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Interindividual variations of microRNA expression are likely to in-
fluence the expression of microRNA target genes and, therefore,
contribute to phenotypic differences in humans, including cancer
susceptibility.WhethermicroRNA expression variation has any role
in ovarian cancer development is still unknown. Here, we evaluated
microRNA expression profiles in lymphoblastoid cell lines from
74 women with familial ovarian cancer and 47 unrelated controls
matched on gender and race.We found that the cases and unrelated
controls can be clustered using 95 differentially expressed micro-
RNAs with 91% accuracy. To assess the potential implications of
microRNAs in ovarian cancer, we investigated the associations be-
tweenmicroRNA expression and seven ovarian cancer risk variants
discovered from genome-wide association studies (GWAS), namely,
rs3814113 on 9p22.2, rs2072590 on 2q31, rs2665390 on 3q25,
rs10088218, rs1516982, rs10098821 on 8q24.21 and rs2363956 on
19p13. We observed 130 significant associations at a permutation
level of 0.01. Compared with other risk variants, rs3814113 and
rs2072590 had the greatest number of significant associations (68
and 37, respectively). Interestingly, 14 microRNAs that were asso-
ciated with ovarian cancer risk alleles belong to five microRNA
clusters. The most notable cluster is the tumorigenic miR-17-92
cluster with fivemicroRNAs, all of which are significantly associated
with rs3814113. Using pathway analysis, several key biological path-
ways were significantly overrepresented, such as cellular response to
stress (P 5 2.87 3 10206), etc. Further characterization of signifi-
cant associations between microRNAs and risk alleles could facili-
tate the understanding of the functions of these GWAS discovered
risk alleles in the genetic etiology of ovarian cancer.

Introduction

Epithelial carcinoma of the ovary is one of the most common gyne-
cological malignancies in women (1). Family history is the strongest
risk factor for ovarian cancer. Compared with a 1.6% lifetime risk of
developing ovarian cancer in the general population, women with one
first-degree relative with ovarian cancer have a 5% risk. Familial
clustering with an autosomal dominant pattern of inheritance
(hereditary ovarian cancer) results from germline mutations in puta-
tive tumor suppressor genes (TSGs), such as the BRCA1/2 and MLH1/
MSH2 genes (2–5). However, known mutations in BRCA1/2 and

MMR genes can only explain a small part of the familial aggregation
of ovarian cancer (5–13%). This suggests that other genetic events
may contribute to familial ovarian cancers. Recently, genome-wide
association studies (GWAS) have identified several single nucleotide
polymorphisms (SNPs), which confer risk to ovarian cancer (6–8).
However, most of the ovarian cancer risk variants identified from
GWAS reside in non-protein-encoding regions, including intergenic,
intronic and untranslated regions (9). Therefore, the observed associ-
ations have yet to be translated into a full understanding of the genes
and genetic elements mediating disease susceptibility.

Intriguingly, a significant number of microRNAs, which are emerg-
ing as key players in the regulation of gene expression, often reside in
the non-protein-encoding regions, too (10). MicroRNAs are small
non-coding RNAs that regulate .60% of protein-coding transcripts
(11). Each microRNA has multiple target genes that are regulated at
the posttranscriptional level. They have been implicated in various
diseases and may influence tumorigenesis by acting as oncogenes and
tumor suppressors (12,13). For example, microRNAs have been
linked to ovarian tumor initiation and progression (14–16). Germline
variations in microRNAs, messenger RNA transcripts of their target
genes, and processing genes have been reported to have an effect not
only on tumor progression but also on an individual’s risk of devel-
oping cancer, including ovarian cancer (17,18). Hence, microRNAs
are related to diverse cellular processes and are regarded as important
components of the gene regulatory network, which contribute to ovar-
ian carcinogenesis.

It has become clear that gene expression levels vary among indi-
viduals and can be analyzed like other quantitative phenotypes, such
as height or serum glucose levels (19–21). However, the extent to
which microRNA levels are genetically controlled is largely un-
known. In a recent expression quantitative traits loci analysis, Borel
et al. (22) identified a number of significant expression quantitative
traits loci in primary fibroblasts, suggesting that at least part of the
microRNA expression variation is regulated by common genetic var-
iants. In human cancer, variations in microRNA expression can be
extremely important because microRNAs can act as either TSGs or
oncogenes. Reduced expression of TSG like microRNAs and in-
creased expression of oncogene like microRNAs might potentially
increase genetic susceptibility to human cancer. Therefore, investiga-
tion into microRNA expression variation may provide immediate in-
sight into a probable basis for the disease associations. In addition, it
offers valuable tools that may complement the knowledge from
GWAS to elucidate the biological functions of SNPs identified from
GWAS. In the case of ovarian cancer, studying the associations be-
tween microRNAs and ovarian cancer risk alleles will help uncover
the potential microRNAs, target genes and biological pathways which
these GWAS discovered risk alleles may interact with.

To study microRNA expression variations in lymphoblastoid cell
lines (LCLs) and their potential contributions to the development of
familial ovarian cancer, we first analyzed the expression profiles of
1145 microRNAs in 121 non-redundant LCLs derived from 74 famil-
ial ovarian cancer patients who are non-carriers of known BRCA1/2
and MMR gene mutations, as well as 47 unrelated controls. Then, we
studied the associations between microRNA expression variations and
seven ovarian cancer risk variants discovered from GWAS (6–8). To
our knowledge, this is the first study to examine the roles of micro-
RNA expression variations in LCLs in familial ovarian cancer and
evaluate the associations between microRNA expression variations
and ovarian cancer risk variants. Since genetic susceptibility of ovar-
ian cancer is far from being fully understood, our study may facilitate
candidate gene discovery and lead to better understanding of the
genetic susceptibility of ovarian cancer in this post-GWAS era.

Abbreviations: EBV, Epstein-Barr virus; FDR, false discovery rate;
GRFOCR, Gilda Radner Familial Ovarian Cancer Registry; GWAS, ge-
nome-wide association studies; LCL, lymphoblastoid cell line; SNP, single
nucleotide polymorphisms; SVM, support vector machine; TSG, tumor sup-
pressor gene; qRT–PCR, quantitative real-time PCR.
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Materials and methods

Study population

The study has been approved by the Institutional Research Board of Roswell
Park Cancer Institute. Data and samples from women with ovarian cancer and
their relatives who were cancer free were obtained from the Gilda Radner
Familial Ovarian Cancer Registry (GRFOCR). Seventy-four non-related women
with familial ovarian cancer were included in this study as the cases. They were
identified from families with inherited ovarian cancer in which at least two first-
or second-degree relatives had epithelial ovarian cancer diagnosed at any age.
All of the women were non-carriers of BRCA1/2 or MLH1/MSH2 mutations.
Over time, different methods have been used to determine the mutation status of
BRCA1/2 in GRFOCR samples. For samples collected before 2002, mutation
status was determined by screening all exons and intron/exon splice junctions of
BRCA 1/2 by a combination of single-strand conformation polymorphism and
heteroduplex analysis. Additionally, exon 11 of BRCA1 was assayed by the
protein truncation test for stop codon generating mutations. If alterations were
found, the altered fragment was sequenced. Since 2002, sequencing of exons and
splice junctions was used. In the last 5 years, all samples (old and new) not
showing a mutation were assayed for BRCA1 large-scale rearrangements. The
cancer-free controls of GRFOCR were family relatives of the cases, including
mothers, sisters, nieces, etc. However, in this study, we chose to use unrelated
controls. Unrelated controls are women who are not relatives of any cases used in
this study. Forty-seven unrelated controls were included. The cases and controls
were matched on gender and race. All of the cases and controls were white
women. The median age at cancer diagnosis for the 74 cases was 47 (ranging
from 21 to 85), whereas the median age for the 47 controls at enrollment in
GRFOCR was 58 (ranging from 26 to 89). All study subjects donated blood
samples when they were enrolled in the GRFOCR. LCLs were established by
Epstein-Barr virus (EBV) transformation using the isolated lymphocytes from
the blood samples. The study was approved by the institutional research board.

LCLs culture and RNA extraction

LCLs were maintained in RPMI 1640 (GIBCO BRL) media supplemented
with 15% fetal calf serum and antibiotics at 37�C, 5% CO2 atmospheric con-
dition and 95% humidity. Total cellular RNAs were isolated from LCLs using
TRIzol reagent according to the protocols provided by the manufacturer
(Invitrogen Corp., Carlsbad, CA). Purified RNAs were further processed to
remove any contaminating DNA (DNA-free kit; Ambion Inc., Austin, TX).
The quality and quantity of the RNA were evaluated by 260/280 ratio using
NanoDrop spectrophotometry (ND-1000; NanoDrop Technologies Inc.) and
Agilent 2100 Bioanalyzer (Agilent Technologies).

MicroRNA microarray analysis

Two hundred ng of total RNA from each sample were labeled and hybridized on
Human v2 MicroRNA Expression BeadChips (Cat. no. MI-102–1024; Illumina)
according to the manufacturer’s recommendations (Illumina MicroRNA Expres-
sion Profiling Assay Guide). The expression profiles have been deposited in
NCBI’s Gene Expression Omnibus with accession number GSE31801.

Data assembly. The raw intensity of the Illumina Human V2 microRNA expres-
sion array was scanned and extracted using BeadScan, with the data corrected by
background subtraction in the GenomeStudio module. The lumi package in the
R-based Bioconductor package was used to normalize the log2 transformed inten-
sity data by using the quantile normalization algorithm. For data quality control,
we excluded the probes with detection P value.0.05 (the P values were generated
in BeadStudio software) across 75% of the samples. A total of 587 microRNAs
passed the quality control step and were used for downstream analysis.

Differential expression testing. We used the Limma program in the R-based
Bioconductor package to calculate the statistical significance for the level of
differential expression (23). Briefly, a linear model was fit to the data, with cell
means corresponding to the different conditions, age adjusted as a continuous
covariate and a random effect for array. The Benjamini and Hochberg method
was used to control the false discovery rate (FDR) for the multiple testing (24).

Hierarchical clustering. Hierarchical clustering algorithm based on the aver-
age linkage and Pearson correlation metric was employed to cluster residuals
of gene expression corrected for age (25). First, unsupervised hierarchical
clustering analysis was performed based on gene expression profiles from
the top 50% of the most variable (i.e. largest coefficient of variance) micro-
RNAs across 121 samples, 75% of the most variable microRNAs across 121
samples or all 587 microRNAs. Second, following single microRNA-based
significance testing, we used the expression value of selected microRNAs
(FDR , 0.01 and at least 1.5-fold expression) to perform hierarchical cluster-
ing of the samples. The purpose here was to explore and visualize the perfor-

mance of identified microRNAs signature, as a whole, at differentiating the
participants into their corresponding case versus control group.

Machine learning classification. The performance of microRNA expression
profiles to differentiate the case from control group was further assessed by
leave-one-out cross validation. The R package classification for microarrays
was used to build classifiers with the support vector machines (SVMs)
approach (26). SVM approaches the task of classification by constructing
a hyperplane or set of hyperplanes in a high or infinite dimensional space.
We utilized residuals of gene expression corrected for age in classification for
microarrays. For leave-one-out cross validation, we literately split the sam-
ples into training sets and testing sets. Each training set, consisting of all but
a single test sample, was used to identify a predictor consisting of a panel of
microRNAs, the number of which remained constant between sets. The case/
control status of the single test sample was then predicted by the resulting
predictor. The classification accuracy rate is the percentage of time the SVM
prediction is correct. We varied the number of microRNAs composing the
predictor from 6 to 20 and found the classification results are not significantly
changed (data not shown). As recommended by (26), we used a nested cross-
validation loop to choose the optimal value for the cost parameter in the SVM
model kernel parameter from 0.1, 0.2, 0.5, 1, 2, 5, 10 and 20.

Association of microRNA expression and SNP genotypes. The association of
SNP genotype with residuals of expression level adjusted for age and case–
control status was calculated using linear regression model as described before
(27). Ten thousand permutations of the expression phenotypes relative to SNP
genotypes were performed (28–30). To derive P values adjusted for multiple
testing, we determined the percentage of times out of 10 000 permutations that
the observed P value was exceeded in the permuted data analysis. Only micro-
RNAs with expression above the background in at least 25% of the samples
(n5 121) and with a known status in the latest miRBase database (version 17)
were included in the association analysis.

Real-time quantitative PCR analysis

The expression levels of microRNA were confirmed with a Taqman-based real-
time quantitative PCR using individual microRNA-specific primers and probes
as described by the manufacturer (Applied Biosystems). The first-strand
microRNA-complementary DNA PCR template was generated from 50 ng
of total RNA according to the manufacturer’s instructions. Approximately
2.5 ng of complementary DNA was then used in the PCR on a StepOnePlus
Real-Time PCR System from Applied Biosystems. Triplicate samples, vali-
dated endogenous controls and inter-assay controls were used throughout. The
real-time quantitative PCR results were analyzed by SDS 2.2.2. A total of four
microRNAs were included in the analysis. They were miR-92b, miR-629�,
miR-216a and miR-588. According to manufacturer’s suggestion, in this study,
we chose RNU-24 as the endogenous control. Real-time quantitative PCR data
were the normalized expression values in which the endogenous control RNU-
24 was used as the reference gene. For each assay, the Ct (cycle threshold) of
microRNA of interest in the TaqMan qPCR assay was subtracted from the
average RNU-24 Ct value to obtain a DCt value (RNU-24—microRNA of
interest). A higher DCt value indicates a higher expression level of the micro-
RNA of interest.

Genotyping analysis for ovarian cancer risk alleles

Seven SNPs, which are identified from three ovarian cancer GWAS, were in-
cluded in the genotyping analysis. They are rs3814113 on 9p22.2, rs2072590 on
2q31, rs2665390 on 3q25 in the intron of TCDD-inducible poly(ADP-ribose)
polymerase (TIPARP) gene, rs10088218, rs1516982, rs10098821 on 8q24.21
and rs2363956 on 19p13 in the ankyrin repeat and LEM domain containing 1
(ANKLE1) gene. rs2363956 is a nonsynomous SNP which leads to a Leu to Trp
amino acid change. Genotyping analysis was carried out using StepOnePlusTM

Real-Time PCR system and Assays-on-Demand SNP Genotyping products for
fluorogenic PCR allelic discrimination (Applied Biosystems). Each PCR reac-
tion plate included negative controls, positive controls and unknown samples.
The minor allele frequencies for each SNP in the cases and unrelated controls
were 0.346/0.298 (P 5 0.65) for rs3814113, 0.3/0.368 (P 5 0.84) for
rs2072590, 0.081/0.060 (P 5 0.60) for rs2665390, 0.149/0.107 (P 5 0.13) for
rs10088218, 0.167/0.119 (P 5 0.06) for rs1516982, 0.127/0.071 (P 5 0.07)
for rs10098821 and 0.432/0.488 (P 5 0.20) for rs2363956.

Results

For the 1145 microRNAs assayed, 74% (n 5 849) were detected
above the background levels. Of these 849 expressed microRNAs,
we included 578 in further analysis because their expression was
above the background in at least 30 samples. Using microRNA
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microarray data, we selected the top 50% of the most variable micro-
RNAs across 121 samples, 75% of the most variable microRNAs
across 121 samples or all 587 microRNAs in an unsupervised hier-
archical clustering analysis. We found that the age-corrected expres-
sion profiles reasonably separated cases from unrelated controls
(Supplementary Figure 1, available at Carcinogenesis Online),
indicating that the familial ovarian cancer cases and cancer-free
unrelated controls have intrinsically different microRNA expression
patterns.

Incorporating age as a covariate for adjustment in case versus
control comparison, we identified a total of 95 microRNAs with at
least 1.5-fold differential expression at the significance level of FDR

, 0.01, with 54 microRNAs upregulated in cases and 41 microRNAs
downregulated. The detailed list of differentially expressed micro-
RNAs is summarized in Table I. Among these 95 differentially ex-
pressed microRNAs, 14 microRNAs had at least two-fold increase in
cases and 9 had at least two-fold decrease. These upregulated micro-
RNAs include hsa-miR-216a, hsa-miR-588, HS_33, hsa-miR-521,
hsa-miR-675, solexa-2683-338, hsa-miR-1255b, HS_109, hsa-miR-
610, HS_169, solexa-15-44487, hsa-miR-1225-3p, hsa-miR-140-5p,
hsa-miR-801 and those downregulated microRNAs include HS_228.1,
HS_108.1, hsa-miR-92b, hsa-miR-374b, HS_31.1, HS_257, hsa-miR-
10b, hsa-miR-629�, hsa-miR-574-3p. We noted that 26 of the 95 (27%)
differentially expressed microRNAs belong to unknown microRNAs

Table I. Differentially expressed microRNAs between case and control groups

Upregulated Downregulated

ID Fold change P value FDR ID Fold change P value FDR

hsa-miR-216a 3.58 1.77 � 10�25 1.78 � 10�23 HS_228.1 �3.66 1.38 � 10�30 2.70 � 10�28

hsa-miR-588 3.14 6.28 � 10�25 4.09 � 10�23 HS_108.1 �3.27 2.64 � 10�17 5.17 � 10�16

HS_33 2.99 4.76 � 10�32 1.40 � 10�29 hsa-miR-92b �2.46 1.88 � 10�35 1.10 � 10�32

hsa-miR-521 2.81 3.88 � 10�17 7.12 � 10�16 hsa-miR-374b �2.35 1.84 � 10�21 7.22 � 10�20

hsa-miR-675 2.62 2.22 � 10�25 1.87 � 10�23 HS_31.1 �2.27 4.95 � 10�11 3.02 � 10�10

solexa-2683-338 2.57 1.56 � 10�24 9.14 � 10�23 HS_257 �2.11 4.29 � 10�15 5.24 � 10�14

hsa-miR-1255b 2.45 9.35 � 10�16 1.28 � 10�14 hsa-miR-10b �2.1 1.18 � 10�10 6.66 � 10�10

HS_109 2.14 4.88 � 10�19 1.43 � 10�17 hsa-miR-629� �2.04 1.05 � 10�18 2.71 � 10�17

hsa-miR-610 2.13 4.83 � 10�14 5.06 � 10�13 hsa-miR-574-3p �2.04 1.34 � 10�16 2.07 � 10�15

HS_169 2.11 3.47 � 10�24 1.85 � 10�22 hsa-let-7b� �1.97 2.53 � 10�15 3.16 � 10�14

solexa-15-44487 2.1 2.05 � 10�17 4.16 � 10�16 hsa-miR-183 �1.96 4.28 � 10�13 3.81 � 10�12

hsa-miR-1225-3p 2.06 8.59 � 10�14 8.41 � 10�13 hsa-miR-182 �1.91 4.50 � 10�11 2.78 � 10�10

hsa-miR-140-5p 2.04 4.58 � 10�06 1.30 � 10�05 hsa-let-7e �1.89 2.52 � 10�15 3.16 � 10�14

hsa-miR-801:9.1 2.03 1.85 � 10�22 8.36 � 10�21 hsa-miR-505� �1.84 4.78 � 10�12 3.30 � 10�11

hsa-miR-891a 1.93 2.33 � 10�12 1.78 � 10�11 hsa-miR-550 �1.8 2.20 � 10�09 9.64 � 10�09

solexa-8048-104 1.87 1.24 � 10�17 2.69 � 10�16 hsa-miR-942 �1.78 6.18 � 10�17 1.10 � 10�15

hsa-miR-600 1.8 1.16 � 10�06 3.54 � 10�06 HS_91.1 �1.77 1.12 � 10�06 3.45 � 10�06

HS_45.1 1.8 4.14 � 10�19 1.28 � 10�17 hsa-miR-598 �1.74 4.26 � 10�12 3.04 � 10�11

hsa-miR-490-5p 1.78 4.64 � 10�09 1.95 � 10�08 hsa-miR-7-1� �1.74 1.06 � 10�18 2.71 � 10�17

solexa-603-1846 1.75 6.51 � 10�15 7.64 � 10�14 hsa-miR-130b� �1.73 1.98 � 10�18 4.85 � 10�17

hsa-miR-20a� 1.75 1.95 � 10�05 5.19 � 10�05 hsa-miR-1301 �1.73 1.93 � 10�12 1.49 � 10�11

HS_260 1.74 6.04 � 10�27 8.86 � 10�25 HS_10 �1.72 3.44 � 10�10 1.77 � 10�09

hsa-miR-330-5p 1.74 3.96 � 10�10 1.99 � 10�09 hsa-miR-193b� �1.71 6.48 � 10�09 2.68 � 10�08

hsa-miR-579 1.74 4.16 � 10�03 7.62 � 10�03 hsa-miR-27a� �1.71 5.76 � 10�08 2.10 � 10�07

HS_128 1.72 2.77 � 10�14 3.01 � 10�13 hsa-miR-29b-1� �1.71 3.38 � 10�16 4.73 � 10�15

hsa-miR-33a 1.69 3.47 � 10�05 8.91 � 10�05 hsa-miR-629 �1.69 5.71 � 10�14 5.88 � 10�13

hsa-miR-885-5p 1.68 3.27 � 10�05 8.43 � 10�05 hsa-miR-126� �1.64 7.29 � 10�06 2.02 � 10�05

hsa-miR-591 1.68 4.25 � 10�07 1.40 � 10�06 hsa-miR-150 �1.61 6.53 � 10�17 1.13 � 10�15

HS_116 1.67 3.77 � 10�17 7.12 � 10�16 hsa-miR-105� �1.61 2.34 � 10�20 8.08 � 10�19

hsa-miR-1268 1.67 2.99 � 10�09 1.27 � 10�08 hsa-miR-30a� �1.59 8.74 � 10�17 1.43 � 10�15

HS_32 1.62 9.03 � 10�09 3.58 � 10�08 hsa-miR-200c �1.58 9.61 � 10�11 5.48 � 10�10

hsa-miR-1322 1.62 1.74 � 10�09 7.84 � 10�09 hsa-miR-628-3p �1.57 3.60 � 10�11 2.25 � 10�10

HS_175 1.61 6.48 � 10�18 1.52 � 10�16 HS_67 �1.57 1.94 � 10�13 1.84 � 10�12

HS_112 1.59 6.53 � 10�07 2.10 � 10�06 hsa-miR-200b �1.55 1.98 � 10�13 1.85 � 10�12

hsa-miR-335 1.58 1.80 � 10�14 1.99 � 10�13 hsa-miR-342-5p �1.55 2.60 � 10�08 9.78 � 10�08

hsa-miR-612 1.58 2.24 � 10�08 8.49 � 10�08 hsa-miR-1238 �1.54 2.39 � 10�05 6.33 � 10�05

hsa-miR-554 1.58 1.19 � 10�09 5.55 � 10�09 hsa-miR-199a-3p, �1.54 2.78 � 10�05 7.32 � 10�05

hsa-miR-615-5p 1.58 6.66 � 10�11 3.95 � 10�10 hsa-miR-454� �1.54 2.43 � 10�09 1.05 � 10�08

HS_126 1.58 2.06 � 10�11 1.33 � 10�10 hsa-miR-1287 �1.52 2.70 � 10�11 1.71 � 10�10

hsa-miR-1303 1.58 4.94 � 10�08 1.82 � 10�07 hsa-miR-628-5p �1.52 5.54 � 10�06 1.55 � 10�05

hsa-miR-647 1.56 1.16 � 10�07 4.03 � 10�07 hsa-miR-525-5p �1.51 1.51 � 10�16 2.28 � 10�15

solexa-9124-90 1.55 1.82 � 10�25 1.78 � 10�23

hsa-miR-21� 1.54 2.07 � 10�04 4.79 � 10�04

hsa-miR-18b 1.54 3.13 � 10�03 5.91 � 10�03

hsa-miR-326 1.54 9.12 � 10�07 2.86 � 10�06

HS_287 1.53 9.66 � 10�17 1.53 � 10�15

hsa-miR-296-5p 1.53 1.88 � 10�06 5.56 � 10�06

hsa-miR-548g 1.52 5.91 � 10�25 4.09 � 10�23

HS_282 1.52 6.95 � 10�17 1.17 � 10�15

hsa-miR-1281 1.52 7.22 � 10�11 4.21 � 10�10

hsa-miR-1226� 1.52 9.54 � 10�10 4.52 � 10�09

hsa-miR-101 1.51 1.44 � 10�03 2.87 � 10�03

HS_147 1.51 5.25 � 10�15 6.29 � 10�14

hsa-miR-603 1.51 2.08 � 10�06 6.12 � 10�06
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(i.e. not cataloged by miRBase database). For example, the expression
level of HS_228.1 and HS_108.1is the first and second most depleted in
case versus control, and the expression level of HS_33 is the first most
elevated in case versus control. Our data together indicate a global
perturbation in the microRNA expression pattern in familial ovarian
cancer cases over controls.

We next used hierarchical clustering to explore the differentiation
of case from control samples based on the age-corrected expression
signature of the 95 differentially expressed microRNAs described
above. As shown in Figure 1, the 74 familial ovarian cancer cases
and 47 unrelated controls were separately grouped, except for a small
group of 11 cases that were grouped with the unrelated controls. The
overall accuracy or classification rate is 91% (110/121). To further
explore the potential of a microRNA signature for discriminating
ovarian cancer cases and unrelated controls, we employed the classi-
fication for microarrays package to automatically perform microRNA
selection (from the initial 587 microRNAs), parameter tuning, classi-
fier construction and unbiased evaluation of the constructed classi-
fiers. Specifically, a SVM classifier composed of eight microRNAs
(varying the number did not significantly change the accuracy) was

built using a training set consisting of 120 samples and tested on the
remaining single test sample. This procedure was repeated 121 times
until all the samples had been left out (i.e. leave-one-out cross vali-
dation), and the resulting classification accuracy for the 121 classifiers
was 95.9%. Seven microRNAs, hsa-miR-548g, hsa-miR-588, hsa-
miR-216a, solexa-2683-338, hsa-miR-92b, HS-260 and HS-228.1,
were present in all 121 classifiers, and HS-169 was present in 103
(85.1%) classifiers.

To validate the results from microRNA profiling, Taqman quantitative
real-time PCR (qRT–PCR) was performed on these 121 samples. Se-
lected microRNAs included hsa-miR-216a and hsa-miR-588 which were
upregulated in cancer cases versus unrelated controls, and hsa-miR-92b
and hsa-miR-629� which were downregulated. The qRT–PCR validation
results were consistent with those of the initial microarray experiment,
with hsa-miR-216a (P 5 1.01 � 10�18, fold change 5 2.47) and hsa-
miR-588 (P5 1.12 � 10�22, fold change 5 2.03) significantly upregu-
lated in familial ovarian cancers and hsa-miR-92b (P 5 3.34 � 10�22,
fold change 5 �1.82) and hsa-miR-629� (P 5 3.05 � 10�16, fold
change 5 �2.30) significantly downregulated in familial ovarian
cancers (Figure 2).

Fig. 1. Hierarchical clustering of 74 familial ovarian cancer cases and 47 cancer-free relatives based on age-corrected microRNA expression levels. In the
clustering heat map, red indicates upregulated, whereas green indicates downregulated. In the sample clustering dendrogram, orange indicates samples from
cancer patients, whereas yellow indicates samples from cancer-free controls.
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Because familial ovarian cancers are more likely to be diagnosed at
a younger age, we conducted an exploratory analysis of the relation-
ship between microRNA expression profiles and age of familial ovar-
ian cancer diagnosis. Using Spearman’s rank correlation at the
significance level of 0.05, 3 of the 95 differentially expressed micro-
RNAs showed an inverse association, with increasing expression
value with decreasing age at cancer diagnosis (hsa-miR-92b,
q 5 �0.288, P 5 0.0129; hsa-miR-629�, q 5 �0.285, P 5 0.0139;
hsa-miR-548, q 5 �0.248, P 5 0.0333), whereas 2 of the 95 differ-
entially expressed microRNAs showed a positive association, with
increasing expression value with increasing age at cancer diagnosis
(hsa-miR-490-5p, q 5 0.250, P 5 0.0317; hsa-miR-140-5p,
q 5 0.231, P 5 0.0481). The significantly inverse associations of

hsa-miR-92b and hsa-miR-629� with age at cancer diagnosis in cancer
cases were validated by qRT–PCR (hsa-miR-92b, q 5 �0.28,
P 5 0.015; hsa-miR-629�, q 5 �0.26, P 5 0.022).

To further assess the potential implications of microRNAs in ovarian
cancer, we performed association analysis to analyze the correlations
between microRNA expression variations and seven ovarian cancer
risk SNPs identified from GWAS. Significant associations were iden-
tified by evaluating the relationships between variations of microRNA
expression levels (with age and case–control status adjusted) and var-
iant genotypes through 10 000 permutations. Significance was set at
permutation level threshold of 0.01. The complete list of 130 identified
significant associations is shown in Supplementary Table 1, available
at Carcinogenesis Online. As shown in Table II, rs3814113 and

Fig. 2. Validation of microRNA microarray experiments using quantitative reverse transcription real-time PCR. Red point denotes the expression value from samples
of cancer patients, whereas black point denotes the expression value from control samples. The residuals of gene expression corrected for age is shown in log2 scale.

Table II. Summary of significant associations between SNP genotypes and microRNA expression phenotypes

A. All discovered eQTLs

rs3814113 rs2072590 rs10088218 rs2363956 rs2665390 rs1516982 rs10098821

P , 0.01 68 37 6 0 4 7 8
P , 0.001 14 7 1 0 0 1 1

B. eQTLs involving differentially expressed microRNAs (FDR , 0.01)

rs3814113 rs2072590 rs10088218 rs2363956 rs2665390 rs1516982 rs10098821

P , 0.01 41 24 3 0 2 2 2
P , 0.001 8 5 0 0 0 0 0

C. eQTLs involving differentially expressed microRNAs (FDR , 0.01 and FC . 1.5)

rs3814113 rs2072590 rs10088218 rs2363956 rs2665390 rs1516982 rs10098821

P , 0.01 5 7 1 0 1 0 1
P , 0.001 2 1 0 0 0 0 0
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rs2072590, the two most significant ovarian cancer risk SNPs, were
significantly associated with a large number of microRNA expression
variations. At the 0.01 permutation threshold, the number of signifi-
cant associations with these two variants was 68 and 37. The number
was reduced to 14 and 7 at the more stringent permutation threshold of
0.001. On the other hand, the other five variants had a fewer number of
significant associations with microRNA expression variations. The
most significant associations detected were between rs3814113 and
hsa-miR-517a (permutated P, 0.0001; Figure 3, middle), rs2072590
and hsa-miR-454 (permutated P , 10�4; Figure 3, top) and
rs2072590 and hsa-miR-22 (permutated P5 10�4; Figure 3, bottom).
rs3814113 explained �15% of the variation in hsa-miR-517a expres-
sion as measured by adjusted r2. rs2072590 explained �16% and 12%
of the variation in hsa-miR-454 and hsa-miR-22 expression, respec-
tively (Supplementary Table 1, available at Carcinogenesis Online).
We examined whether the identified microRNAs were differentially
expressed between ovarian cancer cases and unrelated controls. As
shown in Table IIB and C, a number of them were differentially ex-
pressed at the significance level of FDR , 0.01, and several of them
were further characterized by at least 1.5-fold expression change. For
example, both hsa-miR-18b and hsa-miR-101 were significantly over-
expressed in cancer cases with at least 1.5-fold changes (Table I). As
shown in Supplementary Figure 2, available at Carcinogenesis On-
line, both microRNAs were significantly associated with rs3814113

Fig. 3. Examples of significant associations between SNP genotypes and microRNA expression phenotypes. The boxplots shows the relationship between log2

residuals of microRNA expression levels (adjusted for age and case–control status) and genotype of the SNPs. rs3814113 explained �15% of the variation in hsa-
miR-517a expression as measured by adjusted r2. rs2072590 explained about 16 and 12% of the variation in hsa-miR-454 and hsa-miR-22 expression, respectively.

Table III. The microRNA clusters (with cluster distance of 5000 bp) for the
microRNAs significantly associated with GWAS discovered SNPs

SNPs-ID Associated
microRNA

Permulated
P value

Chromosome Cluster
distance
cutoff (bp)

Cluster 1
rs3814113 miR-18b 4.00 � 10�4 Chr. X 500
rs3814113 miR-106a 1.00 � 10�3 Chr. X 500
rs3814113 miR-20b 2.50 � 10�3 Chr. X 500

Cluster 2
rs3814113 miR-30b 6.80 � 10�3 Chr. 8 5000
rs1516982 miR-30d 9.00 � 10�3 Chr. 8 5000

Cluster 3
rs3814113 miR-18a 4.50 � 10�3 Chr. 13 500
rs3814113 miR-19a 2.00 � 10�4 Chr. 13 500
rs3814113 miR-20a 7.00 � 10�4 Chr. 13 500
rs3814113 miR-20a� 2.10 � 10�3 Chr. 13 500
rs3814113 miR-17 9.20 � 10�3 Chr. 13 500

Cluster 4
rs2665390 miR-539 9.50 � 10�3 Chr. 14 5000
rs3814113 miR-377 2.10 � 10�3 Chr. 14 5000

Cluster 5
rs3814113 miR-517a ,10�5 Chr. 19 5000
rs3814113 miR-518e 4.5 � 10�3 Chr. 19 5000
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(permutated P 5 4.0 � 10�4 and 8.0 � 10�4, adjusted r2 5 11% and
10%, respectively).

In further analysis, we investigated the genomic locations of the
identified microRNAs, which were significantly associated with ovar-
ian cancer risk SNPs. Among the 109 identified microRNAs, 14 were
found to be located in five microRNA clusters (Table III) within the
cluster distance of 5000 bp. These five microRNA clusters are on
chromosomes X (hsa-miR-18b, hsa-miR-106a and hsa-miR-20b),
Chromosome 8 (hsa-miR-30b, hsa-miR-30d), chromosome 13 (hsa-
miR-18a, hsa-miR-19a, hsa-miR-20a, hsa-miR-20a�, hsa-miR-17),
chromosome 14 (hsa-miR-539 and hsa-miR-377) and chromosome
19 (hsa-miR-517a and hsa-miR-517e). The cluster on chromosome
13 belongs to a well-known microRNA cluster, miR-17-92, one of the
first microRNA clusters recognized as a key component of the mo-
lecular network that impacts tumorigenesis and tumor maintenance.
All five microRNAs belonging to the miR-17-92 cluster are signifi-
cantly associated with rs3814113, with the strongest association be-
tween hsa-miR-20a and rs3814113 (P 5 7.0 � 10�4).

We also examined whether the microRNAs that showed significant
associations with ovarian cancer risk SNPs might also share similar
predicted molecular functions. We downloaded the computational
target predictions from the latest miRBase Targets database http://
www.mirbase.org/ and obtained the list of genes targeted by at least
eight microRNAs whose expression variations were significantly as-
sociated with variant genotypes in our study. The list of shared target
genes was used for Gene Ontology term enrichment analysis with the
NIH DAVID Tools http://david.abcc.ncifcrf.gov/. As shown in Sup-
plementary Table 2, available at Carcinogenesis Online, the list of
significantly enriched Gene Ontology terms include ‘cellular response
to stress’ (P 5 2.87x10�06), ‘cell cycle’ (P 5 3.19�10�5), ‘response
to DNA damage stimulus’ (P 5 1.77 � 10�4), ‘ATP binding’
(P 5 2.18 � 10�5) and ‘mitochondrion’ (P 5 3.17 � 10�4).

Discussion

The genetic etiology of familial ovarian cancer is still an enigma.
Known mutations in BRCA1/2 and MMR genes can only explain
a small part of the familial aggregation of ovarian cancer. The results
from recent GWAS studies have identified several common SNPs
(6–8). However, most of these SNPs are not in protein-encoding re-
gions, so the functional significance of these variants is largely un-
known. The current study presents an approach to dissect the genetic
susceptibility of familial ovarian cancer as well as elucidate the po-
tential functional significance of the identified risk SNPs from GWAS.
In this study, we applied microarray analysis followed by qRT–PCR
validation to assess global microRNA expression in LCLs from pa-
tients with familial ovarian cancer and unrelated controls. We found
a large number of differentially expressed microRNA between famil-
ial ovarian cancer cases and unrelated controls. The differences have
been further cross validated by machine learning classification anal-
ysis. Two differentially expressed microRNAs, hsa-miR-92b and hsa-
miR-629�, are found to be inversely associated with age at cancer
diagnosis. The predicted targets of hsa-miR-92b are enriched for me-
tabolism, oncogenesis and transcription, and the predicted targets of
hsa-miR-629� appear enriched for transport and apoptosis (Supple-
mentary Table 3 is available at Carcinogenesis Online). In the sub-
sequent association analysis, we observed a significant number of
associations between microRNA expression variations and seven
ovarian cancer risk SNPs discovered from GWAS (6–8). Among
them, rs3814113 (9p22.2) and rs2072590 (2q31) had the highest
number of significant correlations (68 and 37, respectively, at the
0.01 permutation threshold). Interestingly, 14 microRNAs that were
associated with ovarian cancer risk SNPs are found to belong to five
microRNA clusters. The most notable cluster is the miR-17-92 cluster
with five microRNAs within 500 bp cluster distance. All of these five
microRNAs belonging to the miR-17-92 cluster are significantly as-
sociated with rs3814113. In the pathway analysis, using the predicted
target genes of microRNAs with expression significantly associated

with ovarian cancer risk SNPs, we observed significant enrichment of
pathways involved in cell cycle and response to DNA damage.

This study provides the first assessment of the expression level var-
iation of mature human microRNAs in LCLs from familial ovarian
cancer patients and healthy unrelated controls. There are several
limitations to this study. First, many microRNAs are expressed in a
tissue-restricted manner (31). The results from LCLs in this study are
probably to represent a small subset of microRNA expression varia-
tions. Also, our ability to study the genetics of microRNA expression is
limited by the fact that we only include seven SNPs in the analysis,
although these seven SNPs have been linked to ovarian cancer in
GWAS. Second, there are concerns about using EBV-transformed
LCLs and potential cancer treatment effects on microRNA expression
patterns in LCLs. EBV-transformed LCLs have been frequently used in
genetic studies on gene expression. Several studies suggest that the
messenger RNA expression patterns are highly concordant between
EBV-transformed LCLs and other cell types, including B cells before
transformation (32–34). Therefore, it is possible that microRNA
expression pattern before and after EBV immortalization is concordant
to a certain degree, although we do not have the answer yet. Third, we
do not expect to observe significant effects of cancer treatment on
miRNA expression profiles since the analyses were performed using
EBV-transformed LCLs. Although we could not exclude the remote
chance that certain treatments (e.g. radiation therapy, etc.) might cause
inherited changes in the blood cells and thereby affect microRNA
expression, it is very unlikely. Last, there is a concern about what the
results actually mean when measuring expression in non-tumor tissue at
a single point in time. The ultimate goal of our study is to identify the
inherited genetic determinants of microRNA expression in normal tis-
sues rather than somatic alterations of microRNA expression in tumor
tissues. Studies have been shown that at least part of the messenger
RNA/microRNA expression is genetically determined. Therefore, even
at a single time point in non-tumor tissue, what we have observed from
this study still provides useful information about how microRNA ex-
pression is genetically regulated. In the future, we are interested in
expanding our analysis to other normal tissues.

One unique feature of our study is the association analysis between
microRNA expression and ovarian cancer risk SNPs identified from
GWAS. Several GWAS studies in ovarian cancer have successfully
identified a few risk SNPs, including a susceptibility cluster on chromo-
some 9p22.2 containing 12 SNPs, rs2072590 on 2q31, rs2665390 on
3q25, rs10088218, rs1516982, rs10098821 on 8q24.21 and rs2363956
and rs8170 on 19p13 (6–8). All of the SNPs except rs2363956 and
rs8170 on 19p13 are located in non-coding regions. Thus, the functional
significance for most of these variants is unknown. Our analysis presents
the first evidence of potential functional significance of these candidate
ovarian cancer risk SNPs in this post-GWAS era. Our goal is to inves-
tigate whether microRNAs, and their predicted target genes or path-
ways, may be associated with these ovarian cancer risk SNPs. In the
analysis, we observed 130 different significant associations between
microRNAs and variants. rs3814113 (9p22.2) and rs2072590 (2q31),
two most significant ovarian cancer risk SNPs from GWAS studies (P5
2.5 � 10�19 and 1.9 � 10�8, respectively), have the greatest number of
significant associations (68 and 37, respectively). The number of signif-
icant associations does not necessarily positively correlate with the bi-
ological functions. However, considering the fact that microRNAs can
regulate at least 60% of human protein-encoding genes, they can act as
TSGs or/and oncogenes, and they are actively involved in every step of
carcinogenesis; our data suggest that these two GWAS discovered var-
iants might be key players involved in a variety of biological pathway
and might have important biological functions. On the other hand, our
study adds a new level of complexity to cellular gene expression regu-
lation by revealing that common genetic variants can affect the expres-
sion of microRNAs that are their own regulatory molecules. Earlier
studies have shown that common genetic variants contribute signifi-
cantly to the individual differences in protein-coding gene expression
variation. Whether that is the case for microRNA is not known. Tested
genetic variants in this study are not only associated with ovarian cancer
risk, but also potential candidates for the involvement in microRNA
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expression. Differences in the quantity of mature microRNAs have
a clear impact on the level of targeted proteins and result in phenotypic
differences. The subsequent identification of the functional variation
related to each variant may provide important genomic targets for dis-
secting the molecular basis of susceptibility to familial ovarian cancer.

More intriguingly, five microRNAs (hsa-miR-18a, hsa-miR-19a,
hsa-miR-20a, hsa-miR-20a�, hsa-miR-17) on chromosome 13, which
are significantly associated with rs3814113, belong to the miR-17-92
microRNA cluster. The miR-17-92 cluster, which is also designated as
oncomir-1, is one of the best-characterized oncogenic microRNAs (35).
Human major miR-17-92 cluster is located at 13q31.3, a region ampli-
fied in several hematopoietic malignancies and solid tumors, including
diffuse B-cell lymphomas, follicular lymphomas, Burkitt’s lymphomas
and lung carcinoma (36). Overexpression of miR-17-92 has been ob-
served in multiple tumor types (37,38). However, studies in the past
have revealed that miR-17-92 functions pleiotropically during both
normal development and malignant transformation to promote prolif-
eration, inhibit differentiation, augment angiogenesis and sustain cell
survival. The relationship between miR-17-92 and ovarian cancer has
not been thoroughly investigated (39,40). Loss of heterogeneity at the
13q31.3 locus that harbors human miR-17-92 has been reported in some
ovarian and breast cancers and melanomas, suggesting it might act as
a tumor suppressor in these cancers (39). The most significant associa-
tion in this cluster is between hsa-miR-20a and rs3814113. Fan et al.
(41) reported that inhibition of hsa-miR-20a in OVCAR3 ovarian cancer
cell line could suppress, whereas overexpression of miR-20a could en-
hance, cell long-term proliferation and invasion. They also confirmed
amyloid precursor protein (APP) as a direct target gene of hsa-miR-20a.
In addition, Nam et al. (42) reported that higher expression of hsa-miR-
18a was associated with poor prognosis of ovarian cancer. The micro-
RNA cluster on chromosome X, including hsa-miR-18b, hsa-miR-106a
and hsa-miR-20b, is the paralog of miR-17-92, caused by ancient gene
duplication. Along with the other two clusters on chromosome 14 and
19, these three microRNAs clusters have been reported to be regulated
through imprinting or epigenetic mechanisms (16). Zhang et al. (16)
found the microRNA expression in these three clusters were signifi-
cantly lower in ovarian tumor tissues compared with normal ovarian
surface epithelium cells. The cluster on chromosome 8 includes hsa-
miR-30d that has been reported to play a role in the initiation and pro-
gression of ovarian cancer. The DNA copy number of the hsa-miR-30d
and hsa-miR-30b region has been frequently amplified in multiple types
of human cancers, including ovarian cancer (43). Therefore, it seems
that all five microRNA clusters that show significant associations with
ovarian cancer risk alleles have important functional implications in the
etiology of ovarian cancer.

Additionally, using these identified significant associations in the
pathway analysis, we have found that the genes predicted to be tar-
geted by multiple SNP-associated microRNAs are enriched in several
key biological pathways, such as cell cycle, cellular response to stress/
damage, energy metabolism, etc. Interestingly, so far, all known fa-
milial ovarian cancer genes (BRCA1/2 and MMR) are key players in
these pathways. For example, it has been demonstrated that BRCA1 is
the key regulator in sensing DNA stress/damage and subsequently
promoting cell cycle arrest (44). Although our association analysis
cannot pinpoint the exact functions of these GWAS discovered SNPs,
it elucidates the potential biological pathways for which one could
focus on in future analysis.

To the best of our knowledge, this is the first report to describe the
microRNAs expression profiles in LCLs from familial ovarian cancer
cases and unrelated controls. This is also the first report on the signif-
icant associations between microRNA expression variations and ovar-
ian cancer risk SNPs. Our discovery not only suggests the microRNA
expression in LCLs might be regulated by genetic variants but also
proposes the possible functional significance of ovarian cancer risk
SNPs identified from GWAS. Further studies are needed to determine
the genetic causes of differentially expressed microRNAs and biolog-
ical consequences and pathways of the identified significant associa-
tions between microRNA and ovarian cancer risk SNPs. These studies
will facilitate candidate gene discovery and lead to better understanding

of the genetic etiology of familial ovarian cancer and development of
microRNA-based tools to detect familial ovarian cancer at early age.

Supplementary material

Supplementary Figures 1 and 2 and Tables 1–3 can be found at http://
carcin.oxfordjournals.org/.
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