Skip to main content
. 2009 Jun 17;9(6):4766–4788. doi: 10.3390/s90604766
Algorithm 1: LGR Algorithm.
Begin
Input: Network topology, data source nodes
Output: Data aggregation tree
Initialize Lagrangean multiplier vectors ui(0) = 0, ∀i = 1,.…,6.
UB=|G|×lLal and LB = a very large negative number (e.g., −∞) //upper and lower bounds, respectively
quiescence_age = 0, and step_size = 2.
Foriteration = 1 to Max_Iteration_Number, perform the following:
  Solve subproblem 1, subproblem 2, subproblem 3, subproblem 4, subproblem 5.
  ComputeZLR in (LR).
  IfZLR (u) > LB
   LB = ZLR(u) and quiescence_age = 0.
  Elsequiescence_age = quiescence_age + 1.
  Ifquiescence_age = Quiescence_Threshold
   step_size = step_size/2 and quiescence_age = 0.
  RunLGR-Primal algorithm (Figure 5).
  Compute the new upper bound ub.
  Ifub < UB then UB = ub.
  Update the step_size.
  Update the Lagrangean multiplier vectors.
End For
End