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Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling
have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To
identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled
primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild
relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which
we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight
into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between
them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of
statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks
that affect complex phenotypic traits.

The variation observed in phenotypic trait values in
plants is often of quantitative nature, and it remains
challenging to unravel the genetic basis of these traits.
Quantitative trait locus (QTL) mapping is currently the
most commonly used approach to dissect the genetic
factors underlying complex traits. The goal of QTL
mapping is to identify genomic regions associated with
a specific complex phenotype by statistical analysis of the
associations between genetic markers and phenotypic
variation (Doerge, 2002). Recently, advances in high-
throughput analysis and analytical detection methods
have facilitated more integrated approaches to measure
global phenotypic variation at the molecular level. Me-
tabolite profiling is a rapidly evolving technology that

has significantly increased the possibilities of performing
high-throughput analysis of hundreds to thousands of
compounds in a range of plants, including complex crop
species. Metabolite composition is of great importance in
crop plants, as a number of important traits such as biotic
and abiotic stress resistance, postharvest processing, and
nutritional value are largely dependent on the metabolic
content (Fernie and Schauer, 2009).

In potato (Solanum tuberosum) breeding, metabolo-
mic studies have progressively increased in impor-
tance, as many potato tuber traits such as content and
quality of starch, chipping quality, flesh color, taste,
and glycoalkaloid content have been shown to be
linked to a wide range of metabolites (Coffin et al.,
1987; Dobson et al., 2008). As a result, tuber quality can
be assessed by assaying a range of metabolites. Gas
chromatography-time of flight-mass spectrometry
(GC-TOF-MS) has been shown to be useful for the
rapid and highly sensitive detection of a large fraction
of plant metabolites covering the central pathways of
primary metabolism (Roessner et al., 2000; Lisec et al.,
2006). In potato, untargeted metabolomic approaches
by GC-MS have been successfully applied to assess
changes in metabolites under different conditions
(Roessner et al., 2000; Urbanczyk-Wochniak et al.,
2005), to evaluate the metabolic response to various
genetic modifications (Roessner et al., 2001; Szopa
et al., 2001; Davies et al., 2005), and to explore the
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phytochemical diversity among potato cultivars and
landraces (Dobson et al., 2008, 2009). Additionally, me-
tabolite profiling has been applied to monitor changes
during key stages in the tuber life cycle (Davies, 2007).
Untargeted approaches have thus generated a substan-
tial amount of data providing important information
concerning compositional metabolite changes upon per-
turbation and phytochemical diversity in potato. How-
ever, so far, these studies have focused on applications
of metabolite profiling as an evaluation and compara-
tive tool. Technological developments and improved
data-processing techniques now also allow the use of
metabolite profiling to obtain further insight into the
genetic factors controlling metabolic traits (Keurentjes,
2009). Exploration of the genetic factors underlying
metabolite variation in mapping populations is partic-
ularly advantageous. The genetic variation between
related individuals in a segregating mapping popula-
tion can be exploited to locate the genomic regions
involved in the regulation of the observed metabolite
variation (Keurentjes et al., 2006).
Here, we report on the metabolic profiling of a

segregating diploid potato population (C 3 E). This
population is highly heterozygous and has been ana-
lyzed in a number of studies to investigate the genetic
architecture of quantitative traits (van Eck et al., 1994;
Werij et al., 2007; Kloosterman et al., 2010; Wolters
et al., 2010). For a number of traits, candidate genes
and their allelic variants have been identified from
these studies, including tuber flesh color and cooking
type (Kloosterman et al., 2010), tuber shape (van Eck
et al., 1994), carotenoid biosynthesis (Wolters et al.,
2010), and Met content (Kloosterman et al., 2010).
In this study, we have used the C 3 E population to

explore the genetic basis of primary metabolites. To
this end, untargeted GC-TOF-MS metabolic profiling
was carried out on a core set of individuals of the C3 E
population. In order to investigate the variation in the
detected metabolite levels in individuals of the popu-
lation, we applied a genetical genomics approach
(Jansen and Nap, 2001). QTL analysis of metabolite
levels resulted in the identification of genomic regions
associated with the metabolic variation. In addition,
we performed a parallel QTL analysis for starch- and
cold sweetening-related traits, and genetically inferred
links were established between these phenotypic traits
and primary metabolites. We further applied multi-
variate analysis to the combined data sets of starch-
related traits and metabolic profiles to determine the
predictive power of metabolites on a given phenotypic
trait. For this, we used a Random Forest (RF; Breiman,
2001) approach to find significant associations be-
tween phenotypic and metabolic traits independent
of genetic information. Putative predictors were tested
and confirmed in an independent collection of potato
cultivars.
Our results show the value of combining biochem-

ical profiling with genetic information to identify
associations between metabolites and phenotypes.
This approach reveals previously unknown links be-

tween phenotypic traits and metabolism and thus
facilitates the discovery of biomarkers for agronomi-
cally important traits.

RESULTS

Metabolite Profiling

In order to assess the content and variation of polar
primary metabolites present in the C 3 E diploid
potato population, untargeted GC-TOF-MS-based me-
tabolite profiling was performed. The GC-TOF-MS
method was applied to the polar aqueous methanol
extracts of dormant tubers of 97 genotypes and the
parental clones of the C 3 E population. After pro-
cessing of the raw data, 139 representative masses
were obtained, consisting of reconstituted mass spec-
tra (see “Materials and Methods”). The distribution of
trait values for the detected compounds across all the
genotypes was wide, with coefficients of variation
higher than 50% for the majority of metabolites
(approximately 52%; Fig. 1). This large variation can
in part be explained by the segregation of genetic
factors and therefore is amenable to genetic mapping
approaches.

The 139 representative masses were putatively iden-
tified by comparing the mass spectra with those of
authentic reference standards and mass spectral data-
bases (National Institute of Standards and Technology
[NIST08]; Golm metabolome database [http://gmd.
mpimp-golm.mpg.de/]). Supplemental Table S1 lists
the derived identification (i.e. putative metabolites).
Further inspection of the spectra and retention indices
of these fragments allowed amore accurate annotation

Figure 1. Histogram of the distribution of metabolic variation. Data
shown are based on the percentage of Coefficient of Variation (CV%)
across the C 3 E population for the 139 representative masses. The
distribution shows that the majority of metabolites have a CV higher
than 50%, indicating a high level of variability.
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of 58 of them (Table I). Using all samples, we per-
formed a hierarchical cluster analysis using Pearson
correlations on the processed data for the abundance of
the 139 representative masses. Figure 2 shows the
degree of correlation among the detected compounds.
The majority of the compounds were identified as
amino acids, organic acids, or carbohydrates (Table I;
Supplemental Table S1). The annotation of a number of
compounds could not be verified by further inspection
of the spectra and retention indices. However, we
included these unknown compounds in the cluster
analysis to investigate the degree of association with
identified metabolites. Compounds from the same
class, such as amino acids or carbohydrates, generally
clustered together. The correlation coefficients within
the identified amino acids ranged between 0.6 and 0.9
(Fig. 2), and two metabolites were considered to be
highly correlated if the absolute correlation coefficient
had a value of 0.6 or greater. Such high correlations
have been reported before in potato between amino
acids (Roessner et al., 2001; Dobson et al., 2008). It has
been suggested that this correlation may reflect the
mechanism of general amino acid control in plants
(Halford et al., 2004). Interestingly, within the amino
acid cluster, the branched amino acids Ile, Leu, and Val
clustered separately from the aromatic amino acids Tyr,
Phe, and Trp, as was also reported in earlier metabo-
lomics studies in different potato cultivars (Roessner
et al., 2001; Noctor et al., 2002; Dobson et al., 2008).
Amino acids that are biosynthetically linked, such as
Ser, Gly, and Thr, also show a strong correlation (Fig. 2).
This suggests that much of the variation in amino acid
content is genetically controlled by just a few master
regulators. However, this was not the case for all re-
lated amino acids. The Pearson correlation coefficients
among g-aminobutyric acid (GABA), Glu, and Pro
were less than 0.2, although they are closely linked
biosynthetically as members of the Glu family. Other
amino acids, such as Glu and Asn, show weak
correlations (less than 0.4) with the major cluster of
amino acids. This could suggest that the genetic
regulation of these biosynthetic routes occurs inde-
pendently from that of the main cluster of amino
acids. In addition, most of the detected carbohy-
drates, such as Man and Fru, also form a cluster (Fig.
2). In contrast, Suc clusters with a group of organic

acids rather than with the other carbohydrates. The
clustering of organic acids, however, is less distinct,
and this is likely due to the diverse biochemical
origins of these compounds.

Identification of Metabolic QTLs

To determine if the variation observed in metabo-
lite levels could indeed be explained by allelic differ-
ences in genetic factors, we performed metabolic
quantitative trait locus (mQTL) analysis on the met-
abolic profiles. The software package MetaNetwork
was used to map the metabolite variation. MetaNet-
work applications (Fu et al., 2007) were designed
from data collected from recombinant inbreed lines;
hence, in order to adjust the software applications to a
cross-pollinated species like potato, we used two
separate linkage maps: one for the female parent
C and one for the male parent E. Overall, the varia-
tion in abundance of approximately 72% of the
metabolites could be mapped in at least one of the
two linkage maps. In total, we found 187 mQTLs
for 121 metabolites, of which 58 could be putatively
annotated. A complete list and a description of the
detected mQTLs are given in Supplemental Tables S2
and S3.

C-Parent Map

Forty-five significant mQTLs were detected in this
map for 39 masses representing unique metabolites.
For 33 metabolites, only one QTL was identified, and a
maximum of two QTLs were found for six different
metabolites (identified as galactiric acid and five un-
known metabolites [nos. 012, 034, 044, 078, and 081]).
The largest number of mQTLs on a single chromosome
was 11 for chromosome 8, where mQTLs were detec-
ted for Asn, Tyr, and other, unidentified metabolites.
The mQTL for Tyr on chromosome 8 was also detected
in a previous study on the same population (Werij
et al., 2007). On chromosome 5, we found eight mQTLs
for Glu, Man, Trp, and a number of unknown com-
pounds. On chromosomes 3, 6, and 10, no significant
mQTLs were detected. Figure 3A shows the QTL
profiles of all the metabolites mapped to the C-parent
map in a heat map.

Table I. Metabolites putatively identified from the polar phase of methanol extract from potato tubers

List of metabolites that were putatively identified based upon the similarity of mass spectra and the retention indices published in the literature.
Compounds that were detected in more than one derivatized form are listed only once.

Compound Class Metabolites

Amino acid Ala, Asn, Gln, Gly, Asp, Glu, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, Lys, pyro-Glu, b-Ala, GABA
Organic acid 2-Piperidinecarboxylic acid (pipecolic acid), ascorbic acid, butanoic acid, citric acid, quinic acid, fumaric acid,

glyceric acid, malic acid, phosphoric acid, succinic acid, dehydro-L-(+)-ascorbic acid dimer, lactic acid,
threonic acid

Sugar
Sugar alcohol
Amino alcohol
Other

Allose, Fru, galactiric acid, galactinol, Man, Suc, glucopyranose
Myoinositol
Ethanolamine
Calystegine B2, 5-aminocarboxy-4,6-dihydroxypyrimidine, allantoin
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E-Parent Map

In this map, 160 significant mQTLs were detected for
85 representative masses (Fig. 3B). For 33 masses, only
one QTL was detected, and a maximum of six mQTLs
was detected for one metabolite (identified as quinic
acid). The highest number of mQTLs on a single
chromosome was 71 on chromosome 5. This chromo-
some also contributed the most to the total explained
variation of all detected mQTLs. A single genomic
region, spanning three adjacent markers, accounted for
the highest density of detectedmQTLs (34). This region
is known to be involved in plant maturity (van Eck and
Jacobsen, 1996; Collins et al., 1999; Oberhagemann
et al., 1999) and as such exerts many pleiotropic effects

on development-related traits. The majority of com-
pounds mapping to this region were classified as
amino acids, organic acids, and carbohydrates. This is
not unexpected, as rapid changes in primary metabo-
lism are known to occur during the later stages of
maturation. Interestingly, similar to observations in the
C-parent map, some amino acids that are biochemi-
cally related shared an mQTL at the plant maturity
locus (e.g. Gly and Thr). Other amino acids, like Phe,
Lys, Val, and Met, also mapped to the plant maturity
region. Some of the identified compounds mapping to
this region also showed significant mQTLs on other
chromosomes, both in the C and the E maps. For
example, four more mQTLs were detected for L-Thr, on
chromosomes 1, 2, and 10 in the E-parent map and

Figure 2. Correlation matrix and cluster analysis of detected polar metabolites. Pearson correlation between metabolites is
indicated by color intensity. A total of 58 out of the 139 metabolites could be identified based upon spectral libraries and
retention indices. Metabolites belonging to the same biochemical class (color coded) tend to cluster together.
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Figure 3. (Legend appears on following page.)
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chromosome 7 in the C-parent map. For Met, another
mQTL was detected on chromosome 2 of the C parent,
and for Val, one additional mQTL was detected on
chromosome 3 of the E parent, indicating complex
regulation of these traits.

Association between Phenotypic and Metabolic Traits

Traits of agronomic importance in potato, such as
starch and cold sweetening, are expected to be associ-
ated with primary metabolites. To investigate this rela-
tionship in more detail, we carried out a parallel QTL
analysis for phenotypic starch- and cold sweetening-
related traits determined for this population for two
years of harvest: 2002 and 2003 (Supplemental Table S5;
J.S. Werij, H.F. van Eck, C.W.B. Bachem, and R.G.F.
Visser, unpublished data). Having mapped both meta-
bolic and phenotypic QTLs to the two parental maps,
we investigated the level of coregulation of these two
sets of traits by determining colocalizing QTLs. As
expected, a substantial number of the phenotypic traits
mapped to the plant maturity locus at chromosome 5.
However, a number of significant QTLs for essential
metabolites were also detected outside this region,
indicating a possible regulation independent of the
developmental stage; therefore, these mQTLs are of
particular interest.
From a total of 26 phenotypic traits, nine showed

QTLs colocalizing with mQTLs outside the plant ma-
turity region on chromosome 5 (Supplemental Table
S4). Five phenotypic traits mapped to the C map, of
which three mapped to the same position on chromo-
some 8: specific gravity of starch (also mapping to
chromosome 10 in the E-parent map) and discolor-
ation of tuber flesh after cooking at 5 and 30 min. This
position coincided with mQTLs for two unknown
compounds (nos. 044 and 081). A fourth trait, starch
grain particle size, mapped to a different region of
chromosome 8 on the C map that colocalized with
mQTLs for amino acids, organic acids, and carbohy-
drates. Chip color difference between reconditioning
and harvest mapped to chromosome 6 on the C-parent
map and chromosomes 3 and 9 on the E-parent map,
but only the latter two regions colocalized with a
limited number of mQTLs.
Two traits, chip color after harvest and chip color

difference between storage and harvest, mapped to chro-
mosomes 9 and 3 of the E-parent map. These positions
coincidewith genomic regionswheremQTLs for succinic
acid, fumaric acid, butanoic acid, and unknown com-
pound 044 were detected.
The strongest association, however, was detected

between starch phosphorylation and a number of me-
tabolites. Starch phosphorylation maps to positions on

chromosomes 2 and 9 of the E-parent map in both
harvest years 2002 and 2003. The detection of identical
QTLs in independent experiments suggests a strong
and robust genetic control, although a third QTL on
chromosome 5 was detected in the 2003 harvest that
was only suggestive in 2002. This QTL colocalizes with
mQTLs for Ala, butanoic acid, b-Ala, GABA, succinic
acid, pyro-Glu, Phe, Gln, Tyr, Trp, and seven unknown
compounds (nos. 011, 027, 033, 048, 061, 068, and 069).
The QTL for starch phosphorylation on chromosome
2 colocalizes with mQTLs for Ser, Thr, Asp, GABA, Gln,
and four unknown metabolites (nos. 015, 027, 041, and
043). The QTL on chromosome 9 colocalizes with a
mQTL for galactinol.

RFAnalysis Reveals a Link between Primary Metabolites
and Starch Phosphorylation

To further investigate the strength of the colocaliza-
tions, we focused on the phenotypic trait starch phos-
phorylation (i.e. the degree of phosphorylation per
milligram of starch). Potato starch is characterized by a
relatively high content of phosphate groups compared
with, for example, cereal starches (Rooke et al., 1949;
Hizukuri et al., 1970). This level of phosphate groups
influences the viscosity and the chemical properties of
starch and therefore is important for the different uses
of potato starch for food and industrial applications.
Among the evaluated starch-related traits, the mea-
surements for starch phosphorylation in 2002 and 2003
showed the highest correlation coefficient (r2 = 0.8;
Supplemental Table S6), indicating a general high
reproducibility of the expression of this trait. The
observation that two to three QTLs could be mapped
in each year together with a high broad sense herita-
bility (0.5) further indicates that a substantial part of
the trait variation can be attributed to genetic factors.
In addition, a number of colocalizing mQTLs were
identified (see above) that suggest links between starch
phosphorylation and metabolic processes. To rank the
associations between starch phosphorylation and the
139 representative masses, we used a multivariate RF
regression approach (Breiman, 2001). The starch phos-
phorylation measurements of the two years were used
separately, as a response variable regressed against the
139 representative masses over all population individ-
uals and significantly associated metabolites were
recorded.

Using starch phosphorylation measurements of the
2002 harvest and all of the detected compounds, the
RF model explained 16% of the variance at a permu-
tation threshold of a = 0.001. Twelve metabolites were
significantly associated with phosphate content at this
threshold (Table II). Univariate correlation analyses

Figure 3. Heat map of mQTL profiles of the detected compounds in the C 3 E population. A, Using the genetic map of the C
parent. B, Using the genetic map of the E parent. Metabolites are clustered according to 210log(p) values across significantly
associated markers. Vertical lines indicate chromosomal borders. Colors indicate the sign of the additive effect and the
significance of the mQTL.
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between these significant metabolites and starch phos-
phorylation yielded absolute r2 values ranging be-
tween 0.07 and 0.26 (of which two have a negative
Pearson correlation value). For the 2003 harvest, the RF
model explained 33% of the variance at a permutation
threshold of a = 0.001. In this case, eight metabolites
were found to be significantly associated with starch
phosphorylation (Table II). The correlations ranged
from 0.12 to 0.39 (of which one has a negative Pearson
correlation value). Interestingly, all the significantly
contributing metabolites from the 2003 model were
also identified using the 2002 data, again illustrating
the high reproducibility between the two years. From
these eight compounds, seven showed colocalizing
QTLs with at least one of the starch phosphorylation
QTLs: b-Ala, GABA, L-Asp, Ala, butanoic acid, un-
known 027, and unknown 033 (Supplemental Table S4).

As a third independent line of investigation, we
performed RF regression on a subset of cultivars from
a potato collection available in our laboratory (year of
harvest 2007). All 214 cultivars of this collection were
analyzed for starch phosphorylation, and from these,
30 cultivars were selected covering the whole distri-
bution range of this trait (Supplemental Fig. S1) These
30 cultivars were analyzed for metabolite content with
the same analytical procedure used for the C 3 E
population. RF regression was performed using the
starch phosphorylation measurements and the metab-
olites detected in this set of cultivars (data not shown).
The resulting RF model explained 30% of the variation
in starch phosphorylation, and nine compounds were
found to contribute significantly at a permutation
threshold of a = 0.001 (Table II). The univariate corre-
lations between these significant compounds and

starch phosphorylation ranged between 0.09 and 0.41
(of which four have a negative Pearson correlation
value).

A comparison of the significant predictive com-
pounds after RF analysis in the two sets of potato
material (i.e. C 3 E [2002 and 2003] and cultivar
collection) revealed one compound in common, b-Ala.
In the C 3 E population, b-Ala showed a positive
correlation with starch phosphorylation in both years.
This positive trend was also observed in the selected
cultivar set (Supplemental Fig. S2). Because a robust
metabolic predictor of a phenotypic feature is prefer-
ably valid across different potato sources, we consider
b-Ala as a reliable metabolite significantly linked
to the level of phosphorylation of starch in potato
tubers.

DISCUSSION

The use of an untargeted metabolomics approach
permits a quantitative assessment of a wide range of
metabolites and allows the detection of known and
unknown metabolites. Untargeted metabolomics ap-
proaches have been successfully applied to experimen-
tal plant populations to uncover loci controlling the
variation of metabolites (Overy et al., 2005; Keurentjes
et al., 2006; Morreel et al., 2006; Schauer et al., 2006;
Tieman et al., 2006; Lisec et al., 2008; Rowe et al., 2008).

In this study, we used untargeted GC-TOF-MS me-
tabolite profiling to assess the quantitative variation in
polar metabolites present in dormant tubers of a
diploid potato population. The observed variation in
this population enabled us to locate genomic regions

Table II. List of associated metabolites ranked after RF and significance permutation tests

The first column shows the putative annotation of the representative mass. The second column shows whether a colocalizing mQTL with starch
phosphorylation was detected. The values in the remaining columns indicate ranking order after RF analysis. Compounds with two numbers
represent the same compound with different trimethylsilyl (TMS) groups (derivatization groups).

Metabolite Putative Identification
Colocalizing Starch Phosphorylation

QTL C 3 E Population

Rank of Metabolites

2002 Harvest 2003 Harvest Potato Cultivars

b-Ala (2TMS) Yes 1 1 7
g-Aminobutyric acid (2TMS), (3TMS) Yes 2, 10 2
Ala (2TMS) Yes 3 4
Gly (2TMS) 4
Unknown 027 Yes 5 7
Glyceric acid (3TMS) 6
Unknown 033 Yes 7 6
d3-Ala 8 8
Unknown 044 9
Lys (3TMS), (4TMS) 3, 5
L-Asp (3TMS) Yes 11 3
Butanoic acid (2TMS) Yes 12 5
Unknown 082 1
Putrescine (4TMS) 2
Unknown 083 4
Myoinositol (6TMS) 6
Glucopyranose (5TMS) 8
Unknown 084 9
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involved in the regulation of a range of polar primary
metabolites. Primary metabolites, consisting mainly of
carbohydrates, amino acids, and organic acids, have
an essential role in plant growth and development. In
potato, carbohydrates are important for a number of
agronomic traits related to tuber quality, such as starch
content and cold sweetening. In this study, the same
genetic material was used to detect QTLs for starch-
and cold sweetening-related traits and metabolic
traits.
We investigated the associations between pheno-

typic and metabolic traits through QTL colocalization,
correlation analysis, and RF analyses. The detection of
a QTL identifies the existence of at least one polymor-
phic locus that is contributing to the variation ob-
served for a given trait (Causse et al., 2004). When
QTLs for two different traits colocalize, this might
indicate the existence of a common regulator that
controls the variation of both traits. This is of special
value in the search of candidate genes for traits with
complex modes of inheritance or for which most of
the genetic basis is unknown. However, it cannot be
excluded that colocalizing genomic regions contain
genes that are closely linked but are involved in
different biological processes. Due to the limited res-
olution of QTL mapping and a finite number of
markers, colocalization of (unrelated) QTLs is inevita-
ble when large data sets are involved (Lisec et al.,
2008). Therefore, we performed independent statistical
tests to confirm true positive associations between
metabolites and phenotypes. In addition, we have
validated putative metabolic biomarkers in an inde-
pendent set of potato varieties. Our stringent selection
criteria resulted in the determination of a strong rela-
tionship between potato starch phosphorylation and
primarymetabolism. Furthermore, our analyses resulted
in the identification of b-Ala as an important predictor
for the degree of phosphorylation of starch in potato
tubers.

Mapping of Metabolic Variation in Potato Tubers

Mapping populations are very suitable to identify
loci controlling the variation of a given trait. In this
study, we aimed to explore the variation of metabolic
and phenotypic traits present in dormant potato tu-
bers. Our results show that we could assign genomic
regions involved in metabolite variation for approxi-
mately 72% of the detected metabolites.
The abundances of metabolites that share an mQTL,

especially for major loci of qualitative traits, are ex-
pected to correlate because they cosegregate in a
mapping population. For instance, L-Leu and Lys
share an mQTL on chromosome 9 and are positively
correlated. Metabolites sharing an mQTL often belong
to the same biochemical pathway. For example, Phe
and Tyr share a common biosynthetic pathway and
hence are found to be coregulated. Alternatively,
colocating QTLs can be the result of closely linked
independent regulators (Lisec et al., 2008). In the case

of a shared regulator, a direct, or even causal, relation-
ship can be expected between traits, whereas in the
latter case, the two traits are independently controlled.
This distinction should be reflected in correlation
analysis with higher values expected for coregulated
traits. In contrast, high correlation values between
traits can also be expected when environmental factors
that affect multiple traits simultaneously are in play.
The resulting decrease in signal-to-noise ratio would
be reflected in low heritabilities and QTL detection
power. Therefore, we have applied independent lines
of investigation, including genetic, correlation, and
RF analyses, to reliably identify biologically meaning-
ful relationships between metabolites and complex
phenotypes.

In targeted studies, QTLs were found for some of the
metabolites that were also detected in our analyses. In
a previous study, an mQTL for Tyr was detected on
chromosome 8 in the C-parent map (Werij et al., 2007).
This amino acid has been reported to be associated
with the level of enzymatic discoloration (Corsini
et al., 1992), although other studies have reported
otherwise (Mondy and Munshi, 1993). In agreement
with the results of Werij et al. (2007), we did not find
overlapping QTLs for Tyr and enzymatic discolor-
ation. In addition, we confirmed the QTL detected by
Werij et al. (2007) and also detected two more QTLs for
Tyr at chromosomes 5 and 11 of the E-parent map. This
difference is likely explained by differences in the
analytical techniques used in the two studies. Addi-
tionally, revisions in the linkage map that was used in
our study may have influenced the power of detection
of QTLs.

Another interesting metabolite that was also map-
ped in previous studies is Met. The level of this amino
acid is important for the nutritional value of potato.
Moreover, it is the precursor of metabolites important
to potato flavor (e.g. methional), and attempts have
been made to enhance the Met content to improve
flavor (Di et al., 2003; Dancs et al., 2008). In earlier work
on the C 3 E population, two QTLs, on chromosomes
3 and 5, were detected underlying the variation of this
amino acid content in tubers (Kloosterman et al., 2010).
In agreement with that study, we detected QTLs forMet
that mapped on chromosomes 3 and 5 of the E-parent
map and an additional QTL on chromosome 2 of the
C-parent map.

The significant mQTLs detected in both parental
maps were unequally distributed over the genome,
indicating hot and cold spots for metabolite regula-
tion. Awell-known locus involved in plant maturity is
located at chromosome 5, where a major QTL for this
trait has been detected in the C 3 E population (van
Eck and Jacobsen, 1996). Plant maturity has been
shown to be closely linked to a number of traits,
including resistance and developmental traits (Collins
et al., 1999; Oberhagemann et al., 1999; Bormann et al.,
2004), although the underlying genetic factor has not
been identified thus far. Products of primary metabo-
lism, such as carbohydrates and amino acids, are
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expected to influence the degree of plant maturity and
vice versa. Therefore, we anticipated that a large
number of metabolic traits would show an association
with the plant maturity region on chromosome 5. None-
theless, a substantial number of mQTLs for amino acids,
organic acids, and carbohydrates have not been reported
before and were identified outside this region. This
finding highlights the importance of other genomic
regions in the regulation of primary metabolite accumu-
lation despite the pleiotropic effects displayed by the
plant maturity region.

In addition, a number of mQTLs mapped to multi-
ple positions, which indicates complex regulation.
Among the multiple loci detected for these metabo-
lites, at least one mapped to the plant maturity region.
This raises the question of whether metabolites are
under developmental control or whether development
is under metabolic control. In this study many metab-
olites map to the maturity locus in addition to multiple
other loci. Plant maturity, however, maps only to a
single locus and this may indicate that the metabolism
is at least partly under developmental control or
another factor upstream.

Putative Predictors of Starch Phosphorylation

QTL colocalizations can be useful to identify me-
tabolites involved in the regulation of phenotypic
traits. This is of special importance for traits for which
the genetic basis is unknown, providing a valuable
tool to search for candidate genes. However, one
should be cautious when making such assumptions,
because two different traits that share the same regu-
latory region are not necessarily involved in the same
molecular or biological process. In a specific genomic
region, genes might be present that are linked but that
have different enzymatic functions. The phenotypic
traits evaluated in this study are known to be related to
carbohydrate metabolism; consequently, metabolites
involved in this pathway are likely to be linked to
these traits. Nevertheless, QTL colocalizations can
disclose unknown associations and moreover identify
candidate predictors of trait variation (Lisec et al.,
2008).

One of the aims of this study was to test to what
extent phenotypic and metabolic QTLs colocalize in
order to identify metabolites associated with pheno-
typic features. We focused on starch phosphorylation
as a phenotypic case study. Potato starch has a partic-
ularly high content of phosphate groups in compari-
son with other plant species. The degradation of starch
is dependent on reversible phosphorylation of the
glucans at the surface of the starch granule (Zeeman
et al., 2010), and although a direct link between the
content of phosphate groups and starch degradation
has not been found, it has been shown that alterations
in the starch-phosphorylating enzymes lead to an
excess of starch accumulation in the plant (Caspar
et al., 1991; Zeeman and Rees, 1999; Yu et al., 2001).
In potato, the high phosphate content of starch affects

the viscosity and formation of stable starch pastes
(Wiesenborn et al., 1994; Viksø-Nielsen et al., 2001),
which is important for the diversified uses of starch in
industry.

Here, we show that a number of amino acid mQTLs
colocalize with trait QTLs for starch phosphorylation.
To measure the strength of the genetically inferred
links between the detected metabolic and phenotypic
QTL colocalizations, we examined the associations
and predictive power of the metabolite data for starch
phosphorylation using RF regression analysis.

The application of multivariate statistical methods
to assess associations between metabolites and pheno-
typic traits has been successfully applied in a number
of studies. An approach using canonical correlation
analysis to test the predictive power of metabolic
composition for biomass traits in Arabidopsis revealed
a number of metabolites related to biomass and
growth (Meyer et al., 2007). In potato, a partial least-
squares analysis was used to discover metabolites that
function as predictors for susceptibility to black spot
bruising and chip quality (Steinfath et al., 2010). The
validity of these results was tested in a collection of
potato cultivars and in a set of individuals of a segre-
gating population where metabolic and phenotypic
information obtained from a first environment was
used to predict phenotypic properties from the meta-
bolic data obtained from a second environment. Those
results demonstrate the application of multivariate
data analysis and the value of independent validation
to discover a small set of metabolites that can be used
as biomarkers for a phenotypic trait of interest.

We used RF analyses to predict starch phosphory-
lation from a GC-MS data set. A similar approach was
used to predict flesh color and enzymatic discoloration
from transcriptomics and liquid chromatography-MS
data sets (Acharjee et al., 2011). This study resulted in
the successful identification of associated genes and
metabolites, of which some were known to be in-
volved in the regulation of the traits under study.
Correspondingly, in our study, the application of RF
regression resulted in a list of highly ranked metabo-
lites representing the most important compounds
associated with starch phosphorylation. Inspection
of the annotation of these included a number of
unknown metabolites and, more interestingly, a few
amino acids for which we also detected mQTLs coin-
ciding with starch phosphorylation QTLs. Among
these relevant metabolites, b-Ala was of particular
interest because it consistently ranked in the top
metabolites in the different potato materials used for
the analysis.

Starch phosphorylation is mainly driven by the
action of two glucan-water dikinases (i.e. glucan water
dikinase [GWD] and phosphoglucan water dikinase
[PWD]). These enzymes are critical in the transfer of
phosphate groups within amylopectin (Smith et al.,
2005; Zeeman et al., 2010). Analysis of Arabidopsis
(Arabidopsis thaliana) mutants also showed that GWD
is required for phosphorylation (Yu et al., 2001). The
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sex1 (loss of GWD activity) and pwd (loss of PWD
activity) mutants lead to excess- and reduced-starch
content phenotypes, respectively. Interestingly, trans-
genic potato plants with reduced GWD expression
also displayed a starch-excess phenotype (Lorberth
et al., 1998). In our results, the amino acid b-Ala was
highly ranked after RF analysis for both sets of potato
material (i.e. the C 3 E segregating population [2002
and 2003] and the set of potato cultivars). What is
more, an mQTL for b-Ala was detected in the C 3 E
population colocalizing with a phenotypic QTL for
starch phosphorylation measurements of 2003 and a
suggestive QTL in 2002.
It is known that GWD follows a dikinase-type

reaction catalyzing the transfer of the b-phosphate of
ATP to either the C6 or C3 position of the glucosyl
residue (Ritte et al., 2002). In this type of reaction, the
formation of an autophosphorylated intermediate pre-
cedes the transfer of the phosphate to the glucosyl
residues. The autophosphorylation of this GWD inter-
mediate depends on a conserved His residue that,
when replaced by Ala, results in a mutant phenotype
without phosphorylating activity (Mikkelsen et al.,
2004). Ala isomers were further suggested as phos-
phate carriers when reacting with cyclotriphosphate to
form orthophosphate derivatives in high-pH condi-
tions (Tsuhako et al., 1985). These studies suggest a
role for Ala in phosphorylation reactions, although
further research is needed to confirm these relation-
ships. b-Ala, as a substrate for pantothenate (vitamin
B5) biosynthesis, is the only naturally occurring
b-amino acid in plants (Chakauya et al., 2006). Little is
known about the formation of b-Ala in plants, while in
bacteria, b-Ala is synthesized from the decarboxylation
of L-Asp in a reaction catalyzed by Asp decarboxylase
(Chakauya et al., 2006). Interestingly, we observed a
shared mQTL for b-Ala and L-Asp, suggesting common
genetic regulation through shared biosynthetic path-
ways.
After a dormant phase, potatoes develop from a sink

to a source organ that will subsequently support the
growth and development of the new sprout. Owing to
a higher content of phosphate groups, starch may be
more easily mobilized and converted into resources
for the growing sprout. Vitamin B5 is used in the
synthesis of CoA, an acyl carrier protein. CoA is
required in many central metabolic processes, and it
is essential in the conversion of pyruvate to acetyl-CoA
to enter the tricarboxylic acid cycle (Chakauya et al.,
2006). In addition, CoA is fundamental in the biosyn-
thesis of fatty acids, polyketides, depsipeptides, and
peptides (Kleinkauf, 2000). b-Ala constitutes an im-
portant part in the biosynthesis pathway of vitamin B5,
and the presence of this amino acid may be indicative
for the formation of many essential metabolites for
plant development; furthermore, it may act as an
indicator of the mobilization of storage resources. In
this study, we identified b-Ala associated with starch
phosphorylation as well as a number of other metab-
olites for which it also might be predictive. Our

approach has been shown to be instrumental in gen-
erating hypotheses about functional relationships be-
tween metabolites and phenotypes. In addition, it may
help for a gradual understanding of metabolic pro-
cesses contributing to the observed phenotypic fea-
tures of interest.

Our data here demonstrate the benefits of the applied
methods for a broad untargeted metabolomics approach
in potato. In this study,we combined genetic information
through mQTL and phenotypic QTL analysis and non-
genetic information through the regression of trait values
to predict phenotypic traits from metabolomics analysis.
We identified candidate metabolites that can be infor-
mative for phenotypic traits of interest.

Advances in metabolomics have opened up the way
to high-throughput approaches, allowing the analysis
of variation of a large number of samples in a reason-
able amount of time. In addition, advanced statistical
methods enable us to explore and monitor different
profiling techniques in nonmodel species. Amultilevel
integrative approach to study organisms as a system of
genetic, proteomic, and metabolic events may enable
us to achieve a higher level of understanding of the
interactions occurring in a biological system of inter-
est. In potato, although this field is still in its infancy,
some examples have already shown the advantages of
such approaches to identify, and hypothesize about,
the components in biologically relevant pathways
(Acharjee et al., 2011). Furthermore, the genome se-
quence of potato (Potato Genome Sequencing Consor-
tium, 2011) has now revealed genes specific to this
highly heterozygous crop, bringing a platform that
will ultimately facilitate the elucidation of the genetic
basis of complex traits of high importance in breeding
for tuber quality.

MATERIALS AND METHODS

Plant Material

The C 3 E Population

The diploid population (C3 E) consisting of a total of 251 individuals was

obtained from a cross between two heterozygous diploid potato clones,

USW5337.3 (coded C: Solanum phureja 3 Solanum tuberosum) and 77.2102.37

(coded E: Solanum vernei 3 S. tuberosum). This population has been of special

use to study the inheritance and genetic mapping of traits related to tuber

quality (i.e. tuber shape, tuber size, eye depth, flesh color, among others). The

development and characteristics of the population and the parental lines are

described in detail (Celis-Gamboa, 2002;Werij et al., 2011). For starch- and cold

sweetening-related traits, the values for the parental lines lie very close to each

other centered on these normally distributed traits (data not shown), demon-

strating the large amount of transgression present in this population. In

addition, the female and male parents show very similar plant maturity

phenotypes, with the female C showing a slightly earlier maturity phenotype

than the male E.

A subset of 97 genotypes of this population was grown in two subsequent

years (2002 and 2003) during the normal potato growing season (April–

September) in Wageningen, The Netherlands. For each genotype, tubers were

collected from three plants. Harvested tubers were either used for phenotypic

analysis or mechanically peeled and immediately frozen in liquid nitrogen

before being ground into fine powder and stored at 280�C.
Phenotypic analyses for 26 starch- and cold sweetening-related traits were

performed for both years of harvest (Supplemental Table S5). Metabolite

profiling was carried out on the ground material of tubers of the 2003 harvest.
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Potato Cultivars

Potato cultivars used for independent confirmation and further statistical

analysis were part of the potato collection available at Wageningen University

& Research centre Plant Breeding. This collection consists of 221 tetraploid

potato cultivars that were provided by Dutch breeding companies and gene

banks. Phosphate measurements were carried out for 214 potato cultivars. In

accordance with the distribution of the trait values (Supplemental Fig. S2), we

selected 30 cultivars representing high, medium, and low phosphate contents.

Determination of Starch Phosphorylation

The degree of phosphorylation of starch was determined in a colorimetric

assay. A total of 20 mg of starch was mixed with 250 mL of 70% HClO4 and

incubated at 250�C for 25 min. Then, 50 mL of 30% hydrogen peroxide (w/v)

was added and incubated for another 5 min. After cooling, 2 mL of water was

added to reach a final concentration of HClO4 of 8.75% (w/v).

The color reagent consisted of 0.75% (w/v) (NH4)6Mo7O240.4H2O, 3% (w/v)

FeSO40.7H2O, and 0.75% SDS (w/v) dissolved in 0.375 M H2SO4. A total of 100

mL of the sample extract, or a standard solution, was mixed with 200 mL of the

color reagent solution on a microtiter plate and incubated for 10 min at room

temperature. The absorbance was measured at 750 nm in a microplate reader

using 8.75% HClO4 as a blank. A calibration curve of PO4 dissolved in HClO4

(0–500 mM) was used to determine the phosphate content.

Extraction and Derivatization of Potato Tuber
Metabolites for GC-MS Analysis

Relative metabolite content was determined as described (Weckwerth

et al., 2004) with modifications specific to the potato material. Briefly, polar

metabolite fractions were extracted from approximately 100 mg fresh weight

of tuber powder. A total of 1.4 mL of a single-phase solvent mixture of

methanol:chloroform:water (2.5:1:1) was added to the ground tuber powder in

a 2-mL Eppendorf tube. d3-Ala was used as a deuterated internal standard

and ribitol was used as a representative internal standard, and they were all

mixed in one solution. In the water phase, 25 mL of a solution containing the

aforementioned internal standard solution was added. After vortexing, the

closed tubes were sonicated for 15 min. After 5 min of centrifugation,

the supernatant was transferred into a new Eppendorf tube and 400 mL of water

was added. Themixture was thoroughlymixed by vortexing and centrifuged for

10 min at 21,000 rcf (relative centrifugal force). The methanol/water supernatant

(polar phase) was carefully transferred into a new Eppendorf tube. Aliquots of

the polar phase (100 mL) were dried by vacuum centrifugation for 12 to 16 h.

The dried samples were derivatized online as described by Lisec et al.

(2006) using a Combi PAL autosampler (CTC Analytics). First, 12.5 mL of

O-methylhydroxylamine hydrochloride (20 mg mL21 pyridine) was added to

the samples and incubated for 30 min at 40�C with agitation. Then, the samples

were derivatized with 17.5 mL of N-methyl-N-trimethylsilyltrifluoroacetamide

for 60 min. An alkane mixture (C9–C17 and C20–C34) was added to determine

the retention indices ofmetabolites. The derivatized samples were analyzed by a

GC-TOF-MS system consisting of an Optic 3 high-performance injector (ATAS)

and an Agilent 6890 gas chromatograph (Agilent Technologies) coupled to a

Pegasus III time-of-flight mass spectrometer (Leco Instruments).

Twomicroliters of each sample was introduced to the injector at 70�C using

a split flow of 19 mL min21.The injector was rapidly heated with 6�C s21 to

240�C. The chromatographic separation was performed using a VF-5ms

capillary column (Varian; 30 m 3 0.25 mm 3 0.25 mm) including a 10-m

guardian column with helium as carrier gas at a column flow rate of 1 mL

min21. The temperature was isothermal for 2 min at 70�C, followed by a 10�C
min21 ramp to 310�C, and was held at this temperature for 5 min. The transfer

line temperature was set at 270�C. The column effluent was ionized by

electron impact at 70 eV. Mass spectra were acquired at 20 scans s21 within a

mass-to-charge ratio range of 50 to 600 at a source temperature of 200�C. A
solvent delay of 295 s was set. The detector voltage was set to 1,400 V.

GC-MS Data-Processing Methods

Data Preprocessing

Raw data were processed by ChromaTOF software 2.0 (Leco Instruments)

and MassLynx software (Waters), and further analysis was performed using

MetAlign software (Lommen, 2009) to extract and align the mass signals

(signal-to-noise ratio $ 2). Mass signals that were present in fewer than two

samples were discarded. Signal redundancy per metabolite was removed by

means of clustering, and mass spectra were reconstructed (Tikunov et al.,

2005, 2011). This resulted in 139 reconstructed polar metabolites (representa-

tive masses).

Compound Identification

The mass spectra of the representative masses were subjected to tentative

identification by matching to the NIST08 and Wiley spectral libraries and by

comparison with retention indices calculated using a series of alkanes and

fitted with a second-order polynomial function (Strehmel et al., 2008). Library

hits were manually curated, and a series of commercial standards were used

to check annotation. Compound identification is limited to the availability of

spectra in the libraries used. The identities of the detected compounds are

listed in Supplemental Table S1.

Data Normalization and Multivariate Analysis

Mass intensity values of the representative masses were normalized using

isotope-labeled d3-Ala as an internal standard. Relative amounts of the

compounds were obtained by normalizing the intensity of individual masses

to the response of the internal standard. The ratio between the mass intensity

value of the putative compound and the d3-Ala internal standard was then

scaled by multiplying the resulting value by the average of the d3-Ala mass

intensity across all samples.

Normalized values were log transformed in GeneMaths XT version 2.12

software (www.applied-maths.com). These data were used for cluster analysis

using Pearson’s correlation coefficient and Unweighted Pair Group Method

with Arithmetic Mean (UPGMA) for hierarchical clustering.

Metabolic and Phenotypic QTL Analyses

Metabolite QTL analyses were performed using the software package

MetaNetwork (Keurentjes et al., 2006; Fu et al., 2007). MetaNetwork applies a

two-part model, and a P value is determined for each part of the model. In this

study, P values and QTL thresholds were determined as described (Keurentjes

et al., 2006). Since MetaNetwork is not designed for cross-pollinated species,

two separate linkage maps were used in our analysis: one for the female

parent C and one for the male parent E. The number of markers specific to the

C-parent map is 218 and that for the E-parent map is 178, with an average

spacing between markers of 6.1 and 3.9 centimorgan, respectively. The

significance QTL threshold value was estimated by MetaNetwork. Empirical

thresholds for significant mQTLs were calculated separately for both parental

maps: C-parent map, 210log(p) = 3.43 (P = 0.00037); E-parent map, 210log(p) =

3.19 (P = 0.00065).

Phenotypic measurements containing missing data cannot be analyzed by

MetaNetwork; hence, QTL analyses for phenotypic data were performed

using the software package MapQTL version 6.0. QTL log of the odds

thresholds were calculated per trait using a permutation test (n = 10,000)

provided in MapQTL.

Broad sense heritability was estimated for starch phosphorylation mea-

surements over the two years (2002 and 2003) according to the formula H2 =

VG/(VG + VE + VG3E), whereVG is the variance among genotypes and VE is the

year variation. One phosphate content measurement per year was used in a

mixed model to calculate variance components for genotypes, years, and

residual (= genotype 3 year).

RF

RF (Breiman, 2001) was used for regression of the phenotypic trait starch

phosphorylation on the GC-TOF-MS signals. RF constructs a predictive model

for the response using all predictors but quantifies the importance of each,

here the metabolites, in explaining the variation present in the starch phos-

phorylation. RF by itself does not provide significance levels of individual

metabolites and does not perform a variable selection to choose a possible

subset of associated metabolites. Therefore, we included a permutation test to

indicate the significance of the association of a metabolite with a trait. In each

of 1,000 permutations of the trait values, we estimated the variance explained

by the RF model (R2) and the variable importance of each metabolite in terms

of the decrease in node impurities (Breiman, 2001). We ordered node purity
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values from the permuted data sets and took the 95th percentile from the

distribution of impurity values as the significance threshold of the individual

metabolites. The same procedure was done for R2 values of the model: the

95th percentile was taken as a significance threshold for the RF model. RF

regression of starch phosphorylation on metabolite values was conducted

using the “randomForest” package of the R statistical software. R2 in RF is not

just a measure of goodness of fit of the data at hand but is determined on left-

out samples (the “out-of-bag” samples), so it should be interpreted as a

measure for predictive quality (here considered as prediction R2) of the RF on

independent samples that have the same properties as the in-bag samples

(Breiman, 2001).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Frequency distribution of phosphate content in

potato collection.

Supplemental Figure S2. Correlation between beta-alanine and phosphate

content.

Supplemental Table S1. Polar metabolites detected in dormant tubers by

GC-TOF-MS analysis.

Supplemental Table S2.Metabolic QTL results of untargeted GC-TOF-MS

metabolite profiling for C-parent linkage map.

Supplemental Table S3.Metabolic QTL results of untargeted GC-TOF-MS

metabolite profiling for E-parent linkage map.

Supplemental Table S4. List of metabolic QTLs and phenotypic QTLs

colocalizations outside plant maturity region.

Supplemental Table S5. List of starch and cold sweetening related traits of

the C x E population.

Supplemental Table S6. Correlation values between starch related traits in
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