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Abstract

As the resolution of experiments to measure folding kinetics continues to improve, it has become 

imperative to avoid bias that may come with fitting data to a predetermined mechanistic model. 

Towards this end, we present a rate spectrum approach to analyze timescales present in kinetic 

data. Computing rate spectra of noisy time series data via numerical discrete inverse Laplace 

transform is an ill-conditioned inverse problem, so a regularization procedure must be used to 

perform the calculation. Here, we show the results of different regularization procedures applied to 

noisy multi-exponential and stretched exponential time series, as well as data from time-resolved 

folding kinetics experiments. In each case, the rate spectrum method recapitulates the relevant 

distribution of timescales present in the data, with different priors on the rate amplitudes naturally 

corresponding to common biases toward simple phenomenological models. These results suggest 

an attractive alternative to the “Occam’s razor” philosophy of simply choosing models with the 

fewest number of relaxation rates.
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Introduction

Complex kinetics often arises in systems with large of numbers of chemical states. Because 

of this, one might expect protein folding kinetics to be complex, but remarkably, many 

proteins appear to fold in a two-state manner (U ⇌ N), with barrier-limited kinetics 

predicted by a simple Arrhenius model. As the time resolution accessible by folding kinetics 

experiments continues to improve, however, evidence of more complex folding kinetics can 

now be observed [1, 2].

Traditionally, the interpretation of experimental kinetics have required fitting to some 

predetermined mechanistic model. A common procedure is to describe the kinetics with the 

fewest number of number of relaxation rates, thus producing the “simplest” possible 

network of barrier-limited states. Herein lies a problem, because the simplest model that 

explains the data may not necessarily be the model with the fewest number of rates. For 
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example, the kinetics may not be in the barrier-limited regime to begin with. Another 

problem is that kinetics experiments usually measure a single reaction coordinate, and it is 

very difficult (especially in folding studies) to design experimental probes that can 

unambiguously report on specific conformational states. In this case, fitting kinetic data to a 

simple phenomenological model may not capture important details of the underlying 

dynamics.

With these issues in mind, we present a rate spectrum approach to analyze timescales 

present in kinetic data, without imposing any pre-existing mechanistic model. Instead of 

fitting to a model with a predetermined number of rates, the rate spectrum approach can be 

thought of as fitting to a distribution of rate amplitudes, in a way that is informed by some 

simple prior knowledge about the shape of this distribution. In some ways, this approach is 

in the same spirit of model-free approaches in interpreting NMR experiments [3].

The rate spectrum approach

The rate spectrum approach is akin to calculating a inverse Laplace transform for discrete 

time series: we assume the signal can be described as a sum of exponential-decay basis 

functions, and our main task is to estimate the amplitude of each. A somewhat analogous 

experimental method is modulation fluorometry, in which distributions of relaxation rates 

can be extracted from fluorescence decays [4]. For a time series (ti, yi), i = 1, …, N, the rate 

spectrum approach can be posed as the problem of finding the coefficients βj, j = 1, …, K 
corresponding to a set of rates kj, (of our choosing), to find the best-fit model:

(1)

Computing rate spectra is an example of an ill-conditioned inverse problem, so a 

regularization scheme is needed to make the solution of this inverse problem well-behaved, 

especially in the presence of noise. Once a rate spectrum (i.e. set of βj) is obtained, however, 

one can identify all the timescales present in the data, and use this information as a starting 

point for inferring mechanistic models.

The regularized rate spectrum can be obtained as the set of βj that minimize the quantity

(2)

where Xij = e−kjti. The left-hand term is simply the residual sum of squared errors, while the 

right-hand term is a penalty for large (positive or negative) values of βj. The strength of this 

penalty is controlled by λ, the regularization parameter, and f(β) defines the type of 

regularization. We look at three different types of regularization, each of which impose 

different penalties on the magnitude of the rate amplitudes: ridge regression , 

lasso regression (f = ∑j|βj|), and elastic net regression ( , for 
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mixing parameter 0 ≤ ρ ≤ 1). It can be shown (see Methods) that these different 

regularization penalties correspond to different prior distributions on the set of rate 

amplitudes, and (as we show below) are useful in different situations. (For an excellent in-

depth discussion of these and other regularization schemes, see Elements of Statistical 
Learning by Hastie, Tibshirani and Friedman [5].)

What do regularized spectra look like? Without regularization, we obtain the least-squares 

solution, which usually results in a spiky, irregular spectrum, with ŷ overfit to the noise. As 

λ increases, the sensitivity to noise decreases, and the spectra broaden (Supplementary 

Figure S1). When the regularization parameter is very large, or the data very noisy, spectra 

can become broadened considerably, however, in most cases peaks in the spectra can be 

recovered that correspond to the most important timescales present in the data (Figure 2).

One of the crucial questions in regularization problems is how to choose the regularization 

parameter λ. Our method treats this as a Bayesian inference problem, in which the posterior 

likelihood of possible models (i.e. sets of rate amplitudes) can be sampled, along with 

nuisance parameters σ and τ, which are width parameters for the noise and rate amplitude 

priors, respectively (see Methods). In this scheme, it can easily be shown that λ = σ2/τ2 (see 

Supplementary Information). We use a Monte Carlo algorithm to sample over σ, τ (and ρ) to 

obtain estimates of the posterior P(λ|y) (Supplementary Figure S2).

Below, we apply regularization to several examples of synthetic and actual experimental 

data. Our results show that the rate spectra approach can robustly discern multiple 

timescales from very noisy data. Moreover, the form of the solutions obtained by these 

methods sheds light on typical biases in fitting simple models to data.

Methods

Calculation of rate spectra from a time series (ti, yi), i = 1, …, N, can be posed as the 

problem of finding the coefficients βj, j = 1, …, K corresponding to a set of rates kj, (of our 

choosing) such that

(3)

The problem can be cast as a linear regression model, if we transform the times ti into a 

series of “regressors” xi = (e−k1ti, e−k2ti, …, e−kKti), such that

(4)

where Xij = e−kjti.

In simple least-squares regression, the best-fit β̂ are the values that minimize the residual 

sum of squared error (RSS):
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As long as N ≥ K, and X has full column rank, y = Xβ is an over-constrained system of 

linear equations, and the β that minimizes the RSS is given by β̂ = X+y, where X+ is the 

Moore-Penrose pseudo-inverse X+ = (XTX)−1XT.

The regression problem, however, is ill-conditioned because the transformation of the time 

series into xi is highly nonlinear, so solutions of fitted values βj may be very sensitive to 

small changes in the inputs yi. Additionally, for large values of K, over-fitting becomes a 

problem, with large positive values of βj balancing out large negative values in such a way 

as to tightly fit the yi training data, regardless of noise.

To deal with these problems, a method of regularization is required. A typical procedure is a 

method called Tikhonov regularization, also known as ridge regression. In ridge regression, 

a constrained optimization is used to find the solution for β̂

(5)

The Lagrangian form of this optimization problem gives a quantity that can be explicitly 

minimized in order to find β̂, using the Lagrange multiplier λ.

(6)

Here, λ is a regularization parameter, and its role is to penalize large (positive or negative) 

values of βj. The optimal β can be obtained from , where  is the pseudo-inverse 

of an (N + K) × K matrix Xλ

Two related schemes for regularization are lasso regression, in which a penalty is imposed 

on the sum of the absolute values of βj,

(7)

and elastic net regression, in which a combination of penalties is used, with the mixture 

controlled by an additional parameter ρ:
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(8)

As we will see below, each of these schemes has a particular probabilistic interpretation.

We also note that, unlike ridge regression, solving for β within these other regularization 

schemes does not come straightforwardly from application of the pseudoinverse. Instead, 

more general convex optimization schemes must be employed. In the case of lasso 

regression, for instance, the problem can be reduced to a least-squares problem with 

additional inequality constraints [6]. In practice, we use a coordinate-descent algorithm to 

perform minimizations for lasso and elastic net regression.

A Bayesian regularization scheme

An all-important question in regularization problems is: to what extent should our solutions 

for β be regularized? Ideally, best estimates for λ could be made using the training data 

itself, with various in-data schemes to avoid overfitting, for example, using generalized 

cross-validation [5, 7]. Alternatively, a Bayesian approach can be used to obtain the 

posterior likelihood P(λ|y) of a given regularization parameter λ given the training data y. 

According to Bayes’ rule, the posterior probability P(λ|y) is proportional to the likelihood of 

observing the data y given a model parameterized by λ, multiplied by some prior probability 

P(λ).

A probabilistic interpretation of λ comes from the following model (see Supplementary 

Information): If we assume that (1) the coefficients βj are normally distributed with variance 

τ2, i.e. β ~ N(0, τ2I), and (2) that the training data yi are contaminated with Gaussian noise 

of variance σ2, i.e. y ~ N (Xβ, σ2I), it can be shown that the λ parameter in ridge regression 

corresponds to:

This provides an intuitive interpretation of the meaning of λ: it is the Lagrange multiplier 

used to simultaneously enforce the variance (τ2) of the amplitudes βj, as well as the variance 

(σ2) in the resulting fit ŷ.

Similarly, lasso regression has the interpretation λ = σ2/τ2, but with the amplitudes βj drawn 

from the prior distribution
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Elastic net regression has the interpretation that the prior for each βj is

where ρ is a mixing parameter and A(τ, ρ) is a normalization constant (see Supplementary 

Information).

A visual inspection of these prior distributions (Figure 1) shows that the lasso regression 

should produce more exaggerated peaks in rate spectrum: as compared to ridge regression, it 

favors βj either close to zero, or with large amplitude. The prior for elastic net lies 

somewhere between these two limiting cases.

Although we don’t know the values of σ and τ a priori, we can make estimates from the 

training data, by considering the posterior likelihood of σ and τ given the data y. From 

Bayes’ rule, this can be computed as:

Here P(σ) and P(τ) are prior distributions for σ and τ, respectively, assuming σ and τ are 

independent. Conjugate priors are often chosen for the sake of obtaining analytical solutions. 

We can avoid unnecessary assumptions regarding the prior distributions by sampling 

numerically from the posterior. We use the non-informative (scale-invariant) Jeffrey’s priors 

P(σ) ~ 1/σ and P(τ) ~ 1/τ to obtain a complete expression for the (unnormalized) posterior 

likelihood [8]:

We assume that the distribution P(β) is very sharply peaked at , so that β is 

determined completely from λ and the training data y

The posterior can then be written
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We use this expression to obtain posterior estimates of P(λ|y) by simulation-based methods. 

With enough samples, λ can be treated as a nuisance parameter to obtain an expectation 

estimate for the set of relaxation amplitudes βj.

To sample from the posterior distribution, we use a Monte Carlo algorithm using −log P(σ, 

τ|y) as an effective energy function, which (up to a constant) is easily shown for ridge 

regression to be:

The first two terms in this expression favor small values of σ and τ, while the last two terms 

favor large values of σ and τ, so the posterior has a maximum at some intermediate value of 

λ = σ2/τ2.

For lasso regression, the expression for −log P(σ, τ|y) is the nearly same, but with the terms 

involving τ slightly modified:

For elastic net regression, −log P(σ, τ|y) is found to be (see Supplementary Information):

where . This expression comes from the 

normalization of P(σ, τ|y).
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As discussed in [8], sampling from the posterior in this way has a number of advantages 

compared to cross-validation. For example, the Bayesian approach is completely determined 

by the data, avoids the need to define any particular partition of the data, and is robust to 

sparse data. More importantly, a key advantage of Bayesian regression, as opposed to ridge 

regression (which requires some in-data estimate of optimal λ = σ2/τ2, typically by cross-

validation), is that the posterior provides some interpretable evaluation of how ill-posed the 

problem is – i.e. the posterior will be broad if the problem is ill-posed. Performing ridge 

regression for an ill-conditioned problem using a single λ value, even after optimizing to 

find the best value of λ, could still result in either a very shrunk estimate with a poor fit, or 

wildly different estimates that all fit the data. While this too is akin to having a wide 

posterior, it is much harder to interpret.

Also note that the posterior likelihood function depends on the number of rates K used in 

computing the spectrum. Thus, when K is large (comparable to N) the regularization penalty 

in the posterior likelihood becomes much larger, and may result in a broadened spectrum. 

This reflects the amount of statistical evidence available for the calculation; i.e. if one 

attempts to find K = 1000 rate coefficients βj to explain only N = 1000 samples in a time 

series, the posterior will be more heavily weighted by the prior distribution of βj. With more 

evidence (say, using only K = 100 rates), the calculation is more heavily weighted towards 

the data.

Sampling from the posterior

In practice, to sample from the posterior, we use the following procedure, starting with an 

initial guess of (σ, τ):

1. propose new candidate (σ′,τ′) as a small perturbation from (σ, τ)

2.
calculate , and use it to compute −log P(σ, τ|y)

3. accept or reject the move according the Metropolis criterion (i.e. (σ′,τ′) → (σ, τ) 

with probability min(1, P(σ′, τ′|y)/P(σ, τ|y))

4. repeat

(For posterior sampling using the elastic net prior, the algorithm is the same, but includes 

sampling over an additional parameter, ρ. )

For each accepted sample (σ, τ)m obtained via the Monte Carlo sampling algorithm, we keep 

track of the predicted β̂
m, and corresponding weight wm = P(σ, τ|β̂

m), so that we can 

compute the expectation 〈β〉 using the entire collection of posterior samples:

Uncertainty in 〈β〉 can be computed as
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For all the results shown here, twenty thousand steps of Gibbs sampling in (σ, τ) was 

performed, with moves in σ and τ generated by random perturbations by ε ~ N (0,α2) where 

a typical value of α was 0.005. (ρ was sampled similarly for elastic net regression.)

Results

Rate spectra of noisy multi-exponential time series

To test the rate spectra approach, we considered the following noisy tri-exponential time 

series:

where (τ1, τ2, τ3) = (10−6s, 10−4s, 5×10−3s), (α1,α2,α3) = (0.3, 0.3, 0.4), and N(0, s2) 

denotes normally-distributed noise of variance s2. One thousand samples yi were generated 

at time points ti exponentially-spaced between 10−9 second and 1 second (i.e. log ti is 

linearly-spaced). Rate spectra were calculated using 100 rates, exponentially-spaced (i.e. 

linear on a log-scale) over a range of 1 s−1 and 109 s−1. Note that if we wish to compare 

these results to a continuous inverse Laplace transform, each coefficient βj can be thought of 

as carrying an additional factor d(log ti) to account for the change of integration variable.

When we compare the results of ridge, lasso and elastic net regression for the s = 0.05 test 

data (Figure 3), we see that the lasso regression predicts a much more peaked rate spectrum, 

more closely approximating the “true” rate spectrum we would expect for a pure tri-

exponential decay with no noise. This agreement is because the corresponding prior for the 

βj more closely matches our preconceived expectations (that the time series contains a small 

number of high-amplitude timescales.) The elastic net regression produces rate spectra 

somewhere in between those of the ridge and lasso. Posterior sampling of ρ shows a range of 

likely mixing parameters, between 0.2 and 0.5. One attractive feature of both the lasso and 

elastic net is the prediction of rate coefficients that are exactly zero, due to the presence of 

terms |βj| in the regularization constraint.

Rate spectra of noisy stretched-exponential time series

For non-exponential kinetics, a common procedure is to fit data with a so-called “stretched 

exponential” function.
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where γ is a stretching parameter, 0 < γ ≤ 1. The stretched exponential can be thought of as 

arising from kinetic phenomena on a broad range of timescales, as in the relaxation of glassy 

materials [9]. An analytical solution for the (continuous) rate spectrum Hγ(k) exists [10] (see 

Supplementary Information), which we compare to calculated rate spectra of stretched 

exponentials in the presence of noise.

We computed rate spectra using ridge, lasso and elastic net regression for various stretching 

parameters (Figure 4). For these tests, 1000 samples were generated from a stretched 

exponential time course (with τ0 set to 1 second), with synthetic noise added (s = 0.05), over 

timescales between 10−3 and 103 seconds, for various stretching parameters. As in the tri-

exponential tests, 100 rates were used to compute spectra, and posterior sampling of P(λ|y) 

was used to determine the extent of regularization. Our results confirm that that regularized 

rate spectra for ridge and elastic net regression can indeed recapitulate rate spectra very 

similar to the analytic result Hγ(k). Lasso regression, however, consistently predicts spectra 

dominated by a limited number of timescales. As the stretching parameter decreases, lasso 

regression essentially predicts the minimum number of timescales needed to explain the 

data: two timescales for γ = 0.9, three for γ = 0.7, four for γ = 0.5, and five for γ = 0.3.

Like the tri-exponential case, the rate spectrum that best approximates the analytic result 

comes using the prior distribution of rate amplitudes most closely approximating our 

expectations–in this case, ridge regression, which generates broad, continuous spectra. The 

lasso regression results, however, show that a small number of exponential relaxations may 

fit the data equally well. This highlights why stretched-exponential fits must be performed 

with caution: such models are predicated upon the existence of a broad, continuous spectrum 

of relaxation rates; this assumption must be justified for reasons other than simply a good fit 

to the data (for example, by physical argument).

Application to analysis of folding kinetics

While describing folding kinetics using a stretched exponential is common, it is usually an 

acknowledgement that the kinetic data are sufficiently complex to warrant more than one 

timescale, yet lack statistical power to make more definite claims about the nature of such 

timescales. The stretching parameter γ in this case provides a convenient single-parameter 

model to describe the complex kinetics.

Liu et al. (2008) published temperature-jump (T-jump) fluorescence traces of WW domain 

folding kinetics at different temperatures, for several sequences having a range of thermal 

stabilities. Figure 3 of Li et al. shows examples of contrasting traces: a mutant whose 

kinetics is well-described by a single-exponential (an “apparent two-state folder” [11]), 

versus a trace that can be fit more accurately to a single-exponential plus a stretched-

exponential component. The purpose of this fitting was (mainly) to identify the faster of two 

relaxation timescales (the so-called molecular timescale, fit by a stretched-exponential) that 

the authors consistently observed across many experiments.

We were interested to see if our rate spectra method could identify these fast timescales, and 

perhaps extract more information about them. Ten thousand steps of posterior sampling 

(using 100 rates between 1 and 108 s−1) were performed for the time traces in Figures 3a and 
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3b of Li et al., each of which consist of 357 samples between 0 and 100 µs. For clarity, we 

will refer to these data as traces A and B.

While it is very difficult to discern deviations from single-exponential kinetics by visual 

inspection (Figure 5), ridge regression is indeed able to reveal a broadened (negative 

amplitude) peak near a timescale of ~ 1 µs for trace B, corresponding well to the molecular 

timescale of ~ 1.2 ± 0.5 µs originally found by curve-fitting. The width of this peak also is 

consistent with the stretching parameter originally found by fitting, γ ~ 0.4.

Neither lasso nor elastic net regression supports more than a single timescale given the 

available data, although we note that the elastic net method predicts a broadened rate 

distribution for the low-temperature T-jump. This situation could, of course, change with 

more data at early timescales, as there are many more points sampled in the trace after 10−5 

s than before this time. (Obtaining such experimental data, of course, is very challenging, 

and a motivation for this analysis in the first place.)

Discussion

In this paper, we have presented a new approach for calculating rate spectra from noisy time 

series data. We have shown that when rate spectra are calculated with a suitable Bayesian 

regularization scheme, relaxation timescales can be robustly recovered from noisy time 

traces. As is clear from the examples we present, the statistical power of such spectral 

analysis depends on the extent of available data, and our prior assumptions about the 

distribution of rate amplitudes.

What regulation scheme should be used in a given situation? This depends on how much 

information is known a priori about the distribution of rates. For situations in which little is 

known about the underlying rate processes contributing to the observed data, ridge 

regression works well. While the rate spectra obtained from ridge regression are more broad, 

our results show how this regularization procedure recapitulates the relevant timescales as 

maxima in the rate spectra.

In situations where we are much more confident in expecting a limited number of 

timescales, lasso regression does an excellent job of reproducing the true theoretical rate 

spectra (a combination of three delta functions) from noisy tri-exponential test data. In a 

traditional curve-fitting scenario, fitting the fewest number of exponential relaxations would 

be deemed the “simplest” model, but in the context of rate spectra calculation, lasso 

regression achieves this by enforcing our prior assumptions that distribution of timescales 

should be dominated by only a few relevant timescales. The elastic net method, using a 

mixture of ridge and lasso priors, produces rate spectra that lie between these two extremes.

Our results calculating rate spectra for noisy stretched-exponential time courses suggest that, 

although such time courses can be fit with curves having very few free parameters (namely 

τ0 and γ), this does not imply that a stretched-exponential is the most parsimonious model 

that explains the data. Rather, the stretched-exponential is a phenomenological law that 

serves as a proxy to describe complicated distributions of timescales. The analytical rate 

distributions corresponding to a perfect stretched-exponential are not extracted very 
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efficiently with lasso and elastic net regularization methods, because these methods impose 

strict penalties on broad distributions of relaxation timescales. Despite this, lasso regression 

for a noisy stretched-exponential curve (γ = 0.3) shows that a narrow rate spectrum 

consisting of five main timescales can explain the time course equally well. If our prior 

expectation is that only a few well-defined relaxation rates exist, lasso regression may be 

preferred.

This work highlights the importance of model-independent analysis of time series data, and 

the dangers of conflating two very different questions. One question is: which model best 

describes my data? This can be answered using any number of hypothesis testing schemes. 

A very different question, addressed by our work here, is: what timescales are present in my 

data? The rate spectrum method provides a framework illuminating these timescales from 

the available data. Unbiased by any preconceived model, rate spectra can thus serve as a 

very useful starting point for guide more thorough studies of folding kinetics and other 

dynamic systems.

A growing number of studies have reported that Markov State Models (MSMs) of protein 

folding, despite having a large number of metastable states and relaxation time scales, 

predict simple apparent kinetics for experimental observables. These studies have found that 

projections of the MSM folding dynamics onto experimental observables may be sensitive 

to only a small number of timescales, masking the underlying complexity [12, 13, 14]. For 

this and other reasons, we think it is very likely that as the temporal and structural resolution 

of experiments and simulations continue to increase, using rate spectra to analyze folding 

kinetics will be increasingly useful.

A python package is available for computing rate spectra using the methods described in this 

paper. Code and examples are freely downloadable at https://simtk.org/home/ratespec.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prior distributions of rate amplitudes βj according to ridge regression (black), lasso 

regression (red), and elastic net regression (green; shown for ρ = 0.5).
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Figure 2. 
Noise broadens regularized rate spectra. (top) Regularized rate spectra (using ridge 

regression) for the tri-exponential data with increasing amounts of noise N(0, s2), for s = 

0.001, 0.05 and 0.2. (middle) Rate spectra shown are expectation values from posterior 

sampling, shown with a 95% confidence interval (in all cases very small). Despite this 

spectral broadening, regularized rate spectra show three peaks corresponding to each 

timescale, even for very noisy data. (bottom) The posterior distributions sampled for σ and τ 

give additional information about the nature of the data being fit. While the posterior 

distribution of τ remains robust for different values of synthetic noise (reflecting the 

regularization penalty), the posterior distributions of σ are very narrow and predict 

extremely well the variance of the artificial noise used to product the time series.
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Figure 3. 
Rate spectra for the tri-exponential data with artificial noise N(0, s2), s = 0.05, using (a) 

ridge regression, (b) lasso regression and (c) elastic net regression. Rate spectra shown are 

expectation values from posterior sampling, shown with a 95% confidence interval. (d) The 

sampled posterior distribution of mixing parameter ρ in the elastic net regression.
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Figure 4. 
Recapitulation of stretched-exponential rate spectra from noisy time series. (top) Noisy data 

sets (s = 0.05, blue) with best-fit time traces ŷ (shown are the results from ridge regression; 

best-fits from lasso and elastic net are nearly indistinguighable) for various stretching 

parameters γ = 0.3, 0.5, 0.7 and 0.9. (bottom) Regularized rate spectra (shown here as the 

expectation over all posterior samples of λ) for ridge, lasso and elastic net regression. The 

ridge and elastic net rate spectra correspond well to the analytical results (red line), while 

lasso regression consistently describes the data with the smallest possible number of 

timescales. Note that the elastic net posterior takes longer to converge, as can be seen in by 

the larger error estimates from posterior sampling.
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Figure 5. 
Relative fluorescence time traces reprinted from Liu et al. (2008): Relaxation kinetics of a 

WW domain (variant 20) after T-jump to (a) the melting temperature, and (b) 19° C below 

the melting temperature. Single-exponential fits to the time traces and their residuals are 

shown in red; ridge regression fits are shown in black. Rate spectra for these two traces are 

shown for (c,d) ridge regression, (e,f) lasso regression, and (g,h) elastic net regression. 
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Ridge regression identifies a broadened (negative amplitude) peak near the 1 µs timescale 

(marked with arrow).
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