutations con-
cern germline mutations as analyzed in peripheral blood
mononuclear cells, NONMEM coding is analogous to what
has been described for categorical covariates, with some
special considerations to be taken into account. Most
importantly, the analysis of genotype covariates should be
constrained to evaluate pathophysiologically reasonable rela-
tionships. The quantitative impact of allelic variants in the
population model may be coded as follows:

p=prop- (1 —(©-HETZ +2-0 -HOMZ)) -exp’'  (6)

where the PK parameter p has a typical value of ppop in wild-
type patients. The typical value of heterozygous mutant
patients (HETZ) is equal to ppop reduced by “@ - 100%”,
and homozygous mutant status (HOMZ) is assumed to result
in twice the impact as compared to the heterozygous mutant
status, with the typical value of p reduced by “2 - @ - 100%”
as compared to the wild-type status (29). Obviously, there
might not be a perfect gene dose effect, in that, e.g., a normal
allele compensates for a mutated allele in heterozygous
patients, or the presence of one mutated allele might result
in a profound disruption of enzyme activity that cannot be
compensated by the remaining wild-type allele. If similar
conditions are expected for a certain genotype, a separate
fixed effect on ppop might be adequate for carriers of the
heterozygous and homozygous state, respectively. For exam-
ple, such a model has been used by Bosch and colleagues for
docetaxel (30):

HETZ | g HOMZ

p = prop - ©1 exp”’ (7)

where HETZ is one for a carrier of the heterogeneous trait
and zero otherwise, and HOMZ is one for a carrier of the
homogeneous trait and zero otherwise. The fixed-effects
parameters ©; and 0, are the proportional factors by which
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p deviates from ppop in carriers of the heterogeneous and
homogeneous mutant trait, respectively. There are also
pathophysiological situations where a binary gene dose effect
may be reasonable, e.g., the comparison between wild-type
versus heterozygous/homozygous mutant patients, or the
comparison between wild-type/heterozygous versus homozy-
gous mutant patients:
p = prop - ®1GENE . expr]i (8)
Where GENE=0 for wild-type (wild-type and heterozy-
gous mutant) patients and 1 for heterozygous/homozygous
(homozygous) mutant patients, respectively. By comparing
Eq. 6 to 8, it becomes evident that the assumption of a
quantitative gene dose effect results in a lower chance of
finding a significant correlation between genotype and the
respective PK parameter. Another less frequently used
coding for the association between heterozygous and homo-
zygous mutant traits on drug clearance has been described by
Chou and colleagues (31):

CL; = CLpop - €' - [CLCR;/(CLCR)pop]” -exp”’  (9)

where CL; is the individual drug clearance; CLpop is the
population value for drug clearance; Pi is separately estimat-
ed for patients with wild-type, heterozygous, and homozygous
mutant status; CLCR; is the individual creatinine clearance;
CLCRpop is the population value for creatinine clearance;
and v is the scaling factor for the individual renal function.
Equation 9 may be adequate for drugs that undergo
elimination mainly by the kidneys, as the respective drug
clearance is scaled to renal function. For the special case in
which a quantitative or continuous gene expression has been
measured (e.g., tumoral mRNA expression), a coding such
as illustrated in Eq. 3 should be preferred, as it contains
more information as compared to binary or categorical
genotype data.

Ideally, pharmacogenetic—pharmacokinetic modeling will
result in dose recommendations for the case a clinically
relevant impact of the respective genotype on drug PK has
been found. According to the recommendations by EMA,
alternatives to account for genotype effects include dose
titration regardless of the genotype, specific upfront dosing
based on the genotype, or optional gene-based dosing (27).

SELECTION AND INTERPRETATION
OF COVARIATES

Not all significant covariates included in a population
model are necessarily clinical relevant, and not all significant
covariates are always included in the final model. Therefore,
understanding the process of covariate selection and inter-
pretation is important. These two interrelated topics are
covered in this section.

Stepwise covariate modeling (SCM) dominates model
selection in NLME modeling (11). The stepwise-automated
covariate procedure steps through possible covariate—param-
eter combinations in a forward fashion, and evaluates their
importance in the population model. Covariates that are
significant with regards to a predefined p value are retained in
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an intermediate or full forward covariate model before
undergoing stepwise backward elimination. This approach
uses less runs and computational capacity and is practical for
models with relatively short run times (11). The starting point
of the forward inclusion covariate procedure is the base
population model without any covariates. In the first step, the
improvement of the fit relative to the basic model is
compared when each of the covariate models are added
univariately, and the model with the largest improvement is
kept for the next evaluation step, given there is some overall
statistical significance supporting the inclusion of the respec-
tive covariate. This stepwise forward inclusion of covariates is
repeated, until there are no more significant parameter/
covariate combinations to be added to the full model.
Thereafter, a backward elimination procedure is started,
during which each covariate model is replaced by the next
lower in the model hierarchy. The model that contributes the
least to the data fit, given that it is not significant, is dropped
and a new current model is formed. The backward elimina-
tion continues until no more terms can be dropped. The
goodness-of-fit between hierarchical models is measured by
the difference in the objective function value (OFV) as
produced by NONMEM. The difference in OFV between
two hierarchical or nested models is approximately chi-square
distributed, with n variable degrees of freedom (df). Accord-
ingly, the OFV is used to obtain the significance level for the
difference between two nested models (16,32). Often, a p
value of 0.01 is used for the forward inclusion procedure, and
a more stringent p value of 0.005 is often used for the
backward elimination procedure.

In drug development, model-based population analysis is
often used in an exploratory manner, but model-based
confirmatory analysis is also increasingly applied (2). Where-
as a confirmatory analysis wants to test a predefined
hypothesis, an exploratory population analysis is a hypothe-
sis-generating process. Often, the model is developed in
several stages. In the first stage, the structural model is
developed, starting with a simple model and expanding the
complexity when supported by the data. Highly influential or
prespecified covariates can be included in the model. In a
next step, covariate relations that may explain part of the
interindividual variability of a parameter can subsequently be
included in the model. In a final stage, the completeness of
the stochastic model is re-evaluated and checked for its
stability. Usually, a single NLME model is chosen from the
different covariate models, and this model is called the final
model (33). Depending on the purpose of the model, the criteria
for final covariate selection include several items such as:

1. Pathophysiological and mechanistic plausibility and prior
beliefs

. Exploratory goodness-of-fit plots (34-36)

. Statistical significance (11,16)

. Clinical relevance (37)

. Predictive performance from internal or external valida-
tion (38-40)

. Parameter precision (20,41)

7. Reduction of unexplained parameter variability

DA W

=2

There is general uncertainty about the definition of a
significant reduction in unexplained variability between
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patients (vii). This issue has been covered more extensively
by Duffull and colleagues, where a reduction of unexplained
variability by 30% has been proposed to be clinically
significant (42). Very often, reduction of interindividual
variability per covariate by <20% is seen.

The SCM approach often selected within NONMEM has
extensively been investigated, and there are some known
limitations such as the phenomenon of multiple comparisons.
Often, several covariates are investigated, possibly on a
number of structural model parameters such as drug clear-
ance and volume of distribution, using different parameter-
izations. In this case, multiple comparisons usually call for a
Bonferroni correction, where the overall type I error
accepted for statistical significance is divided by the number
of simultaneously tested covariates (43). Besides Bonferroni
correction, another way to correct for overfitting is to use a
stricter p value in the covariate selection process, as is often
used with NONMEM. The way in which Bonferroni-like
correction is done during a respective covariate selection
process might also be dependent on whether the selection
process has prospectively been defined or not. For example,
the testing of a pathophysiologically based drug pathway-
associated candidate gene on drug clearance might have more
weight than the testing of a genotype that has no physiolog-
ical relationship with the PK of the drug. Translating the
general advice in traditional statistics (44) to covariate
selection in NLME modeling indicates that it often harms
the predictive performance of a model if more than one
covariate parameter per 10-20 individuals in the dataset is
investigated on each structural model parameter. Fewer
covariate parameters should be investigated for parameters
on which information is sparse or when categorical covariates
are investigated. Importantly, biological plausibility requires
that the chosen covariate makes pathophysiological sense, for
example, impaired renal function results in lower clearance of
a renally excreted drug. If a certain covariate is considered
clinically relevant, this implies that drug dosing should be
modified according to this respective covariate. These aspects
are covered in the following section. Finally, the predictive
performance of population models for achieving, e.g., thera-
peutic plasma drug concentrations or a predefined area under
the concentration-time curve (AUC) should be evaluated,
both with the inclusion of the respective covariate and
without the covariate. This can be done using various
methods such as the posterior predictive check (45) or the
visual predictive check (35) and helps interpretation of the
potential benefit of using a specific covariate.

An attractive newer method to overcome some of the
shortcomings of the conventional SCM is the “least absolute
shrinkage and selection operator” or Lasso method. Lasso is
an algorithm that results in shrinkage of the uncertain
covariate coefficients towards a lesser effect than indicated
by the actual dataset, with a subsequent decrease of the
estimation error and selection bias, and an increased external
validity of the covariate estimates (17). The covariate model
is determined by cross-validation that is superior for predic-
tive model selection compared to the p value in small or
moderate-sized datasets. A further benefit of Lasso is that it
investigates all possible covariate relations, similar to the
WAM (18), but the selection with Lasso is simultaneous,
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continuous and within NONMEM. Within Lasso, all cova-
riates are standardized to have 0 mean and a standard
deviation of 1. Subsequently, the model containing all
potential covariate—parameter relations is fitted with the
sum of the absolute covariate coefficients being smaller than
the predefined parameter “t.” This restriction will force some
coefficients towards zero, while the others will undergo some
shrinkage. Therefore, covariate testing for inclusion and
estimation of the covariates run in parallel. The Lasso
algorithm has been outlined in detail by Ribbing and
colleagues (17). In their comparison of the Lasso shrinkage
algorithm with conventional SCM, Lasso predicted external
data better than SCM at different p values, though the benefit
decreased with increasing number of patients, and was
negligible for large datasets (17).

METHODOLOGICAL CONSTRAINTS: PARAMETER
SHRINKAGE, SELECTION BIAS,
AND COLLINEARITY

The individual parameter estimates in NONMEM are
estimated using the Bayesian methodology, and they are
generally referred to as empirical Bayes estimates (EBE)
(46). Bayesian methodology estimates the prior distribution
from the data and uses them as if they were known to obtain
the posterior distribution. At one extreme, with no observa-
tions available, the patient will be regarded as a typical
patient. At the other extreme, when data for an individual
goes towards infinity, the prior will have marginal impact; in
between these extremes, both factors will contribute, and
depending on the relative variability (including interindividual
and residual unexplained variability), individual estimates could
be closer either to the population mean or to the true individual
parameter value (47). When data are uninformative at the
individual level, the EBE distribution will shrink towards zero
(n-shrinkage, quantified as 1-SD(nEBE)/®»), IPRED towards
the corresponding observations, and IWRES towards zero
(e-shrinkage, quantified as 1-SD(IWRES)) (47). Accordingly,
shrinkage issues should be considered, because if not, this may
impede decision making, increase the time for data analysis,
decrease the reliability of the model, and finally result in
inappropriate models.

In the presence of substantial shrinkage, EBE-based
diagnostics may indicate false relationships or hide true
relationships when used for covariate screening. If only
certain parameters are screened for covariates, it may happen
that EBE would indicate false parameter—covariate relation-
ships, which may even turn out to be significant when tested
directly in the model, while the covariate was truly related to
other parameter. Therefore, whenever single parameters are
screened for covariate relationships, and a certain covariate
appears to be significant, the relationship between the
significant covariate and other parameters should also be
tested for potential correlations. There are no guidelines as to
what level of shrinkage may be acceptable and what not.
According to an extensive data simulation study, Savic and
Karlsson found that the power of EBE-based diagnostics
decreased when either n- or e-shrinkage were at a level of 20—
30% (47). Therefore, it seems rational to provide values for
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shrinkage whenever EBE-based diagnostics are used for
communicating model quality. In cases were substantial
shrinkage is present, a model building process involving more
direct testing and less or no reliance on EBE-based diag-
nostics should be considered. Additionally, other types of
diagnostics ought to be used in these cases, for example,
simulation-based diagnostic (48) or conditional-weighted

residuals (49).

Identification of covariates and quantification of their
impact on specific PK parameters is one of the primary
objectives of population PK modeling. The covariate model
is regularly built in a stepwise manner, as has been outlined
in the chapter on “SELECTION AND INTERPRETA-
TION OF COVARIATES.” With methods such as SCM,
selection bias may be a problem if only statistically
significant covariates are accepted for inclusion into the
final model (19). Competition between multiple covariates
may further increase selection bias, especially when there is
a moderate to high correlation between the respective
covariates. This may result in a relevant loss of power to
identify the true covariates. In an extensive simulation
study, Ribbing and colleagues were able to show that
selection bias can be substantial when working with small
datasets (<50 subjects) that—at the same time—harbor true
covariates with a weak impact on the target PK parameter
(19). If selected under these circumstances, the covariate
coefficient is on average estimated to be more than twice its
true value, making the covariate model less adequate for
predictive purposes. In the same simulation analysis,
competition from false covariates resulted in a substantial
loss in the analytical power to select the true covariate, but
the already high selection bias increased only marginally
(19). Therefore, any potential bias resulting from covariate
competition is negligible if statistical significance is also
required for covariate selection. However, selection bias
may well harm the predictive performance of the covariate
model, if low-powered, false covariates are selected. For the
same reason, these low-powered covariates may falsely
appear to be clinically relevant when selected. The follow-
ing methodological pitfalls have nicely been summarized by
Ribbing and colleagues (19), and deserve special attention
when working on covariate models:

* The power of selecting a true covariate decreases with
increasing correlation to any false covariate, at least in
small/moderate-sized datasets.

* Selection bias is also a problem for true covariates with a
weak effect in small/moderate-sized datasets. This may also
result in the identification of covariates as being clinically
relevant when they are not.

* The predictive performance of the covariate model may
decrease when selecting true but low-powered covariates.

e Stricter p values may not avoid selection bias, but will
decrease the risk of selecting false covariates.

* The predictive performance of low-powered covariates may
be improved by using alternative selection criteria or by
avoiding selection bias.

It is well-known that correlation among the covariates in
linear regression will affect the precision of the regression
parameter estimates, possibly leading to parameter estimates
that are artificially nonsignificant. This effect is referred to as



126

“collinearity.” When two correlated covariates enter into a
linear model simultaneously, compared to the case where
either variable is entered in the model alone, one or more of
the following may occur: (1) Regression parameter estimates
may become statistically nonsignificant; (2) Regression pa-
rameter estimates may exhibit a sign change that may or may
not be physically possible; (3) Regression parameter estimates
per covariate may differ substantially. Collinearity can also
affect parameter estimates in the NLME model building process
when covariates are entered into the structural PK model (20).

SELECTED EXAMPLES OF DRUG-SPECIFIC
COVARIATE MODELS

This chapter does not claim to give a complete overview
on population covariate models in oncology, rather it wants to
illustrate where covariate testing resulted in an improved
understanding of the drug PK, and sometimes even allowed
this to be applied in clinical practice. An important contro-
versy concerns BSA-guided dosing of anticancer drugs, and
several covariate models have contributed essentially to
improve our understanding on the value of BSA-based dosing
(50). The concept of BSA dosing originates from experiments
showing that the maximum tolerated dose (MTD) in non-
rodents and LD, in mice correlated to the MTD in humans
when dose was expressed per BSA (in square meter) (51,52).
By correcting for BSA, it was generally assumed that cancer
patients would receive a dose of a certain cytotoxic drug that
is associated with acceptable toxicity without reducing the
drug’s therapeutic effect. However, in many cases of antican-
cer drug treatment, the use of BSA did not reduce interin-
dividual variability in drug PK, why flat-fixed dosing regimens
have been suggested in some cases (50,53,54). The value of
BSA as a covariate on drug elimination and the respective
use of BSA-guided dosing is discussed if indicated. Important
anthropometric and biochemical as well as pharmacogenetic
covariate effects of major anticancer drugs have been summa-
rized in overview tables. Some recommendations from popula-
tion covariate models have been included into the Summary of
Product Characteristics (SPC) of the respective drugs, and this is
discussed if appropriate.

ALKYLATORS

Due to their primary toxicity being myelosuppression,
alkylators such as busulfan, melphalan, cyclophosphamide, or
thiotepa are the most important molecules for high-dose
myeloablative treatment (HDT). Accordingly, the study of the
PK of these substances is important to allow for therapeutic drug
monitoring (TDM) and adequate treatment individualization.

Busulfan is characterized by a highly variable absorption
following oral administration, hepatic elimination via gluta-
thione-S-transferase (UGT), and a small therapeutic window,
with low AUC potentially resulting in engraftment failure
(55), and high exposure putting patients at risk for veno-
occlusive disease or seizures. The PK of busulfan were
studied in children with leukemia in various clinical studies
(56-58). Hassan and colleagues studied 20 children undergo-
ing HDT, and found that CLyusuitan Was 42% higher in
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children with inherited disorders as compared to children
with leukemia, and that elimination was induced over
repeated doses (57). A potential cause for the higher
CLpysuttan in children with leukemia might be induction of
hepatic phase I metabolism, as these patients are pretreated
with various enzyme-inducing molecules. In a registration
study for i.v. busulfan, Booth and colleagues assessed dosing
of iv. busulfan to achieve a target AUC between 900 and
1,350 pmol h/L in 24 pediatric patients (56). By exploring
body weight, age, gender, and BSA as potential covariates on
the PK of busulfan, the authors were able to define an
optimal dose of 1.1 mg/kg for children <12 kg of weight and
0.8 mg/kg for those >12 kg of weight. The authors used data
simulations on the final model to test the performance of
different weight cutoffs, and found the two-step dosing
algorithm as described above to achieve a 56% success rate
for target AUCpysuitan (900-1,350 pmol h/L) (56). Impor-
tantly, even accounting for age as an important covariate
resulted in a “success rate” (equal to patients within the
target AUCpysuifan) Of <60%, suggesting that additional TDM
with subsequent fine tuning of the dose of busulfan would be
necessary. Based on a retrospective population PK analysis in
102 patients, a recommendation to dose busulfan according to
the adjusted ideal body weight rather than the actual weight
or BSA in adults has been included into the drug’s SPC (59). In
children, busulfan dosing according to the actual body weight
(five weight categories from <9 to >34 kg) is recommended (60).

Melphalan is another alkylating agent that is mainly used
for HDT in children with neuroblastoma or sarcomas, and in
adults with multiple myeloma. Nath and colleagues devel-
oped a population covariate model of high-dose melphalan in
children (61,62), and derived a dosing algorithm to achieve a
target AUCciphatan Of 9 pg h/mL based on patient weight,
glomerular filtration rate (GFR) and concomitant adminis-
tration of carboplatin (62):

Dose of melphalan [mg]

= AUCrager[mg - h/L] - (0.34- WT — 3.17 - CPT + 0.03 - GFR)
(10)

where WT is patient weight (in kilograms), CPT concur-
rent treatment with carboplatin (O=no, 1=yes), and GFR
(ml/min/1.73 m?).

Cyclophosphamide is a widely used alkylator, and its
activation and elimination is mediated by various poly-
morphic drug-metabolizing enzymes, including CYP2C9,
CYP2B6, CYP3A4, CYP2C19, and GSTA1l. Timm and
colleagues found a quantitative gene dose effect of the
CYP2C19*#1/#2 gene variant on the elimination of cyclophos-
phamide when given at doses <1,000 mg/m® in 60 patients
with various malignancies (63). Cyclophosphamide constant
of elimination (k.) decreased from 0.109 in CYP2C19*1/*1
(wild-type) carriers to 0.088 in heterozygous CYP2C19%1/%2
carriers and 0.076 in three homozygous CYP2C19%2/*2
carriers. Cyclophosphamide doses >1,000 mg/m? resulted in
increased elimination of the drug due to well-known
autoinduction (64), and no effect of CYP2C19 genotype was
seen in patients receiving high-dose cyclophosphamide (63).
This example nicely illustrates the importance of considering
drug regimen, anthropometrics, and potentially drug pathway-
associated genetic variability to have an understanding of the
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interplay between the different covariates. This information has
not been introduced into the drug’s SPC to our knowledge.
Temozolomide is an orally available alkylator, and the

most important drug for treating high-grade astrocytoma. The
PK of temozolomide were described by a one-compartment
model with first-order absorption and elimination (65). Body
surface area was the only significant covariate in a large
population PK analysis of 445 patients receiving different
doses of temozolomide for anaplastic astrocytoma, glioblastoma
multiforme, or malignant melanoma (65). In the analysis by Jen
and colleagues, covariates were introduced into the structural
model as linear additive terms of their log-transformed
values, e.g., in the case of BSA:

LN(CLlemozolomide)[L/h} = LN(®1) + ®2 : LN(BSA) (11)
where CL; is the individual CLiemozolomides @1 1S the typical
value for CL¢mozolomide- As @ special note, log transformation
is sometimes used in the case of non-normally distributed PK
parameters, as is the case in Eq. 11. However, for sufficiently
large sample sizes (n>10), the means are normally distribut-
ed regardless of the shape of the original distribution,
according to the Central Limit Theorem, and we have not
to care too much about non-normal parameter distribution as
long as we make inferences on parameter means. In the
analysis by Jen and colleagues, patient age, sex, creatinine
clearance, liver enzymes, smoking status, and selected come-
dication were not chosen as covariates on CLcmozolomide- 1he
results of this study support BSA-guided dosing of temozo-
lomide. In a similar study performed in 39 children, BSA and
patient age were significant covariates on CLemozolomide (66)-
Temozolomide elimination increased with increasing BSA
and age according to Egs. 12 and 13:

LN(CLemozolomice)/FL/h] = 042+ 1.08-BSA  (12)

LN(CLtemozolomide)/F [L/h/mz} =1.38+0.024 - Age (13)
where F is the bioavailability of the drug. Equation 12 implies
that dosing of temozolomide according to BSA is adequate,
although clearance of the drug shows only small changes with
increasing BSA (e.g., +9% for BSA going from 1.8 to 2.0 m?).
In Eq. 13, CLicmozolomide 18 normalized to BSA. This
normalization assumes a significant association between
BSA and the respective drug in the first place, that is not
the case for many anticancer drugs (50). Furthermore, most
anticancer drugs are dosed according to BSA, and this
already implies some scaling, hence normalization to BSA
may not be necessary in Eq. 13. By using multivariate integration
of Egs. 12 and 13, interpretability of the formula is much
improved. The information that clearance of temozolomide is
not decreased in the elderly patient has been included into the
UK’s electronic Medicines Compendium (eMC) (67).

TAXANES

Docetaxel is an important drug in patients with breast
cancer, prostate cancer, and non-small-cell lung cancer,
among others. An early population covariate analysis in 26
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solid cancer patients receiving docetaxel at various dosages,
BSA and patient age were significant covariates, resulting in
the following equation (68):

CLgocetaxel [L/h/mz} =BSA - (345—-0.254 - Age) (14)

Equation 14 allows BSA to be expressed in square
meters. The analysis by Launay-Iliadis suggests a rather
marked association between patient age and CLgocetaxel, With
the latter decreasing from 43 to 28 L/h when patient age
doubles from 35 to 70 years. Larger population PK studies
confirmed a negative association between increasing patient
age and a decrease of docetaxel elimination, but with a
roughly 7% decrease for a 71-year-old patient as compared to
the population mean (69), this effect is not suggested to be of
substantial clinical relevance. Subsequent studies showed that
elevated liver enzymes are also important, as they predict for a
lower CLgocetaxel in both the 3-weekly (39,69) and weekly
docetaxel regimens (70). In the latter study, investigators also
found CYP3A4 activity as assessed by the erythromycin breath
test (1/tmayx) to be another significant covariate as follows:

CLgocetaxel[L/h] = 21.5 4217 - (1 /tmax) — 0.13 - (ALT) (15)
where ALT is alanine aminotransferase. What stands out in
Eq. 15 is the fact that both ALT and the erythromycin breath
test are surrogates for liver function, and this limits the
clinical plausibility of Eq. 15. Based on population PK studies
with single-agent docetaxel 100 mg/m?® a dose reduction to
75 mg/m? is recommended in patients with elevations of ALT
or AST greater than 2.5 times the upper limit of normal
according to EMA’s SPC (71). Similarly, a starting dose of
55 mg/m* docetaxel (instead of 75 mg/m?) is recommended in
breast cancer patients >60 years of age in combination with
capecitabine (71).

Similar covariates as with docetaxel were also found to
predict CL,giitaxel in solid cancer patients (72,73). A population
covariate analysis in 168 cancer patients resulted in the following
equation, with VMg being the maximum elimination capacity
of paclitaxel:

VMg [zmol/h] = 37.4-1.25% . (BSA /1.8)"5¢

- (bilirubin/7)*'" . (Age/56)***  (16)
Typically, male patients had a 20% higher VMg as
compared to female patients; a 0.2 m?® increase of BSA
resulted in a 9% increase of VMgy; a 10-year increase of
patient age led to a 5% decrease of VMg ; and a 10-pmol
increase of total bilirubin led to a 14% decrease of VMEg;..
The same covariate set was confirmed in a group of 35
patients with impaired liver function (72). These data might
support upfront individualization of paclitaxel dosage based
on patient gender and patient age, and this approach is
actually studied in a randomized clinical study in patients with
non-small-cell lung cancer (EUDRACT 2010-023688-16).

ANTIFOLATES

Methotrexate at doses >1 g/m” (high-dose methotrexate,
HDMTX) is the backbone for treating diseases such as
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primary central nervous system lymphoma, osteosarcoma, or
acute lymphomatous leukemia. Methotrexate undergoes
renal elimination, and elimination of MTX is prolonged in
patients with renal impairment or third-space fluid collections
(74). An extended covariate analysis in 76 patients receiving
HDMTX at doses up to 12 g/m* showed that creatinine
clearance and comedication with nonsteroidal antirheumatic
drugs (NSAR) or benzimidazoles (proton pump inhibitors,
PPI) are significant predictors of CLyrx as follows (75):

CLyrx[L/h] = 8.85 +0.042 - (87 — CCL) — (2.45 - PPI)

— (1.46 - NSAR) (17)
where PPI or NSAR are defined as “one” in the case of
concurrent treatment, and “zero” in the case of no concurrent
treatment. These data suggest a marked reduction of CLyrx
in the case of concurrent treatment with PPI (-27%) or
NSAR (-16%) (75), and the respective comedication should
be avoided.

Pemetrexed is the second clinically important antifolate
that has its place in the treatment of malignant pleural
mesothelioma and non-small-cell lung cancer. Creatinine
clearance was similarly found to be an important covariate
on CLpemetrexea- In practical terms, a 63% decrease in CCL
resulted in a 32% decrease in CLpemetrexea> and a 45%
increase in AUCpemetrexea (76). In the FDAs SPC, it is stated
that pemetrexed AUC is increased to 165%, 154%, and 113%
in patients with creatinine clearances of 45, 50, and 80 ml/min,
respectively, and compared to a creatinine clearance of
100 ml/min (77). Nevertheless, this information has not
translated into quantitative dosing recommendations in
patients with impaired renal function. Rather, the recommen-
dation is to avoid pemetrexed in patients with a creatinine
clearance <45 ml/min (77).

DEOXYNUCLEOSIDE ANALOGS

The deoxynucleoside analogs are frequently used anti-
cancer drugs that mimic deoxycytidine (gemcitabine, cytosine
arabinoside) and adenosine (clofarabine), respectively. These
drugs undergo rapid deamination by cytidine deaminase
(CDA), and predominantly renal elimination. Deoxynucleo-
side analogs typically undergo intracellular activation by
phosphorylation to the active triphosphate compound.
Sugiyama and colleagues described the pharmacokinetics of
gemcitabine in 250 Japanese cancer patients receiving gemci-
tabine at 800 or 1,000 mg/m® over 30 min by a linear two-
compartment model (78). Major contributing factors for
gemcitabine clearance were the mutational status of CDA
208A>G (CDA*3) and CDA -31delC according to the
subsequent equation (78):

CLGem|[L/h/m*] =73 -BSA - (1 — 0.6 - HOMZ)
-(1=0.17-HETZ) - (1 +0.07 - delC)
(18)

where CLGEwm is the clearance of gemcitabine, HOMZ is 1 for
homozygous CDA*3 status and 0 otherwise, HETZ is 1 for
heterozygous CDA*3 status and 0 otherwise, and delC is the
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number of CDA -31delC alleles in the individual patient
(delC=0,1, or 2). These data suggest a substantial 64%
decrease for gemcitabine clearance in carriers of the
homozygous mutant CDA*3 genotype, and a moderate
7% increase for gemcitabine clearance per CDA -31delC
mutant allele (78).

To describe the pharmacokinetics of clofarabine, Bonate
and colleagues have pooled data from three pediatric studies
in a total of 40 patients (79). The elimination of clofarabine
has been described as follows:

CLcLor[L/h] = (32.8 £1.55) - (WT/40kg)"”  (19)
where CLcp oF is the clearance of clofarabine, and WT is the
individual patient’s weight in kilograms. In this case, patient
weight was an important predictor of all primary PK
parameters of clofarabine, and the analysis confirms the
utility of BSA or weight-adapted dosing of clofarabine,
particularly in pediatric patients (79).

TOPOTECAN

Topotecan is a topoisomerase-I inhibitor that is used in
advanced small-cell lung cancer, ovarian, or cervical cancer.
Up to roughly 75% of the drug undergoes renal excretion,
with 50% of the drug being excreted as parent compound or
hydrolyzed topotecan. In 2002, Mould and colleagues pooled
data from nine clinical studies and 245 patients receiving daily
i.v. topotecan at doses ranging from 0.2 to 2.0 mg/m’ for
5 days on a 3-week cycle (80). The PK of topotecan were
described with a linear two-compartment model, and drug
clearance was categorized into renal clearance and non-renal
clearance. Compromised renal function, low body weight, and
poor ECOG performance status were determinants of a
lower CLgpotecan- On the basis of the estimates of clearance
obtained with the use of the final model, the percentage of
total clearance attributed to renal CLigpotecan in individual
patients ranged from 20.7% to 85%. Creatinine clearance had
the greatest influence in explaining interpatient variability in
CLiopotecan- The inclusion of this covariate reduced the
interpatient variability on total topotecan clearance from
49% to 40%. Body weight was also found to account for a
proportion of interpatient variability, reducing the variability
from 40% to 35%. ECOG status accounted for only 2% of
the interpatient variability of CLopotecan, reducing the
interpatient variability to a final 33%. This model is
exemplary in that it successfully differentiates between renal
and non-renal clearance. Accordingly, the UK’s eMC
recommends that daily i.v. topotecan is reduced from 1.5 to
0.75 mg/m? in patients with a creatinine clearance between 20
and <40 ml/min (81). Although significant in the model by Mould
and colleagues, implementation of the ECOG performance
status had only a small effect on CLpotecan and respective dose
adaptation is not recommended in official guidelines.

PROTEIN KINASE INHIBITORS

The protein kinase inhibitors are a growing class of oral
anticancer agents that have various cellular targets such as the
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epidermal growth factor receptor (EGFR) for erlotinib or
lapatinib, vascular endothelial growth factor for sunitinib or
sorafenib, BCR-ABL for imatinib or farnesyl transferase
(FTase) for tipifarnib. While toxicity differs substantially
between the different drugs, virtually all protein kinase
inhibitors are metabolized by CYP3A4, resulting in a high
interindividual variability of drug clearance, and rendering
them susceptible for drug—drug interactions.

Pharmacokinetics of imatinib were analyzed in 371
patients with CML receiving 400 mg imatinib once daily
(82). While the impact of the covariates on CLipagnib as
outlined in Eq. 18 was not impressive, there was the
interesting finding that CL;yanp decreased during the first
4 weeks of treatment, for reasons that are unclear so far. This
was included into the covariate formula by using a fixed
parameter for treatment cycle as follows:

CLimatinib[L/h] = (13.8 — 3.81 - OCC) - (WT/80)0‘301

- (HB/13)"®7 . (WBC/16) *'*® (20)
where OCC is 0 for treatment day 1 and 1 for treatment
day 29, WT is patient weight, HB is hemoglobin (grams per
deciliter) and WBC is white blood count (grams per liter).
This corresponds to a 25% drop of CL;jyatiniv from cycles 1 to
2. The pathophysiological meaning of the relationship be-
tween the covariates HB, WBC, and CL;,a¢nib 1S unclear, but
could reflect the fact that 10-25% of imatinib undergoes
distribution to blood cells (83). The time-dependent decrease
of CLinatinib has been confirmed in patients with gastrointes-
tinal stromal tumor (GIST), and plasma al-acid glycoprotein
was additionally found to be a significant covariate on
CLimatinibs With the latter decreasing at higher concentrations
of AAG (84). Contrary to the studies by Schmidli (82) and
Debaldo (84), CYP3A4-activity was introduced in the
structural model in an approach to predict individual clearance
of EGFR tyrosine kinase inhibitors (85). In the study by Li and
colleagues, CL igazolam Was taken as a surrogate for CYP3A4
activity, and steady-state plasma concentrations of unbound
gefitinib were found to vary substantially with regards to
CLmidazolam:

CLgcfitinib/F — 244 . 6(0.023~CLmidazolam/F) (21)

The findings from the covariate model were further
translated to derive steady-state gefitinib plasma concentrations
corresponding to individual CLigazolam, With unbound gefitinib
plasma concentration varying between approximately 2 and
60 pg/L after oral dosages of 250 or 500 mg/day (86). This study
shows that a simple probe drug approach with assessment of
midazolam elimination could allow for improved dosing of
gefitinib, as 60% of the variability of unbound gefitinib
plasma concentration was explained by individual CYP3A4-
activity (86).

Erlotinib, the other important EGFR TKI, is also
undergoing hydroxylation that is mediated by CYP3A4 and
also CYP1AZ2, the latter being subject to significant induction
in smoking patients. Accordingly, CLeotinib Was found to be
24% higher in current smokers as compared to former or
never smokers (85). Current smokers should be advised to
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stop smoking, as plasma concentrations of erlotinib are
reduced in smokers as compared to nonsmokers, and the
degree of reduction is likely to be clinically significant, as
stated in EMA’s SPC (87).

Houk and colleagues pooled data from 590 subjects
receiving sunitinib to identify the impact of potential
covariates on the variability in exposure following oral
administration of the drug (88). Separate models were
developed for sunitinib and the main metabolite SU12662,
each using a two-compartment model with first-order
absorption and elimination. Not only gender and ethnicity
had an impact on the elimination of sunitinib, but also the
type of disease (GIST=gastrointestinal stromal tumor,
mRCC=metastatic renal-cell cancer, OTH=other solid
tumors), according to Eq. 22:

CLsy/F =51 (1 —0.08-SEX) - (1 — 0.13 - ASIAN)
- (1-0.28-GIST) - (1 — 0.26- OTH)
- (1-0.25-mRCC)

where SEX is coded O for male and 1 for female patients,
ASIAN as 0 for non-Asian ethnicity and 1 for Asian ethnicity,
and disease state (GIST, mRCC, OTH) as 0 for absence and 1
for presence. These important data support a lower elimina-
tion of sunitinib in patients with Asian ethnicity, potentially as
a result of a lower CYP3A4 activity. Currently, no initial dose
adaptations are recommended with regards to patient gender
or ethnicity (89).

CONCLUSION

Covariate models have improved our understanding of
the pharmacology of many anticancer drugs, including
busulfan or melphalan that are frequently part of high-dose
pretransplant treatments, the antifolates methotrexate and
pemetrexed whose elimination is strongly dependent on GFR
and comedication, the tyrosine kinase inhibitor gefitinib
whose elimination is strongly dependent on the activity of
cytochrome p450 3A4 (CYP3A4), erlotinib whose elimination
is susceptible to CYP1A2 induction in smoking patients, lung
cancer, or the multiple kinase inhibitor sunitinib whose
elimination is lower in Asian as compared to Caucasian
patients. Although population PK analyses are increasingly
recognized for decision making by regulatory agencies (2),
covariate models have resulted in direct dosing recommen-
dations in only a limited number of anticancer drugs so far
(59,71,81). This is related to the fact that academic groups
have little influence on official posology as outlined in the
drug’s SPC, and the responsibility of the regulatory agencies
to prevent treating oncologists from using anticancer drugs in
situations in which there are limited safety data available.
This is especially true for patients with impaired organ
function, patients at the outer extremes of age (children,
elderly) or body size (obesitas, BSA >>2.0 m?), and patients
using interacting drugs (e.g., CYP3A4 inducers or inhibitors
while using tyrosine kinase inhibitors). Still, covariate models
have been very useful to give recommendations for
quantitative dose adjustments, e.g., in children receiving
busulfan (59), patients with impaired renal function
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receiving topotecan (81) or patients with impaired hepatic
function receiving docetaxel (71). In the future, it will be very
important to use information from population covariate
models for assessing dosing algorithms in prospective
clinical studies. Respective simulation tools are part of most
PK software packages and are potent instruments for the
design of clinical studies, similar to what has been suggested
by Bruno and colleagues for anticancer drug activity (90).
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