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Abstract
By fitting dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data to an
appropriate pharmacokinetic model, quantitative physiological parameters can be estimated. In
this study, we compare four different models by applying four statistical measures to assess their
ability to describe DCE-MRI data obtained in 28 human breast cancer patient sets: the chi-square
test (χ2), Durbin-Watson statistic (DW), Akaike Information Criteria (AIC), and Bayesian
Information Criterion (BIC). The pharmacokinetic models include: the fast exchange limit model
with (FXL_vp) and without (FXL) a plasma component, and the fast and slow exchange regime
models (FXR and SXR, respectively). The results show that the FXL_vp and FXR models yielded
the smallest χ2 in 45.64% and 47.53% of the voxels, respectively; they also had the smallest
number of voxels showing serial correlation with 0.71% and 2.33%, respectively. The AIC
indicated that the FXL_vp and FXR models were preferred in 42.84% and 46.59% of the voxels,
respectively. The BIC also indicated the FXL_vp and FXR models were preferred in 39.39% and
45.25% of the voxels, respectively. Thus, these four metrics indicate that the FXL_vp and the FXR
models provide the most complete statistical description of DCE-MRI time courses for the patients
selected in this study.
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Introduction
Dynamic contrast enhanced MRI (DCE-MRI) involves the acquisition of images before and
after an intravenous injection of contrast agent (CA). By fitting DCE-MRI data to a
pharmacokinetic model, quantitative physiological parameters such as the volume transfer
constant (Ktrans), extravascular extracellular volume fraction (ve), and the plasma fraction
(vp) can be estimated (1-3). In diagnosing breast cancer, DCE-MRI has shown high
sensitivity (77-100%), but moderate specificity (26-97%) ((4-8), reviewed in (9)). In
monitoring treatment response in breast cancer, there have been many efforts employing
DCE-MRI as a surrogate biomarker for predicting response to neoadjuvant chemotherapy.
Several investigators have proposed both semi-quantitative and quantitative methods for
classifying contrast enhancement curves and have used this information to delineate
complete response from partial response and progressive disease (see, e.g., (10-20)). For
example, some investigators have shown that changes in tumor size as measured by dynamic
MRI correlate significantly with residual disease at time of surgery (e.g.,(10-13)).
Considering the potentially more difficult question of predicting treatment response early in
the course of therapy, some investigators have shown that changes in tumor volume as
measured by dynamic MRI after one cycle of therapy correlate significantly with pathologic
response (e.g., (14,15)). Morphological characteristics (such as tumor size) are the
downstream effects of underlying physiological changes, so it seems reasonable that
changes in metrics of tumor perfusion could serve as biomarkers of early response to
treatment.

However, the literature presents differing results regarding the predictive value of
quantitative modeling of DCE-MRI data; some have shown that kinetic analysis was not
predictive after early therapy (15,21), whereas others have shown that it is (14,22). These
contradictory results may not be surprising considering the significant differences in tumor
type, treatment regimen, number of patients, clinical and pathological endpoints, imaging
data acquisition and data analysis techniques. Another possible reason for such apparent
discrepancies is that the standard DCE-MRI model used to analyze such data may not
adequately describe the relevant physiology. The standard model relies on a linear
dependence between the measured longitudinal relaxation rate constant R1 (≡1/T1) and the
concentration of CA in tissue (23,24). This model assumes that tissue is effectively one
well-mixed compartment of water; in MRI, this assumption is referred to as the fast
exchange limit (FXL). Several studies have presented evidence that this assumption is
violated in vivo especially when the concentration of CA in the voxel of interest is high, and
efforts have been made to develop analyses that do not make this assumption (23-29). By
considering the extravascular space as two separate compartments, an extravascular
extracellular space and an extravascular intracellular space, models can be built that account
for the limited rate of water exchange between these compartments. This “fast exchange
regime” (FXR) model has revealed that significant errors may arise when using the FXL
analysis (24). In particular, initial applications of the FXR model to human breast cancer
DCE-MRI data suggest that the FXL formalism employed in these studies can grossly
underestimate blood flow, vessel wall permeability, and extravascular-extracellular volume
fractions (27-29).

While a few of studies have performed comparisons of kinetic models for DCE-MRI data of
the prostate or cervix (30,31), none has been performed for breast cancer. Here we report the
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results of standard statistical tests on the breast cancer DCE-MRI analyses provided by the
FXL with and without a vascular term and the fast and slow exchange regime models (FXR
and SXR, respectively) to assess which model is most robust in a statistical sense. Because
DCE-MRI ultimately aims to positively impact clinical diagnosis and prediction of treatment
response, the choice of model to perform the analysis is of central importance.

Materials and Methods
Data Acquisition

Fifteen patients with locally advanced breast cancer were enrolled in an ongoing clinical
trial (32). The patients provided informed consent, and the study was approved by the ethics
committee of the Vanderbilt-Ingram Cancer Center. DCE-MRI was performed using a
Philips 3T Achieva MR scanner (Philips Healthcare, Best, The Netherlands). A 4-channel
receive double-breast coil covering both breasts was used for all imaging (Invivo Inc.,
Gainesville, FL). Data for constructing a T1 map were acquired with an RF-spoiled 3D
gradient echo multi-flip angle approach with TR = 7.9 ms, TE = 1.3 ms, and ten flip angles
from 2 to 20 degrees in two degree increments. The acquisition matrix was 192×192×20
(full-breast) over a sagittal square field of view (22 cm2) with slice thickness of 5 mm, one
signal acquisition, and a SENSE factor of 2 for an acquisition time of just under three
minutes. The dynamic scans used identical parameters and a flip angle of 20°. Each 20-slice
set was collected in 16 seconds at 25 time points for approximately seven minutes of
scanning. A catheter placed within an antecubital vein delivered 0.1 mmol/kg (9 – 15 mL) of
the contrast agent gadopentetate dimeglumine, Gd-DTPA, (Magnevist, Wayne, NJ) at 2 mL/
sec (followed by a saline flush) via a power injector after the acquisition of three baseline
dynamic scans for the DCE study. Four patients were scanned at three time points: pre-
treatment, after one cycle of neoadjuvant chemotherapy, and after all cycles of
chemotherapy; and the other eleven patients were scanned at the first two time points,
yielding a total of 34 data sets. Six out of the 34 data sets failed to characterize the first pass
or wash-out features of the arterial input function, yielding a total of 28 useable data sets.

Theory
The measured signal intensity from a spoiled gradient echo acquisition can be described by
Eq. [1]:

[1]

where α is the flip angle, TR is the repetition time of the excitation RF pulse of the MR
imaging sequence, S0 is a constant describing the scanner gain and proton density, and we
have assumed that TE<<T2*. In order to perform quantitative DCE-MRI data analysis the
time-varying longitudinal relaxation time, T1(t), must be related to the concentration of CA
in the tissue, Ct(t). Usually, a linear relationship between the two quantities is assumed:

[2]

where R10 is the R1 value of the tissue before CA administration, and r1 is the relaxivity of
the contrast agent. In actual DCE-MRI experiments the Ct time course cannot be directly
measured, and thus Eq. [2] needs to be expressed in terms of the quantities that are actually
measurable in an MRI experiment (i.e., the relaxation rate constants). Towards this end, we
employ the Kety relationship (33):
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[3]

where Ktrans is the CA extravasation rate constant, ve is the extravascular extracellular
volume fraction, and Cp(t) is the concentration of CA in blood plasma, also known as the
arterial input function (AIF). In this study, a semi-automatic AIF tracking algorithm is used
to calculate the AIF for each patient. This algorithm is initialized by defining a kernel
centered on a manually selected seed point within the axillary artery in one slice. In an
adjacent slice, the center of the artery is detected through searching the maximum Pearson
correlation coefficient (CC) of the signal intensity between the kernel and the region of
interests in the adjacent slice. The procedure is repeated for all slices to find all voxels
within the artery which are then used to construct an AIF; more details are provided in (34).

A more complex model incorporates the blood plasma volume fraction, vp:

[4]

Substituting Eqs. [3] and [4] into [2] yields Eqs. [5] and [6], respectively:

[5]

[6]

Eqs. [5] and [6] are two of four models we assess in the study, which are termed the FXL
and FXL_vp, respectively.

The “fast exchange limit” relationship described above is equivalent to assuming that all
water compartments within the tissue are well mixed so the effects of the CA are completely
described by a single rate constant. However, tissue is not homogeneous, but rather it may
be compartmentalized within an MRI voxel. The use of Eq. [2] for the entire 1H2O signal
from a voxel requires that water exchange between the vascular, extravascular intracellular
space, and the extravascular extracellular spaces are sufficiently fast. In practice this is often
not the case; and, when it is not, the Bloch equations should incorporate the effects of this
exchange, leading to longitudinal relaxation that can be characterized by bi-exponential
decay:

[7]

where

[8]

and

[9]
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T1S and T1L are the apparent shorter and longer T1 components, respectively, R1i is the
intracellular R1, τi is the average intracellular water lifetime of a water molecule, and fw is
the fraction of water that is accessible to mobile CA (23-25), which is set to 1.0 in this study.
Eq. [9] with and without the T1S yields the other two models we evaluate, which are termed
the FXR and SXR models, respectively (24).

Statistical Analysis
We employed four common statistical tests to assess the analyses provided by Eqs. [5], [6],
and [9]. The first is the Durbin-Watson (D-W) statistic which is a commonly used test for
detecting serial correlation in residuals (35) and is computed via Eq. [10]:

[10]

where ei are the residuals. In regression analysis, errors are typically assumed to be pairwise
uncorrelated; serial correlation is a special case in which correlations between errors
separated by i steps are similar (35). If residuals exhibit positive serial correlation,
successive residuals tend to be similar; whereas, in negative serial correlation the successive
residuals are dissimilar. Eq. [10] provides a way of quantifying these phenomena. When the
D-W statistic shows significant serial correlation, the fitting model should be questioned.
The range of d lies between 0 and 4; but to establish the significance of d values upper and
lower bounds (dU and dL, respectively) must be evaluated. Those bounds are determined by
the number of observations, the number of free parameters in the model, and the desired
significance threshold. If d < dL or 4-d < dL, then d is considered significant for either
positive or negative serial correlation, respectively. If dL < d < dU, then the D-W statistic is
indeterminate.

The second statistical test applied to the models is the standard chi-square test, χ2, which is
given as Eq. [11]:

[11]

where yfit is the estimated value of the actual data, yi, and no is the number of degrees of
freedom.

The third statistical test used to determine the validity of the models is the Akaike
Information Criteria (AIC). Given a set of models, the AIC is a method to select the model
which best balances goodness of fit with number of free parameters (36). It is computed via
Eq. [12]:

[12]

where n is the number of observations, k is the number of parameters, and RSS is the
residual sum of squares. Note that Eq. [12] is the form of the AIC that includes a second
order correction to account for a small number of observations; this is typically denoted by
the subscript ‘c’ on ‘AIC’. In the experimental data presented below there are 25
observations in the DCE time series data and the FXL model has two free parameters,
whereas the FXL_vp, FXR, and SXR models each have three free parameters. The model
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returning the lowest AICc value is the model that represents the best balance between
complexity (i.e., the number of free parameters) and goodness of fit (i.e., lower RSS).

The fourth and final statistical test we employed is the Bayesian Information Criteria (BIC),
which is also used to detect the balance between the goodness of fit and the model
complexity. AICc and BIC measure a model similarly, except that the BIC applies a heavier
penalty on the model complexity:

[13]

Data Analysis
Pre-contrast T1 values, T10, values were computed by fitting the multi-flip angle data to Eq.
[1]. Voxels for which Eq. [1] could not fit the data were set to zero and not included in the
analysis. Data from each DCE-MRI study were fit on a voxel-by-voxel basis with Eqs. [5],
[6], and [9] to yield estimates of Ktrans (all models), ve (all models), vp (FXL_vp model
only), and τi (FXR and SXR only). The fitting routine employs a standard gradient-
expansion, nonlinear, least-square, curve-fitting algorithm written in the Interactive Data
Language (RSI, Boulder, CO).

Implicit in this analysis is the requirement for measuring or estimating the AIF. We have
proposed a simple and efficient method (37) to obtain the AIF, through tracking an initial
seed point placed within the axillary artery. Using this method, we obtain the AIF for each
individual patient. Voxels for which the fitting algorithm did not converge, or converged to
unphysical values (e.g., Ktrans > 5.0 min−1, ve > 1, vp > 1, τi > 3.0 s or any parameter below
zero) were set equal to zero. Along with the parameter estimates, values for D-W, χ2, AICc,
and BIC statistics were also saved for each voxel. Voxels were defined as “enhancing” if the
averaged post-contrast signal intensities increased by 50% over the average signal intensity
pre-contrast time points.

Results
Figure 1 shows an example of the model fit to the experimental data for one enhancing
tumor pixel. For this data, the mean absolute differences between the experimental data and
the fit data returned by FXL, FXL with vp, FXR, and SXR are 0.0044, 0.0022, 0.0019, and
0.0034, respectively. (Please note that the “waviness” in the fit curve is due to the noise
present in the individually measured AIF; that is, a smoothed AIF would result in a
smoothed fit.)

Figure 2 shows an example of Ktrans parametric maps returned by the four models; from left
to right the maps were obtained from the FXL, FXL_vp, FXR, and SXR, respectively. The
AIF obtained from this patient by our method (37) is also shown in the figure. Observe how
the SXR model cannot estimate the Ktrans values for most of the tumor voxels; the SXR
model could converge on only 35% ± 15% of the enhancing tumor voxels, while the FXL,
FXL_vp, and FXR models can converge on 74% ± 17%, 56% ± 16%, and 72% ± 16% of the
enhancing voxels, respectively. As we need to compare all models involved for each voxel,
if we examine the voxels only for which the SXR returns an accurate fit, this greatly reduces
the number of data points available for comparison. For this reason, we did not continue the
analysis with the SXR model; and hereafter we focus on the remaining three models. We
return to this point in the Discussion section.
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Figure 3 shows an example in which the parametric maps of Ktrans, ve, D-W, χ2, AICc, and
BIC are superimposed on a post-contrast, central slice through the tumor of one patient. The
maps were obtained from fitting the signal intensity time courses by the FXL (left column),
FXL_vp (middle column), and FXR (right column), respectively. For this specific case, the
FXL led to the smallest mean D-W value. The χ2, AICc, and BIC all favor the FXR analysis
in approximately 92% of the enhancing voxels.

Figure 4 displays the box and whisker plots of Ktrans values obtained by the FXL, FXL_vp,
and FXR models for each data set. The figure shows a clear trend that FXL_vp leads to the
smallest median Ktrans values while the FXR model results in the largest median Ktrans

values in approximately 90% of the data sets. This phenomenon is consistent with the
physical assumptions of the FXL_vp model since it includes a term for the vascular volume,
which results in reduced vessel perfusion and permeability values. Similarly, the ve values
obtained by the three models for each data set are displayed in Figure 5. This figure shows
the FXR led to the largest median ve values in all data sets and FXL returned the smallest
median ve values in 75% data sets. These results match those reported elsewhere in the
literature (24-26).

The percentage of voxels with serial correlation is presented in Figure 6. The FXL_vp and
FXR models result in 0.71% and 2.33% voxels with serial correlation respectively,
indicating a substantially superior description of the time courses relative to the FXL model,
which displayed serial correlation in 17.64% of the voxels. Figure 7 shows the percentage of
voxel numbers with smallest χ2, AICc, and BIC for each model with 95% confidence
intervals. The FXR model displays the smallest χ2, AICc, and BIC in the majority voxels
(47.53%, 46.59%, and 45.25%, respectively). Note that the 95% confidence intervals of the
FXL_vp and FXR overlap for χ2, AICc, and BIC, while the 95% confidence intervals of the
FXL and the other two models do not overlap.

The average goodness of fit, over all patient sets, is reported in Table 1. The results show
that the FXL with vp model has the smallest mean χ2 of 4.15 × 10−5, while the FXR and
FXL models has mean χ2 values of 4.36 × 10−5 and 5.22 × 10−5, respectively. The average
signal-to-noise ratio (SNR) for the tumor ROI from the central slice is 14.0 ± 6.5; as these
are SENSE accelerated scans, the SNR was computed as the mean of two pre-contrast scans
multiplied by  and divided by the standard deviation of the difference between those two
scans (38). Table 1 also summarizes the other statistical assessment of the three models. The
paired t-test was applied to each statistical metric to determine if there was a significant
difference between models as quantified by the different statistical measures. The D-W
statistic indicated that there was a significant difference (p < 10−6) between the FXL and all
the other models. The FXL led to the smallest mean D-W value, indicating the FXL model
is prone to positive serial correlation. The AICc and BIC show that the best balance between
goodness of fit and complexity (−263.59 ± 14.69 and −259.93 ± 14.69, respectively) can be
obtained by the FXL_vp model. All the p values between the FXL and FXL_vp, and
between the FXL and FXR, are less than 0.005 in all statistical metrics, while there is no
significant difference between the FXL_vp and FXR models according to the AIC and BIC
metrics. These model differences can lead to differences in the actual pharmacokinetic
parameter values. Table 2 summarizes the mean parameter values for all tumor voxels of
each data set. Consistent with Figures 4 and 5, the FXL_vp model led to the smallest mean
Ktrans values and the FXR led to the largest mean Ktrans and mean ve in all data sets.
Furthermore, the p values show significant differences in Ktrans and ve values among the
three models (p < 0.005). The mean vp returned by the FXL with vp model is 0.033 ± 0.033
and the mean τi returned by the FXR model is 0.37 ± 0.17 seconds.
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Table 3 displays the mean CC for all data sets. The results show that the correlation between
Ktrans returned by the FXL and FXL with vp models is the strongest (CC = 0.89), while the
correlation between Ktrans returned by the FXL with vp model and the FXR model is the
weakest (CC = 0.51). The correlations between ve returned by different models are similar
(from 0.51 to 0.58).

Discussion
The physiological parameters Ktrans and ve are measured in practice to both diagnose and
assess treatment response in breast cancer (4-9,39), but their values estimated by DCE-MRI
analysis are often strongly influenced by which model is selected. We have attempted to
offer evidence that the FXL model with a plasma component (Eq. [6]) and the FXR model
(Eq. [9]) are both statistically superior to the FXL model (Eq. [5]) in the analysis of human
breast cancer DCE time courses. Furthermore, the three models return statistically
significantly different Ktrans and ve values. While the FXR model has been argued on
physical and physiological grounds (23,24), the question of which model is statistically
superior in human breast cancer has not been previously established. Experiments in this
study show that the Durbin-Watson, Chi-square, AIC, and BIC all favor the use of either the
FXL with the vp component (FXL_vp) or the FXR approach for the patient group used in
this study.

Unfortunately, for our data sets, the SXR model was unable to converge on most of the
enhancing tumor voxels. One possible reason is that this model calculates both T1L and T1S
in Eq. [7] - [9], making the fitting procedure more complicated. This severely limited our
ability to compare this model to the others. It could be that the limited signal-to-noise ratio
available in our breast DCE-MRI acquisitions (where we have tried to balance spatial and
temporal resolution requirements) is not sufficient to allow for analysis with this model.
Future studies will investigate this point.

A natural extension to the FXR, for which there is physiological motivation, is to add a
blood volume component. Unfortunately, adding a blood compartment and still accounting
for water exchange between all the relevant compartments (intravascular, extravascular-
extracellular, and extravascular-intracellular) yields a model that is currently difficult to
employ in practical situations. More specifically, adding a vascular term to Eq. [9] and still
accounting for the effects of water exchange requires a three site (rather than just two sites)
model which has (at least) five free parameters (40) and is currently unsuitable for voxel
level analysis. Indeed, this model has been studied in simulations (40); and perhaps more
extensive studies are required to determine which combinations of parameters can be
reliably assessed with a given model. Adding a vascular term to FXL (Eq. [6]) is
straightforward and several investigators have done so and applied this model (see, e.g.,
(41-43)) in vivo. Li et al (40) have recently shown that when there is sufficient contrast
agent extravasation from plasma to interstitium, such as in some tumors, exclusion of a
plasma term is an acceptable assumption. But, when contrast extravasation is minimal, such
as when Ktrans < 0.01 min−1, exclusion of the plasma term may cause significant errors.

As reported in Table 2, the FXR model results in higher mean Ktrans and ve (0.35 min−1 and
0.55, respectively), while the FXL and FXL_vp lead to the mean Ktrans of 0.16 min−1 and
0.12 min−1 and ve of 0.33 and 0.35, respectively. The results are reasonable, though a bit
elevated, compared with other studies (44-46). For instance, the work of Li et al. (44)
reported that the mean Ktrans and ve (obtained from a FXL analysis) at baseline in breast
cancer were 0.33 min−1 and 0.44, respectively. In the effort of Li et al. (45), the mean Ktrans

and ve (obtained from the FXR model) were approximately 0.15 min−1 and 0.6, respectively,
for breast cancer. Moreover, the maximum ve reported in (45) was up to 0.8. The study of
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Miller et al. (46) also showed that the median Ktrans of baseline for the patients with
metastatic breast cancer ranged from 0.65 min−1 to 1.7 min−1. One possible reason for the
higher values in Ktrans and ve is the limitation of the models for tumors with the extreme
spatial heterogeneity. For example, in regions that are poorly perfused the contrast agent will
accumulate and wash out slowly, which can lead to large values in ve. For example, Jansen
et al. (47) found that the contrast agent could accumulate within the milk ducts filled with
ductal carcinoma in situ. Under this situation, the models investigated in this study will not
be able to accurately estimate the extravascular extracellular volume. Another source of
possible error could be in the measured AIF. The inaccuracy in the AIF could cause the
propagation of errors in the estimated parameters. The temporal resolution of 16 seconds
used in this study is not optimal for AIF characterization (although it’s reasonable as it
represents a compromise between high temporal resolution and large spatial coverage), and
it may miss the peak of AIF and therefore cause larger values of parameters, particularly
Ktrans. Also, direct measurements from the artery are likely to underestimate the peak
amplitude of the AIF due to T2* and exchange effects. Those factors affect the accuracy of
the AIF, and consequently, affect the measurements of the pharmacokinetic parameters.

Use of the FXL with a plasma fraction and the FXR model resulted in a substantial
reduction in percentage of voxels showing positive serial correlation of residuals: 17.64%,
0.71%, and 2.33% for the FXL, FXL_vp, and FXR models, respectively. In 47.53% of
voxels, the χ2 indicated that the FXR model was superior, and in 46.59% and 45.25% of
voxels, the AICc and BIC also indicated that the FXR model was superior. This translated
into significant differences in the values of Ktrans and ve that were extracted in the voxel-by-
voxel analyses, and underscores the fact that different models can yield different
pharmacokinetic parameter values. It is therefore of great importance to select the
appropriate model to analyze the DCE-MRI time courses so that the most accurate
parameter estimates are obtained. It is plausible that inappropriate model selection can lead
to inaccuracy in, for example, predicting treatment response. It was the overall goal of this
study to provide a reasonable rationale for model selection. While the results presented do
not provide a physical or physiological basis for selecting a particular model, they do
provide an objective statistical basis for selecting a particular model. In general, the
applicability of each model, as well as other models, will depend on the physiology,
anatomy, and heterogeneity of the cancer and surrounding tissues. The patients selected in
this study have clinical stage II/III invasive mammary carcinoma and are at sufficient risk of
recurrence based on pre-treatment clinical parameters of size, grade, age and nodal status.
For this group of patients, the FXL_vp and FXR models show significant advantages.
However, early non-invasive cancers (e.g., ductual carcinoma in situ) may have less blood
volume (lower vp values) compared to the locally advanced breast cancer. Cell size and
tumor heterogeneity also have an influence on parameters estimated by different models. It
is difficult to know, a priori, the underlying physiological characteristics of a given voxel of
breast tissue, so it is difficult to select which model is most realistic. In this case, a statistical
assessment of model fitting is not only a reasonable way to proceed, it is also practical
because it provides a rigorous reason for selecting a given model over another. Furthermore,
the statistical results can reflect some of the underlying physiological properties of a given
breast tumor. For example, in cases where the FXL_vp model is selected by the statistical
measures as the most accurate, we can infer that those voxels have a significant plasma
component (i.e., vp > ~0.03), whereas in those situations where the FXR model is selected
we can infer that the difference in concentration of CA between the extravascular
extracellular space and the extravascular intracellular space must be great enough to drive
the system out of the fast exchange limit.

The ultimate test for these models is their ability to answer important clinical questions, such
as treatment effects during longitudinal studies of patients undergoing neoadjuvant
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chemotherapy, or the ability to distinguish malignant breast tumors from benign lesions. Li
et al. (29) have performed preliminary analyses on benign and malignant breast diseases. We
have an ongoing study testing the abilities of parameters returned by different models to
predict the response of breast tumors to neoadjuvant chemotherapy (48).

In conclusion, the results of the four statistical metrics employed in this study indicate that,
for the group of patients selected for this study, the FXL with a plasma component and the
FXR model have significant advantages over the FXL and SXR models. The methods
outlined here also provide a statistical mechanism for selecting and assessing other DCE
models. Moreover, our results highlight the possibility that in heterogeneous tissues, the
most appropriate models may vary between voxels.
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Figure 1.
An example of the plots of the fit and experimental data. Please Note that the “waviness” in
the fit curve is due to the noise in the individually measured AIF; when the AIF is smoothed,
the waviness is eliminated.
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Figure 2.
This figure shows an example of the Ktrans values returned by the four models; from left to
righ, the maps are given by FXL, FXL_vp, FXR, and SXR models. The AIF obtained from
this patient (by our previously proposed method) is also shown on the right. It is clear that
model selection can greatly affect the parameter values that are returned, and this is why it is
necessary to develop a method to select which model is most appropriate.
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Figure 3.
This figure shows an example of the Ktrans, ve, D-W, χ2, AICc, and BIC parametric maps
superimposed on the central tumor slice of one patient. These maps were obtained by FXL
(left column), FXL_vp (middle column), and FXR (right column), respectively. In the
majority voxels displaying contrast enhancement, the χ2, AICc, and BIC all prefer the
FXL_vp and FXR analyses.
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Figure 4.
The figure displays the box and whisker plots of Ktrans returned by the FXL, FXL_vp, and
FXR model, respectively, for all 28 data sets. The outliers are omitted to keep the figure
concise.
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Figure 5.
The figure displays the box and whisker plots of ve returned by the FXL, FXL_vp, and FXR
model, respectively, for all 28 data sets. The outliers are omitted to keep the figure concise.
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Figure 6.
The percentage of voxel numbers with serial correlation for all tumor voxels is presented.
FXL_vp and FXR result in 0.71% and 2.33% voxels with serial correlation respectively,
indicating substantially superior to FXL which led to 17.64% voxels with serial correlation.
The D-W statistic results were significantly different (p < 10−6) between the FXL and the
other models.
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Figure 7.
The percentages of all tumor voxels with the smallest χ2, AICc, and BIC for each model
with 95% confidence intervals are shown. The FXR leads to the majority voxels with
smallest statistical measures, indicating the best goodness of fit and balance between the
goodness of fit and complexity. See the p values in Table 1.
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