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Abstract
Purpose The objective of this study was to determine the
role of β-catenin in normal postnatal articular cartilage
growth and degeneration.
Methods We investigated β-catenin gene and protein ex-
pression in hip cartilage cells of normal Wistar rats at two,
four, six and eight weeks of age by using reverse transcrip-
tase polymerase chain reaction (RT-PCR) and immunohisto-
chemistry. Primary articular chondrocytes from eight week
old rats were cultured and treated with LiCl for activation of
β-catenin. Collagen X and matrix metalloproteinase 13
(MMP-13) were detected by quantitative RT-PCR and
immunofluorescence. A disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTS)-4 and 5 were
detected by quantitative RT-PCR, and terminal deoxynucleo-
tidyl transferase dUTP nick end labelling (TUNEL) was used
for detecting cell apoptosis.
Results The highest levels of β-catenin expressions were
detected in two week old rats, after which a steady decline
was observed over the remaining period of observation (p<
0.05). When primary articular chondrocytes from eight
week old rats were treated with LiCl, β-catenin mRNA and
protein were induced (p<0.05). Moreover, LiCl-activated
β-catenin in chondrocytes was associated with significant
concomitant increases in mRNA expression of collagen X
and the MMP-13 encoding collagenase 3. Significantly

increased mRNA expression of ADAMTS-5 was also seen
in primary chondrocytes from eight week old rats after LiCl
treatment (p<0.05). The effect was specific to ADAMTS-5
since ADAMTS-4, which has similar proteolytic activity
but different aggrecanase activity, was unaffected. Finally,
TUNEL staining revealed that LiCl-activated β-catenin
signalling led to increased cell apoptotic events in
chondrocytes (p<0.05).
Conclusions Our findings suggest that normal spatiotem-
poral patterns and degrees of Wnt/β-catenin signalling are
needed to maintain postnatal articular cartilage growth and
function. In the early stages of cartilage development,
activation of β-catenin signalling is necessary for articular
cartilage growth, while in adult cartilage it leads to
degeneration and osteoarthritic-like chondrocytes.

Introduction

Articular cartilage is an essential component of the synovial
joints, and loss of this tissue, usually by osteoarthritis (OA),
leads to severe incapacitation of joint function [1, 2]. OA
manifests as dysplasia and general degeneration of the
cartilage [3, 4]; however, the molecular mechanisms
underlying cartilage development and degeneration remain
to be fully elucidated. Recent studies have shown that β-
catenin plays a critical role throughout chondrogenesis and
chondrocyte maturation [5–7]. When researchers estab-
lished ectopic expression of β-catenin in cells of the
chondrogenic lineage, chondrocyte differentiation was
significantly inhibited but chondrocyte maturation was
stimulated, as was ossification during embryonic develop-
ment [8, 9]. In early mesenchymal precursors, conditional
deletion of the β-catenin gene led to enhancement of
chondrocyte differentiation, indicating that β-catenin is
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capable of inhibiting early mesenchymal precursor differ-
entiation into chondrocytes [6, 10]. Surprisingly, however,
murine transgenic studies showed that β-catenin promoted
the maturation of growth plate chondrocytes after cartilage
formation [8, 11]. Another transgenic study that inhibited
the β-catenin signalling pathway in mice found that lack
of this signal led to defects in postnatal cartilage
development [12]. Collectively, these findings indicate the
crucial role that β-catenin signalling plays in postnatal
cartilage development.

Yet, activation of β-catenin signalling has also been
associated with cartilage degeneration and OA progression.
High expression levels of β-catenin have been detected in
cartilage of human OA patients [13, 14]. Genome-based
studies to determine the gene expression profile of OA found
that several factors associated with the Wnt/β-catenin
pathway, including Wnt proteins and Frizzled receptors, are
up-regulated in arthritic cartilage tissues. The low-density
lipoprotein receptor-related protein five (LRP5), a Wnt co-
receptor, has particularly high expression in human and
animal OA cartilage; recently, the catabolic role of LRP5
during human OA was defined as being mediated by the
Wnt/β-catenin pathway [14]. The Wnt1-inducible signalling
pathway protein one (WISP-1) was strongly increased in the
synovium and cartilage of mice with experimental OA, and
increased WISP-1 expression was also found in human OA
cartilage [15]. In addition, functional deletion of the Frizzled-
related protein FrzB in a murine model of OA resulted in
disease exacerbation [16, 17]. Likewise, conditional activa-
tion of β-catenin signalling in adult mouse articular
chondrocytes led to an OA-like phenotype [13]. These
findings strongly suggest that the Wnt/β-catenin signalling
pathway is involved in the aetiology or progression of OA.

The Wnt signalling pathway has been extensively
studied, and its functional contributions to a broad variety
of developmental processes, including organogenesis, cell
differentiation, morphogenesis and tissue remodelling, are
well known [18]. β-catenin has been defined as a key factor
of the canonical Wnt signalling pathway. Stability of β-
catenin is regulated by functional interaction with a
degradation protein complex that is composed of three
tumour suppressors: adenomatous polyposis coli (APC),
axin and glycogen synthase kinase-3β (GSK-3β). This
multiprotein complex induces phosphorylation of serine and
threonine residues in the N terminus of β-catenin. Phos-
phorylated β-catenin is then recognised by the β-transducin
repeat-containing protein (β-TrCP), a component of a
dedicated E3 ubiquitin ligase complex, whereupon it is
ubiquitinated for rapid degradation by proteasomes. The
Wnt proteins, on the other hand, act to inhibit the function
of the degradation complex, thus stabilising β-catenin in the
cytoplasm. Accumulated β-catenin is ultimately transported
into the nucleus, where it combines with T-cell factor/

lymphoid-enhancing factor (TCF/LEF) to initiate transcrip-
tion of target genes [18].

Although Wnt/β-catenin signalling is known to be
involved in cartilage development and degeneration, the
precise role of β-catenin in these processes remains
largely uncharacterised. We hypothesised that β-catenin
may be highly expressed in early stages of cartilage
growth, wherein it may promote cartilage development.
In adult cartilage, however, β-catenin would then be
expected to be down-regulated, or inactivated, and
aberrant activation may result in a detrimental phenotype.
In order to confirm these hypotheses, we investigated the
expression of β-catenin in articular cartilage from Wistar
rats at ages corresponding to human developmental stages
of toddler (two weeks old), teenager (four weeks old),
young adult (six weeks old) and adult (eight weeks old).
Lithium chloride (LiCl), a well-known activator of the
Wnt/β-catenin signalling pathway [19–21], was applied to
the primary chondrocytes to facilitate investigations into
β-catenin effects and functional interactions at different
developmental stages.

Materials and methods

Animals and tissue collection

Wistar rats were bred in-house for use. Sacrifice was
performed at two, four, six and eight weeks of age (n=
ten each) by overdose of general anaesthesia. Total hip
joints were excised immediately and divided for process-
ing according to the requirements for subsequent proce-
dures [immunohistochemistry, RNA extraction and
quantitative (q) reverse transcriptase polymerase chain
reaction (RT-PCR), primary cell culture]. All experiments
were carried out according to the protocol approved by the
Institutional Ethics Committee.

Immunohistochemistry

Isolated hip joints were fixed in 4% paraformaldehyde,
decalcified to complete demineralisation in 10% ethyl-
enediaminetetraacetic acid (EDTA) and then embedded in
paraffin. Ten representative sections (5 μm) from various
depths of each joint were mounted on slides. The sections
were then deparaffinised in xylene, rehydrated and washed
three times with phosphate-buffered saline (PBS) for
five minutes at room temperature. Endogenous peroxidase
activity was blocked by soaking in 3℅ hydrogen peroxide
(H2O2) for ten minutes, and antigen retrieval was carried
out by microwaving to near boiling (95°C, ten min) in
10 mM of sodium citrate (pH 6.0). Sections were incubated
overnight at 4°C with rabbit anti-β-catenin monoclonal
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antibody (1:50, Abcam, Cambridge, MA, USA). For the
negative control reaction, the final incubation was carried
out with primary antibody omitted. Thereafter, sections
were detected by using the EnVision Detection Kit (Dako,
Glostrup, Denmark), according to the manufacturer’s
instructions, and by counterstaining with Mayer’s haema-
toxylin. The total number of chondrocytes per unit area was
determined by manually counting the cells present in five
randomly chosen regions of each section under ×20
magnification.

Primary rat hip chondrocyte culture and treatment

Hip joints isolated from eight week old rats were washed in
D-Hank’s solution immediately upon excision. The femoral
head and acetabular articular cartilage were harvested,
rewashed with D-Hank’s solution and completely digested
by soaking in 0.25% trypsin (Gibco, Invitrogen, Carlsbad,
CA, USA) for 15 min in a 37°C shaking water bath.
Afterwards, a solution of 0.2% collagenase II [in 10% fetal
bovine serum (FBS) and Dulbecco’s modified Eagle’s
medium (DMEM), Sigma-Aldrich, St. Louis, MO, USA]
was added and the solution was further incubated with
shaking for three hours. A 2-ml aliquot of the digested
product was collected every hour. The digested product
was passed though a 100-μm Swinnex filter to remove
any residual fragments, and the filtrate was centrifuged.
The pelleted cells were resuspended in complete medium
(DMEM with 10% FBS, 1% penicillin/streptomycin,
100 mM L-glutamine). Cells were then counted and plated
at the appropriate density in 25-cm culture flasks for
incubation in a 5% CO2-air mixture at 37°C. The media
were refreshed every three to four days.

In order to stimulate the Wnt signalling pathway, primary
articular chondrocytes from eight week old rats plated in six-
well plates were treated with 10 mM LiCl (Sigma) for
48 hours. Negative controls were treated exactly the same,
except with LiCl omitted from the final incubation step.

Immunofluorescence microscopy

Articular chondrocytes cultured in six-well plates with or
without LiCl were fixed with 4% paraformaldehyde for ten
minutes and blocked with 10% goat serum in PBS supple-
mented with 0.2% Triton X-100 (PBST, Sigma). Primary
antibody incubation was performed overnight at 4°C for
antibodies (all from Abcam and used at 1:100) against β-
catenin, collagen II, collagen X and matrix metalloproteinase
13 (MMP-13). After washing, secondary antibody incubation
was carried out for one hour at room temperature with anti-
rabbit or anti-mouse Alexa Fluor 488 antibody (1:50,
Invitrogen). Cells were imaged by fluorescent microscope
(Leica Microsystems, Buffalo Grove, IL, USA).

Terminal deoxynucleotidyl transferase dUTP
nick end labelling (TUNEL) staining

TUNEL staining was carried out by using a peroxidase-based
assay kit (In Situ Cell Death Detection Kit, POD, Roche
Applied Science, Mannheim, Germany). Briefly, cells grown
in six-well plates were air-dried and fixed in 4% paraformal-
dehyde in PBS for one hour. After rinsing in PBS, the fixed
cells were blocked for ten minutes in 3% H2O2 in
methanol, rinsed with PBS and permeabilised by incuba-
tion in 0.1% PBST for two minutes on ice. An additional
PBS wash was performed and the TUNEL reaction mixture
was added for one hour incubation at 37°C in dark,
followed by another PBS wash and a 30-min incubation
with 4′,6-diamidino-2-phenylindole (DAPI) nuclear stain.
Apoptotic cells were observed by fluorescent microscope.
The apoptotic cell rates were determined by manually
counting the number of TUNEL staining-positive cells and
dividing by the number of DAPI-positive cells.

RNA extraction and real-time qRT-PCR analysis

Total tissue and cellular RNA were extracted by using the
TRIzol reagent (Invitrogen), according to the manufac-
turer’s protocol. The purity and concentration of extracted
RNA were determined by spectrophotometric measurement
of the OD260/280 ratio. Preservation of 28S and 18S rRNA
species was used to assess RNA integrity. One microgram
total RNA was used to synthesise cDNA with the ReverTra
Ace qPCR RT kit (Toyobo, Osaka, Japan) and the following
gene-specific PCR primers: collagen X Fw: 5′-GATCATG
GAG CTCACGGAAAA-3′, Rev: 5′-CCGTTCGATTCCG
CATTG-3′; MMP-13 Fw: 5′-TACGAGCATCCATCCCGA
GACC-3′, Rev: 5′-AACCGCAGCACTGAGCCTTTTC-3′;
ADAMTS-4 (a disintegrin and metalloproteinase with
thrombospondin motifs) Fw: 5′-CTACAACCACCGAACC
GAC-3 ′ , Rev: 5 ′-TGCCAGCCACCAGAACTT-3 ′;
ADAMTS-5 Fw: 5′-GGCTGTGGTGTGCTGTG-3′, Rev:
5′-CTGGTCTTT GGCTTTGAAC-3′; β-catenin Fw: 5′-
GCAATCAGGA A AGCAAGC TC-3′, Rev: 5′-TCAG
CACTCTGCTTGTGGTC-3′; β-actin Fw: 5′-GGAGAT
TACTG CCCTGGCTCCTA-3′, Rev: 5′-GACTCATCG
TACTCCTGCTTGCTG-3′. qRT-PCR was performed using
the SYBR Green® Realtime PCR Master Mix Kit
(Toyobo).

Statistical analysis

Descriptive statistical analysis was performed using mean
values and standard deviation. Data were analysed with the
commercial statistical software SPSS 16.0 and two-tailed
Student’s t tests were used. A p value<0.05 was considered
statistically significant.
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Results

Expression patterns of β-catenin in postnatal articular
cartilage are distinct at different developmental stages

To investigate the role of β-catenin signalling in postnatal
articular cartilage, we first determined the temporal
expression pattern of β-catenin in articular chondrocytes.
Immunohistological analysis revealed that β-catenin was
most highly expressed at the earliest stage examined
(2 weeks; Fig. 1a). Thereafter, the expression level of β-
catenin steadily decreased in an age-dependent manner
(Fig. 1a–d). By eight weeks of age, the expression of β-
catenin in cartilage had dropped to a level that was below
the threshold of immunohistological detection (Fig. 1d).
Parallel analysis of the β-catenin mRNA expression, by
qPCR, indicated that gene transcription followed the same
decreasing expression pattern as was observed for the
protein (Fig. 1e).

These results demonstrated that β-catenin signalling is
present, and presumably active, during early postnatal
articular cartilage growth but disappears and does not
contribute to processes in adult cartilage.

LiCl treatment activates β-catenin signalling
in adult chondrocytes

The marked loss of endogenous β-catenin expression in rat
articular cartilage at eight weeks of age led us to
investigate whether exogenous LiCl could activate β-

catenin signalling in isolated tissues from this mature
stage. When primary cultured articular chondrocytes from
hips of eight week old rats were exposed to LiCl in culture,
β-catenin expression was significantly increased (Fig. 2b).
Cultures were tested by the expression of collagen II and
toluidine blue staining (Fig. 2a). In addition, we examined
the effect of LiCl exposure on β-catenin RNA levels and
found that β-catenin gene expression was also robustly up-
regulated in the LiCl-treated eight week old chondrocytes
(Fig. 2c). Thus, these results indicated that LiCl treatment
is able to activate the canonical Wnt signalling pathway in
mature chondrocytes.

LiCl treatment leads to accelerated adult maturation
of articular chondrocytes

Considering that endogenous β-catenin appeared to be
highest at the earliest stages examined (two and four weeks
of age in rats), we aimed to determine the effect of β-
catenin on chondrocyte maturation. To this end, we isolated
articular cartilage from the hips of rats at different stages of
cartilage development (two, four, six and eight weeks of
age). Total RNA was extracted from these tissues, and the
expression of the articular chondrocyte maturation gene
markers collagen X and MMP-13 was examined. Surpris-
ingly, neither gene’s expression was significantly changed
from among the different ages examined (Figs. 3b and 4b),
indicating that β-catenin does not promote articular
cartilage maturation during the early stage of postnatal
cartilage development.

Fig. 1 Expression of β-catenin in normal postnatal rat articular cartilage at various postnatal ages: a two weeks, b four weeks, c six weeks and d
eight weeks. Expression of β-catenin mRNA (e, detected by qRT-PCR) decreased with age
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Fig. 2 β-Catenin signalling was activated in eight week old rat
chondrocytes by LiCl treatment. Primary articular chondrocytes were
identified by the presence of collagen II and toluidine blue staining (a,

×200). Upon LiCl treatment, higher expressions of β-catenin protein
(b, ×400) and mRNA (c) were observed in LiCl-treated adult
chondrocytes, as compared to non-treated chondrocytes

Fig. 3 LiCl treatment in chondrocytes leads to high expression of
collagen X. Collagen X protein (a, detected by immunofluorescent
microscopy, ×200) and mRNA (c) were significantly higher in LiCl-

treated chondrocytes, as compared to non-treated chondrocytes in
eight week old rats. Collagen X mRNA expression levels in normal
cartilage were not significantly different at different ages (b)
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We next investigated changes in the maturation status of
articular chondrocytes from eight week old rats in
response to LiCl treatment. Immunofluorescence micros-
copy showed that collagen X and MMP-13 protein levels
were significantly increased in chondrocytes after expo-
sure to LiCl (Figs. 3a and 4a). To further evaluate the
responses of collagen X and MMP-13, total RNA was
extracted from LiCl-treated and untreated chondrocytes
for analysis by qPCR. Similar to the LiCl-induced effects
on the protein expression of these two important chon-
drocyte maturation markers, LiCl caused significant up-
regulation of collagen X and MMP-13 gene expressions
(Figs. 3c and 4c). These results suggested that activation
of β-catenin may be capable of stimulating chondrocyte
maturation in eight week old rats.

LiCl treatment was associated with manifestation
of an OA-like phenotype in chondrocytes

To gain further insight into the OA-like phenotype that was
induced in chondrocytes upon β-catenin activation, we
evaluated the expression of two known OA-related marker
genes: ADAMTS-4 and ADAMTS-5. In normal (untreated)

cartilage, the mRNA levels for both OA-related markers
were similar at each age examined (observed differences
were not statistically significant; Fig. 5a, b). However,
upon LiCl treatment ADAMTS-5 expression was sig-
nificantly enhanced (Fig. 5c). The observed difference in
ADAMTS-4 was not statistically different from that in the
non-treated cells (Fig. 5d). Therefore, the OA-like
phenotype induced by activation of β-catenin likely
involves the signalling pathway related specifically to
ADAMTS-5 and not the similarly functioning family
member ADAMTS-4.

LiCl treatment induced apoptosis in mature chondrocytes

OA is characterised by extensive apoptosis of chondrocytes
[22]. To further elucidate the molecular mechanisms
underlying the OA-like phenotype induced in chondrocytes
by LiCl treatment, cells were examined by TUNEL
staining. We found that the number of chondrocytes
undergoing apoptosis was significantly higher (by 45%) in
samples treated with LiCl than in untreated samples
(Fig. 6). Thus, it appeared that activation of β-catenin in
chondrocytes of adult rats led to cellular apoptosis.

Fig. 4 LiCl treatment in chondrocytes results in high expression of
MMP-13. MMP-13 protein (a, detected by immunofluorescent
microscopy, ×200) and mRNA (c) were significantly higher in LiCl-

treated chondrocytes in eight week old rats, as compared to non-
treated chondrocytes. MMP-13 mRNA expression levels in normal
cartilage were not significantly different at different ages (b)

660 International Orthopaedics (SICOT) (2012) 36:655–664



Discussion

Articular cartilage is a permanent tissue that undergoes
minimal turnover of its cells and matrix as the body ages
normally. The zonal articular chondrocytes that compose
articular cartilage, along with a unique extracellular matrix
architecture, facilitate frictionless movement of joints
throughout life [23]. Chondrocyte differentiation processes
that occur during endochondral ossification and mature
functions are tightly regulated by several signalling path-
ways [24], including the Wnt/β-catenin pathway [13, 21].
β-Catenin has been shown to act as a critical modulator of
multiple steps during chondrocyte formation, maturation
and degeneration. Furthermore, β-catenin has been impli-
cated in the pathogenesis of OA disease in humans, as
evidenced by genomic-based studies [25, 26]. Animal
studies using β-catenin conditional deletion or activation
have provided direct evidence about the role of β-catenin in
cartilage formation and degeneration [27]. Unfortunately,
the data obtained from these animal models were limited by
early lethality from gene deletion and multiple organ
changes resulting from transgene activation [13]. Thus, in

this study we used normal rats at different postnatal ages to
detect the dynamic changes in endogenous β-catenin
expression corresponding to articular chondrocyte matura-
tion. Rats were examined from two weeks after birth (when
chondrocytes are developing) to eight weeks of age (when
rats reach sexual maturity).

The function of β-catenin signalling in normal bone
formation and postnatal cartilage development are well
established [10, 13, 18]. Chen et al. have reported that
inhibition of β-catenin signalling causes defects in post-
natal cartilage development [12]. In our study, we found
higher expression levels of β-catenin at early stages of
cartilage development, which steadily decreased as the rats
matured into adulthood. These data suggest that the β-
catenin signalling pathway is available and presumably
necessary and functioning during normal cartilage devel-
opment. Since β-catenin expression is down-regulated as
development concludes, this signalling pathway is not
necessary, at least to the same extent, for maintaining the
characteristics of articular cartilage after joint maturation.
Further investigations into the regulatory mechanisms of
β-catenin in early cartilage development will provide

Fig. 5 Activation of β-catenin signalling leads to high expression of
ADAMTS-5, but does not affect ADAMTS-4 expression. ADAMTS-
5 (a) and ADAMTS-4 (b) expression in normal cartilage. LiCl-treated

chondrocytes in eight week old rats expressed high levels of
ADAMTS-5 (c) and normal levels of ADAMTS-4 (d)
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insights into the interacting factors and influences that are
critical for proper development.

Given the detrimental and severely confounding effects
associated with β-catenin deletion and exogenous gene
activation, we used LiCl to activate the β-catenin signalling
pathway in primary rat chondrocytes. By this approach, we
found that collagen X and MMP-13 expressions were
significantly increased following LiCl-induced β-catenin
activation. It is well known that articular chondrocytes
undergo maturation during early OA pathogenesis, after
which the characteristic maturational marker genes collagen
X [28–30] and MMP-13 [31, 32] are expressed. MMP-13 is
a potent enzyme that preferentially targets type II collagen
in the cartilage matrix for degradation; interestingly, MMP-
13 expression has been found to be increased in human OA
joints [33]. The mouse OA model expressing constitutively
active MMP-13 presents with an OA-like phenotype [34,
35]. Other OA-associated factors found to be up-regulated
in human cartilage are the ADAMTS family members
ADAMTS-4 and ADAMTS-5 [36]. We observed increased
mRNA expression of ADAMTS-5, but not ADAMTS-4, in

LiCl-treated chondrocytes. It has been reported that ablation
of ADAMTS-5 protects cartilage from degeneration in
animal models of OA [37–39]. Collectively, our data
demonstrate that activation of β-catenin (via LiCl) leads
to articular chondrocyte maturation and the OA phenotype
in eight week old rats. Some studies have also shown that
the OA phenotype can be associated with perturbations in
other Wnt-related genes, such as Frzb mutation or LRP5
activation [14, 16, 27]. All of these findings considered
along with the fact that human OA cartilage expresses high
levels of β-catenin [7, 13, 22] support the idea that
activation of β-catenin signalling in normal adult chondro-
cytes leads to OA. However, in our study we did not find
significant differences in the temporal mRNA expressions of
MMP-13, collagen X or ADAMTS-5 in normal rat articular
cartilage tissue. The high levels of β-catenin expression
detected at two weeks of age revealed that activation of β-
catenin did not result in an OA chondrocyte phenotype
during the stage of early articular cartilage development. We
speculate that β-catenin signalling is necessary in early
articular cartilage development.

Fig. 6 LiCl-induced β-catenin led to apoptosis of chondrocytes from eight week old rats. TUNEL staining-positive chondrocytes (a, ×400) were more
prevalent (b) in LiCl-treated samples
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The precise molecular mechanisms that activate β-catenin
signalling in adult chondrocytes and lead to the OA
phenotype remain unknown. To this end, our study revealed
a close relationship between the OA phenotype and high
expression levels of MMP-13 and ADAMTS-5. It has been
reported that apoptosis represents a principal mechanism of
chondrocyte degeneration during OA [40–42]. Likewise, we
found that LiCl-induced β-catenin signalling in adult
chondrocytes led to increased apoptosis. In future studies,
we plan to investigate the regulatory mechanisms that
interconnect β-catenin, MMP-13, ADAMTS-5 and the
apoptosis event in articular chondrocytes at different matura-
tion stages of articular cartilage development.

In summary, in this study we showed for the fist time that
β-catenin signalling is crucial for early stage postnatal
articular cartilage development but detrimental in adult
articular cartilage, where it leads to an OA-like phenotype.
Our studies provide new insights into the roles of β-catenin
signalling in normal articular chondrocyte function and OA
pathogenesis.
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