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Abstract
Oxidative damage can lead to neuronal dysfunction in the brain due to modifications to proteins,
lipids and DNA/RNA. In both human and canine brain, oxidative damage progressively increases
with age. In the Alzheimer’s disease (AD) brain, oxidative damage is further exacerbated, possibly
due to increased deposition of beta-amyloid (Aβ) peptide in senile plaques. These observations
have led to the hypothesis that antioxidants may be beneficial for brain aging and AD. Aged dogs
naturally develop AD-like neuropathology (Aβ) and cognitive dysfunction and are a useful animal
model in which to test antioxidants. In a longitudinal study of aging beagles, a diet rich in
antioxidants improved cognition, maintained cognition and reduced oxidative damage and Aβ
pathology in treated animals. These data suggest that antioxidants may be beneficial for human
brain aging and for AD, particularly as a preventative intervention.
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1.1 Introduction
Progressive oxidative damage is a consistent feature of aging [1–4]. The brain is particularly
vulnerable to oxidative damage, as it is consumes approximately 20% of the body’s total
oxygen, has a high content of polyunsaturated fatty acids and has lower levels of
endogenous antioxidant activity relative to other tissue [5–7]. Normal metabolic processes
result in the release of reactive oxygen species (ROS), which in turn can lead to oxidative
damage to proteins, lipids, DNA and RNA [1]. ROS are produced primarily from
mitochondria [8], intracellular organelles that are themselves vulnerable to oxidative damage
[9]. The combination of mitochondrial dysfunction and production of ROS may be a key
contributor to the deleterious effects of aging on the brain [10–18].

Studies of normal human brain aging provide correlative evidence suggesting that oxidative
damage plays a role in age-associated cognitive losses. Studies of human autopsy tissue
show higher levels of oxidative damage to nucleic acids [19–21], proteins [20, 22–25] and
lipids [21, 25, 26] in aged brain as compared to young brain. Mitochondrial function also
appears compromised with age in the human brain [3, 4, 14, 27]. In normal aging,
mitochondrial respiratory chain activity declines [28], mitochondrial metabolism-associated
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enzymes such as aconitase decrease [29] and the rate of somatic mitochondrial DNA
mutations increases [17, 30]. Thus, mitochondrial dysfunction and the production of ROS,
combined with lower endogenous antioxidant activity, may lead to increasing oxidative
damage to molecules critically important to neuronal function.

1.2 Oxidative Stress and Alzheimer’s Disease
Oxidative damage may also play a role in age-associated neurodegenerative diseases such as
Alzheimer’s disease (AD) [31–33]. AD is a progressive neurodegenerative disease that
causes dementia in the elderly. AD is characterized by the accumulation of beta-amyloid
(Aβ) in extracellular senile plaques and intracellular hyperphosphorylated tau protein in
neurofibrillary tangles [34]. Consequently, extensive neuron loss is observed in the AD
brain in the cortex and particularly within the hippocampus, a region of the brain involved
with memory. AD is associated with further increases in oxidative damage to protein [20,
23, 24, 35–42], lipid [21, 26, 43–46], DNA [47–49] and RNA [12, 50, 51] relative to elderly
controls. In addition, endogenous antioxidant activity in the AD brain is reduced relative to
age-matched controls [20, 25, 52]. Proteins particularly vulnerable to oxidative damage have
been identified by proteomics, with a subset of these proteins putatively involved directly or
indirectly in the production and accumulation of AD neuropathology [53]. Mitochondrial
dysfunction also occurs in AD, with decreased respiratory chain activity [15, 54, 55] and
increased mitochondrial DNA mutations [56] observed at higher rates when compared to
age-matched controls. Further, decreased cytochrome oxidase activity in the posterior
cingulate cortex of AD patients is correlated with hypometabolism seen by positron
emission studies [57]. A gene array study in the cingulate cortex shows that energy-
metabolism related genes decrease in AD, with a 65% reduction in expression of
mitochondrial electron transport chain genes [58].

Based on correlative human neuropathology studies, antioxidants are predictive of healthy
aging, may reduce the risk of developing AD and may improve cognitive function in AD
patients. However, studies in humans have shown either a positive effect of antioxidant use
on cognition and risk reduction for developing AD [59–61] or no significant effects [62–65].
Few systematic and controlled clinical trials have evaluated the effects of antioxidants on
cognition in aged individuals or patients with AD. Intake of vitamin E delays
institutionalization in AD patients [66], suggesting some beneficial effects. However,
vitamin E alone did not improve cognition in patients with mild cognitive impairment,
which is thought to precede AD [67]. Further, in non-demented elderly women, vitamin E
treatment was associated with little improvement in cognition [64].

In addition to investigating the effects of cellular antioxidants on cognition and risk of AD,
several studies examined the effects of targeted co-factors that improve mitochondrial
function, including acetylcarnitine (ALCAR) and lipoic acid (LA). ALCAR and LA may
improve mitochondrial function and reduce the production of ROS, thus also reducing
oxidative damage to proteins, lipids and DNA/RNA [68]. In studies where ALCAR was
administered to patients with moderate to severe AD, either improved cognition and/or
slower deterioration was observed [69–72]. In early-onset AD patients (less than 65 years of
age), only small cognitive improvements were noted [73], although younger patients with
AD (less than 61 years) may also have experienced slowed disease progression [74, 75].
When the results of all these studies are combined in a meta-analysis, ALCAR
administration in patients with AD was clearly beneficial, particularly with respect to
slowing cognitive decline [76]. Further, combining ALCAR with acetylcholinesterase
therapy in AD may provide additional benefits [77]. Similar evidence of maintenance of
function was observed in an open label study of 9 patients with AD or related dementias
receiving 600 mg/day of LA for an average of 337 days [78]. In a larger follow up study of
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48 patients for a 48 month treatment period, maintenance of function was also observed
[79].

Taken together, studies of dietary or supplemental antioxidant intake in humans reveal
variable results and appear far less robustly associated with positive functional outcomes
than those reported in the rodent aging literature [9, 18, 80–87]. Variability in the outcomes
of human antioxidant clinical trials outcomes may reflect inconsistencies in the amount of
supplements provided, their form and source (e.g. lower AD brain neuropathology is
associated with cerebrospinal fluid levels of alpha-tocopherol and not gamma-tocopherol
[88]), their duration and regularity of use and challenges in determining the exact
background of dietary antioxidants [89]. Interestingly, combinations of antioxidants may be
superior to single compound supplementation [90] and dietary intake of antioxidants is
superior to supplements in human studies on cognition and risk of developing AD [91, 92].
Further, supplementation of elderly women with a combination of vitamins E and C can lead
to improved memory [93]. Thus, antioxidants may prove to be more efficacious if
administered in combination with other antioxidants (e.g. vitamin C, which helps to recycle
Vitamin E) and through diet, rather than as a supplement.

A panel of experts for the Duke Evidence-based Practice Center for the US Department of
Health and Human Services recently reviewed the literature and, not surprisingly, reported
no consistent or robust evidence to suggest that single or dual antioxidant use is protective
against AD [94]. In terms of preventing cognitive decline with aging, vegetable intake was
only weakly associated with decreased risk of developing AD, whereas cognitive training
was strongly associated with decreased risk. Thus, the role of either dietary or supplemental
antioxidants and level of protection against cognitive decline or AD has yet to be clearly
established. Additional reasons for the small or negative effects of antioxidants on cognition
in the elderly and for treatment of AD [80, 95] include the limitations of animal models
(primarily rodent) in terms of ability to predict human response. Therefore, it is useful to
consider other animal models of human aging and AD, and also to test the potential for
combinations of antioxidants/ mitochondrial co-factors to improve cognition and reduce Aβ.
Specifically, dogs are frequently used to evaluate safety of drugs and in food metabolism
studies given their substantial similarities to humans.

1.3 Studies in Aged Dogs
Dogs may be particularly useful in studying human brain aging because they naturally
develop cognitive decline with age, accumulate oxidative damage and Aβ protein [96]. In
dog brain, oxidative damage to proteins increases with age [97, 98] and is associated with
reduced endogenous antioxidant enzyme activity or protein levels [97, 99–101]. In several
studies, a relation between age and increased oxidative damage has been inferred by
measuring the amount of end products of lipid peroxidation to predict oxidative damage to
lipids. These end products including 4-hydroxynonenal [101–104] and malondialdehyde
[97]. Additionally, we and others have reported evidence of increased oxidative damage to
DNA or RNA (8OHdG) in aged dog brain [96, 104].

Oxidative damage may also be associated with behavioral decline in dogs. Rofina and
collaborators examined oxidative end products (lipofuscin-like pigment and protein
carbonyls) in aged companion dog brain [98, 103, 104] and found a correlation between
increased oxidative end products and severity of behavior changes due to cognitive
dysfunction. Similarly, in our own studies of aging beagles, higher protein oxidative damage
(3-nitrotyrosine) and lower endogenous antioxidant capacity (superoxide dismutase and
glutathione-S-transferase) are associated with poorer prefrontal-dependent and spatial
learning [100]. These correlative studies suggest a link between cognition and progressive
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oxidative damage in the dog, suggesting their utility in testing antioxidant treatment
strategies.

To test the hypothesis that reduced oxidative stress leads to cognitive benefits, we
implemented a longitudinal study of aged dogs. In this study, a combination of antioxidants
and mitochondrial co-factors was provided in food [105–109]. 48 aged beagles (between
~8–12 years) were divided into four groups that were balanced with respect to baseline
cognitive ability, sex and age: (1) no behavioral enrichment/control diet group; (2)
behavioral enrichment/control diet; (3) no behavioral enrichment/antioxidant diet; and (4)
combined behavioral enrichment and antioxidant diet. In a subset of experiments, an
additional 17 young beagles (<5 years of age) were included for comparison to aged dogs.
Young dogs were all placed in the behavioral enrichment condition, with half provided with
the antioxidant diet (i.e. similar to groups 2 and 4).

Three unique features of the experiment included: 1) a combination of antioxidants and
mitochondrial co-factors; 2) incorporation of all antioxidants and mitochondrial co-factors
into food and; 3) evaluation of dietary treatments in combination with behavioral
enrichment. An antioxidant-enriched dog diet was formulated to include a broad spectrum of
antioxidants and two mitochondrial co-factors [108]. Based on an average weight of 10 kg
per animal, the daily doses for each compound were 800 IU or 210 mg/day (21 mg/kg/day)
of vitamin E, 16 mg/day (1.6 mg/kg/day) of vitamin C, 52 mg/day (5.2 mg/kg/day) of
carnitine and 26 mg/day (2.6 mg/kg/day) of lipoic acid. Fruits and vegetables were also
incorporated at a 1 to 1 exchange ratio for corn, resulting in 1% inclusions (dehydrated) of
each of the following: spinach flakes, tomato pomace, grape pomace, carrot granules and
citrus pulp. This was equivalent to raising fruits and vegetable intake from 3 servings per
day to 5–6 servings per day based upon ORAC values [110]. Additionally, vitamin E was
increased by ~75% in dogs treated with the antioxidant diet [111]. The behavioral
enrichment condition consisted of additional cognitive experience (20–30 min/day, 5 days/
week), an enriched sensory environment (housing with a kennel-mate, weekly rotation of
play toys in kennel) and physical exercise (two 20 min outdoor walks/week) [108].

Dogs were evaluated over a 2.8 year period to evaluate short term and chronic treatment
effects. Treatment with the antioxidant diet lead to cognitive improvements in learning
within two weeks, with aged animals showing significant improvements in spatial attention
(landmark task) [111]. Subsequent testing of animals with a more difficult complex learning
task (oddity discrimination) also revealed benefits of the diet [105]. With antioxidant
treatment, visual discrimination improved and reversal (frontal function) learning ability was
maintained over time while untreated animals showed a progressive decline [108]. This was
despite the fact that for each time point where discrimination learning was re-administered,
the task was made more difficult (harder to distinguish objects) to prevent a practice effect.
Thus the progressive increase in error scores over time in untreated dogs reflects both
increased task difficulty and possibly, longitudinal aging effects. Interestingly, the dogs fed
an antioxidant diet benefited from behavioral enrichment, in that cognitive scores of aged
dogs receiving both treatments were superior to either treatment alone [107, 108]. For
example, in singly treated animals spatial memory showed a trend toward improvement,
reaching statistical significance only after long-term treatment (>2 years) with a combination
of both the antioxidant diet and behavioral enrichment [109]. The antioxidant diet
selectively repaired an aging deficit, in that cognitive scores from young dogs treated with
the antioxidant diet did not differ from those of young dogs fed control diet [112].

Neurobiological studies showed reduced oxidative damage and increased endogenous
antioxidant activity in antioxidant-fed dogs, particularly among animals receiving the
combination of antioxidants and behavioral enrichment [100]. Interestingly, the antioxidant
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diet increased the levels of glutathione suggesting a possible involvement of a possible
vitagene network that might account for the increased expression of antioxidant molecules
and growth proteins [113, 114]. Given that the diet provided to the dogs also included
acetylcarnitine, resulting in increased levels of HO-1 also support the possibility that
vitagene networks are engaged [113].

Mitochondrial function was significantly improved in the antioxidant fed dogs and not in
behaviorally enriched dogs [115]. Interestingly, behavioral enrichment but not the
antioxidant diet protected against neuron loss in the hilus of the dog hippocampus [116].
Further, brain derived neurotrophic factor mRNA increased in aged dogs provided with the
combination treatment [117]. These results suggest that cognitive benefits of antioxidants
can be further enhanced with the addition of behavioral enrichment, perhaps due to different
yet synergistic mechanisms of action in the brain, including reduced oxidative damage and
maintenance of neuron health. In addition to brain, however, peripheral benefits were also
seen, including less cellular degeneration in the inner ear [118].

Interestingly, in a recent study of aged dogs, the formulation of the diet was modified to
compare only the mitochondrial co-factors used in this previous study and effects on
cognition [119]. Aged dogs were treated with lipoic acid, ALCAR or the combination and
tested with spatial learning and discrimination/reversal tasks. When these compounds were
included with a broader spectrum of antioxidants described above, no cognitive benefits
were observed when evaluated singly or in combination. Additionally, protein carbonyl
accumulation in the plasma of treated dogs was increased. Increased oxidative damage may
reflect either higher doses of the mitochondrial co-factors used in this study or increased
oxidative stress resulting from not counterbalancing mitochondrial cofactors with cellular
antioxidants. Consistent with this explanation, another smaller study demonstrated improved
short term memory in aged beagles treated with a combination of phosphatidylserine,
Ginkgo biloba, vitamin E and pyridoxine [120].

1.4 Summary
Using the canine model of aging, we show that providing a broad spectrum of cellular
antioxidants and mitochondrial co-factors within a specially-formulated food leads to
significant benefits to cognition and maintenance of function at doses that were well within
those used in human clinical trials. In addition, combining an antioxidant enriched diet with
cognitive training, physical exercise and social enrichment provides additional benefits to
cognition. Future studies in humans may be more efficacious if combinations of antioxidants
are evaluated in parallel with additional lifestyle improvements (e.g. social engagement,
cognitive training and physical exercise)
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Highlights

• Oxidative damage increases with brain aging

• Aged dogs naturally develop cognitive decline and brain pathology

• Antioxidants improve cognition and reduce neuropathology in aging dogs
Antioxidants may be beneficial for human brain aging and Alzheimer’s disease
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