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PURPOSE. Nuclear magnetic resonance (NMR) spectroscopy has
been used to quantify lipid wax, cholesterol ester terpenoid
and glyceride composition, saturation, oxidation, and CH2 and
CH3 moiety distribution. This tool was used to measure
changes in human meibum composition with meibomian gland
dysfunction (MGD).

METHODS. 1H-NMR spectra of meibum from 39 donors with
meibomian gland dysfunction (Md) were compared to meibum
from 33 normal donors (Mn).

RESULTS. Principal component analysis (PCA) was applied to
the CH2/CH3 regions of a set of training NMR spectra of human
meibum. PCA discriminated between Mn and Md with an
accuracy of 86%. There was a bias toward more accurately
predicting normal samples (92%) compared with predicting
MGD samples (78%). When the NMR spectra of Md were
compared with those of Mn, three statistically significant de-
creases were observed in the relative amounts of CH3 moieties
at 1.26 ppm, the products of lipid oxidation above 7 ppm, and
the ACH moieties at 5.2 ppm associated with terpenoids.

CONCLUSIONS. Loss of the terpenoids could be deleterious to
meibum since they exhibit a plethora of mostly positive bio-
logical functions and could account for the lower level of
cholesterol esters observed in Md compared with Mn. All three
changes could account for the higher degree of lipid order of
Md compared with age-matched Mn. In addition to the power
of NMR spectroscopy to detect differences in the composition
of meibum, it is promising that NMR can be used as a diagnos-
tic tool. (Invest Ophthalmol Vis Sci. 2012;53:337–347) DOI:
10.1167/iovs.11-8551

The correlation between dry eye and an abnormal lipid layer
of the tear film has been made by use of interference

microscopy1–5 and other techniques, all reviewed in 2004.6

Most of the tear lipids are produced by the meibomian gland,

and when the gland is dysfunctional, dry-eye conditions en-
sue.7,8 When the meibomian gland in patients with dry eye is
expressed, the lipid layer thickness increases, as does tear
stability.9,10 The correlation between the lipid layer and dry
eye conditions has also been associated with contact lens
wear11,12 and exposure to substances such as solvent vapors,
which cause disruption of the lipid layer.13 Relationships be-
tween meibomian gland dysfunction (MGD) and dry eye symp-
toms have been reviewed.14–18

A lipidomics approach to measuring meibum lipid has been
reviewed19 and has been very successful in identifying and
discovering unique lipids. A problem with this approach is
that complete quantification is complicated by the great
number (thousands) of species present in human meibum.20

Because each lipid class has a different ionization efficiency,
standards are needed for the quantification of each of them.
The lipid composition of human meibum varies greatly from
study to study.19 This variation has been attributed to the
different analytical methodologies employed and the inher-
ent variability of biological samples.19 Indeed, the lipid
composition ranges from study to study are for wax esters
(8% to 39%), for cholesterol esters (8% to 39%), for glycer-
ides (0% to 5%), for phospholipids (0% to 16%), and for
hydrocarbons (1% to 38%).19

Spectroscopic studies have identified changes that occur
with MGD that could be important to the function of the tear
film. Infrared spectral studies along with the use of principal
component analysis (PCA) enable the quantification of the
variance among the lipid spectra which identified and quanti-
fied the protein (another biomarker of instability) associated
with human meibum.21,22 The spectra were used to discrimi-
nate between meibum from normal donors (Mn) and meibum
from donors with MGD (Md) with an accuracy of 93%.22 More
importantly, it shows that certain spectral regions (eigenvec-
tors) contain compositional and structural information about
the changes that occur with the principal component (or
variable). The spectral features, which in this case is MGD, of the
major eigenvector provided three biomarkers showing that
meibum from donors with MGD (Md) contains more protein and
relatively less methyl groups (CH3) and cis double bonds
(cisACH) compared to meibum from donors with normal
meibomian glands. The amount of protein was confirmed from
relative infrared band intensities.22

Age-related changes in human meibum have also been ob-
served using spectroscopic analysis. Infrared and nuclear mag-
netic resonance (NMR) and Raman spectroscopies were used
to show that meibum from children has fewer double
bonds,21,23 cholesterol esters,21,24 and protein22 and more
carotenoids,23,25 and CH2 groups21,23 than older normal adults.
It has yet to be determined whether these changes are associ-
ated with functional changes, such as the rate of evaporation,
tear breakup time and meibum spreading.
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Two other groups have documented changes in meibum
composition that may contribute and be diagnostic of dry eye
symptoms. The level of wax and cholesterol ester saturation
changed in meibum from donors with meibomian keratocon-
junctivitis depending on whether the comparison was made
with Mn from a population containing cholesterol esters or
not.26 Triglycerides in Md were more saturated compared to
those in Mn,27 and Md had a lower percentage of monounsat-
urated (oleic acid).28 Another group has shown that Md con-
tains a lower percentage of saturation and a higher percentage
of branched acyl chains.29 Md also contains higher levels of
phosphatidylcholine30 and phospholipid unsaturation31 and
lower levels of phosphatidylethanolamine and sphingomy-
elin32 compared with Mn. There is still controversy about the
actual composition of meibum, especially regarding the polar
lipids. Discrepancies may depend on the analytical methods,
the sample collection techniques, and contamination.32–36

Infrared spectroscopic studies show that in MGD, both the
lipid order and corresponding phase transition temperature
increase, indicating a stiffer lipid arrangement.37,38 Stiffer
meibum lipid could impede the flow of meibum, resulting in
less lipid on the lid margin, which leads to a higher rate of tear
evaporation. Furthermore, stiffer meibum lipids are unlikely to
spread on the surface of the tear film.1 We hypothesize that the
elevated protein content associated with Md causes meibum to

be more ordered and, on visual inspection, to appear to be
more viscous.22

Infrared and Raman spectroscopy have been applied to
study meibum hydrocarbon chain conformation and have
provided limited information regarding meibum composi-
tion.1,21,22,25,37– 42 These techniques may be applicable to
high-throughput screening, and FTIR has recently been used as
a diagnostic tool.22 The advantage of spectroscopic techniques
is that the sample is not destroyed in the process of analysis,
and the same sample can be analyzed later by other techniques
including mass spectrometry. NMR analysis has been useful in
the identification and characterization of new lipids in the
human lens43–48 and in quantifying waxes and the primary
structure and composition of cholesterol esters and triglycer-
ides, which are major components of human meibum.49–59 In
this study, we used NMR spectroscopy to quantify CH3 and
CH2,ACH, which are moieties and products of lipid oxidation
in human meibum with MGD.

MATERIALS AND METHODS

The following Materials and Methods section is almost identical with
that in our prior publications.23,24

TABLE 1. Meibum Donor Grouping and Characteristics

Average Age (y) Age Range (y) Male (%) Race (%) Sample (n)

Infant 1.1 �1–2 86 C 57, B 14, H 14, U 14 7
Child 7.6 3–12 57 C 71, U 29 7
Adolescent 20 13–21 86 C 86, U 14 7
Adult 54 32–83 82, U9 C 54, B 9, A 9, U 28 11
MGD 67 29–87 72, U3 C7 7, B 13, H 3, U 7 39

C, Caucasian; B, Black; H, Hispanic; U, unknown.

FIGURE 1. The average 1H NMR
spectrum of human meibum from do-
nors with MGD. The 1H NMR spectra
of human meibum may be divided into
five regions: The CH2 and CH3 region
from 0 to 1.4 ppm, the CH and
deshielded CH2 region from 1.4 to 3.9
ppm, the ester region from 3.9 to 4.7,
the CAC region from 4.7 to 7 ppm,
and the oxidative products region
above 7 ppm. The insets at the bottom
are presented to show more detail.
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Materials

Cyclohexane-d12, tetrahydrofuran (THF) and methanol (MeOH) were
obtained from Sigma-Aldrich (St. Louis, MO).

Clinical Diagnosis

Subjects were recruited from the Kentucky Lion’s Eye Center and the
Robley Rex Veterans Affairs Medical Center in Louisville, KY. Normal
status was assigned when the subject’s meibomian gland orifices
showed no evidence of keratinization or plugging with turbid or
thickened secretions and no dilated blood vessels were observed on
the eyelid margin.

The diagnosis of MGD was made according to the criteria of Foulks
and Bron.60 Plugging of the meibomian glands of at least 5 of 10 orifices
in the central portion of the upper eyelid was required for diagnosis of
MGD. The secretion expressed by the meibomian gland had to be
turbid, turbid with clumps, or pastelike. Both, inflammation of the
eyelid margin, as evidenced by swelling of the eyelid margin, and 2�
vascular injection of the posterior lid margin, were necessary for
diagnosis. The presence of telangiectasia of the posterior eyelid margin
was confirmatory of chronic disease but not required for entry. Tear
film stability was determined by instillation of sodium fluorescein into
the tear film. Tear breakup time was �5 seconds for all Md subjects
sampled.

Collection and Processing of Human Meibum

Written informed consent was obtained from all donors. Protocols and
procedures were reviewed by the institutional review boards of the
University of Louisville and Robley Rex Veterans Affairs. All procedures
were in accord with the Declaration of Helsinki. The meibomian gland
was expressed by compressing the eyelid between cotton-tipped ap-
plicators, with strict attention to avoiding touching the eyelid margin
during expression. All four eyelids were expressed, and approximately
1 mg of meibum was collected per individual for direct spectroscopic
study. The expressate was collected with a platinum spatula and
immediately spread onto the AgCl window and into 0.5 mL of THF/
MeOH, 3:1 vol:vol, in a 9-mm microvial with a Teflon cap (Microliter
Analytical Supplies., Suwanee, GA). All samples were frozen under
argon gas until analysis. Analyses were performed within 3 weeks of
collection of the sample. Storage of the sample on AgCl windows for
more than 2 months under argon did not affect the sample.25 Before
NMR analysis, the THF/MeOH in the microvial containing meibum
lipid (ML) rinsed from the spatula was evaporated with a stream of
argon gas.

After infrared analysis and solvent evaporation, the ML was re-
moved from the AgCl window by using a series of solvents with
different hydrophobicities to ensure that all lipid classes were ex-
tracted from the AgCl window. First, the AgCl window was placed
with the ML side down, into a 15-mL glass scintillation vial containing
1 mL of hexane and purged with argon gas. A glass vial, rather than a
plastic one, was used in all protocols to avoid plasticizer contamina-
tion. The vial was sonicated in an ultrasonic bath (model 1510; Branson
Ultrasonics, Danbury, CT) for 10 minutes. The hexane was decanted
into the microvial containing the ML rinsed from the spatula. The
hexane was evaporated under a stream of nitrogen gas. Methanol (1.5
mL) was then added to the scintillation vial containing the AgCl
window and purged with argon gas. The vial was sonicated in an
ultrasonic bath (Branson Ultrasonics) for 10 minutes. The methanol
was decanted into the microvial containing the ML rinsed from the
spatula and was evaporated under a stream of nitrogen gas. THF/MeOH
(1.5 mL) was added to the scintillation vial containing the AgCl win-
dow and purged with argon gas. The vial was sonicated in an ultrasonic
bath (Branson Ultrasonics) for 10 minutes. The microvial containing

TABLE 2. Eigenvector Scores

Eigenvector Normal Group (Mn) MGD Group (Md)

1 �0.2 � 0.5 0.3 � 0.5
2 �0.1 � 0.4 0.1 � 0.4
3 �0.1 � 0.3 0.1 � 0.2
4 �0.06 � 0.2 0.1 � 0.2
5 �0.03 � 0.1 0.04 � 0.1
6 �0.02 � 0.1 0.02 � 0.1
7 �0.2 � 0.1 0.02 � 0.09

Data are the average eigenvector scores � SD.

FIGURE 2. Relative area ratios used
to compare Mn with Md. The assign-
ment for the proton resonance at
1.26 ppm is uncertain and has been
assigned to methylene protons asso-
ciated with short-chain esters. The
area of this resonance was divided by
the area of the CH2 resonance in (A)
and the area of the wax ester reso-
nance in (C). The resonance at 5.2
ppm has been assigned to terpenoid
protons in the ACHO moiety. The
area of this resonance was divided by
the area of the CH2 resonance in (B)
and the area of the wax ester reso-
nance in (D).
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the extracted meibum lipid was lyophilized for 12 hours to remove
trace amounts of organic solvents. Finally, deuterated cyclohexane (0.5
mL) was added to the sample and sonicated (Branson Ultrasonics) for
10 minutes in a bath sonicator. The solution was transferred to glass
NMR tubes (Sigma-Aldrich), and the NMR spectra were collected.

NMR Spectral Measurement

Spectral data were acquired (Inova-500 spectrometer; Varian, Lexing-
ton, MA). The following parameters were used: 800 scans were ac-
quired with a spectral width of 15 ppm, 60° pulse, 4-K data points,
1.0-second delay time, and 2.049-second acquisition time at 25°C. A
computer running commercial software (GRAMS 386; Galactic Indus-
tries Corp., Salem, NH) was used for phasing and integrating.

PCA was used to detect subtle differences in the spectral data and
to assess whether or not spectra of meibum from normal donors (Mn)
differ from those of donors with MGD (Md; analysis performed with
GRAMS/386 software; Galactic Industries). For each spectrum, two
constituents were used: age and MGD/normal score. The training set
was set up by assigning Mn spectra an MGD/normal score of 0 and Md
spectra an MGD/normal score of 100.

Statistics

Data are presented as the average � the standard error of the mean
(SEM). Statistical significance was determined using Student’s t-test or
the correlation coefficient from the linear regression best fit. P � 0.05
was considered statistically significant.

RESULTS

NMR spectra of Md from 39 donors were compared with Mn
spectra from 33 normal donors. The spectra were grouped by
age and MGD according to Table 1.

An average of the 1H NMR spectra of human meibum is
shown in Figure 1. The 1H NMR spectra of human meibum may
be divided into five regions: the CH2 and CH3 region from 0 to
1.4 ppm, the CH and deshielded CH2 region from 1.4 to 3.9
ppm, the ester region from 3.9 to 4.7, the CAC region from 4.7
to 7 ppm, and the oxidative products region above 7 ppm.
Tentative band assignments were made from an 1H and 13C
NMR study of waxes and triacylglycerols, oils, and waxes49–59

(Table 2).

The CH2 and CH3 Region

The CH2 and CH3
1H NMR resonance region of an average

NMR spectrum of human meibum can be seen at the bottom of
Figure 1. Five major proton moieties were resolved in the NMR
spectra of human meibum (Fig. 1, bottom right). The most
intense resonance corresponded to theO(CH2)nO protons at
1.39 ppm (Fig. 1, bottom right). The resonances near 0.89 ppm
were assigned to CH3 protons, excluding methylene moieties
near omega 3 double bonds (Fig. 1, bottom right). A triplet
centered near 0.94 ppm was assigned to methylene moieties
near omega 3 double bonds (Fig. 1, bottom right). A less
intense proton resonance was observed near 1.03 ppm (Fig.
1) that was assigned tentatively to OCH2OHCH2 CH3 and
OCH2OCHO(CH3)2, isobranched protons (Table 2). The
assignments for the proton resonances near 1.29 and 1.26
ppm are less certain and have been assigned tentatively to
methylene protons associated with short-chain esters (Fig. 1;
Table 2), as the proximity of the ester linkage would lead to
greater deshielding. Two proton resonances near 0.72 and
0.09 ppm appear in all the NMR spectra of human meibum
and are relatively less intense, only a thousandth of the
intensity of the 1.39 CH2 resonance (Table 2, resonance not
shown). No proton assignments were made for these reso-
nances.

In comparing the CH2/CH3 regions of Mn with Md, only the
area of the 1.26 ppm was significantly lower (P � 0.05) for Md
compared with Mn from children and adults (Figs. 2A, 2C). The
relative areas of all the other resonances in the region were
similar (P � 0.05; Table 2). The area of the resonance at 1.26
ppm was divided by the area of the resonance at 1.39 ppm
assigned to CH2 protons and also was divided by the resonance
at 4.1 ppm assigned to the wax ester proton (Fig. 3). By
comparing the area of the resonance at 1.26 ppm to the area of
two other resonances, we can be assured that the differences
observed in Figures 2A and 2C were due to a change in the area
of the 1.26-ppm resonance and not to a change in the areas of
the 1.39- or 4.1-ppm resonances. The relative area ratios of the
0.94 to 0.84 ppm resonances did not change with MGD
(0.17 � 0.02, 0.18 � 0.02 for Mn and Md, respectively), nor did
the ratio of the area of the 1.03-ppm resonance to the area of
the 0.84-ppm resonance change with MGD (0.059 � 0.005 and
0.051 � 0.004 for Mn and Md, respectively).

PCA of the CH2/CH3 region of NMR Spectra. As further
evidence of the relative intensity changes observed in Figure 2,
PCA was used to analyze variations within a group of spectra
denoted as the training set. PCA finds the variations, in this
case the spectral regions, which appear to rise or drop pro-
portionally. These regions are extracted and are referred to as
eigenvectors. Eigenvectors are also called loading spectra or
factors and, again, they represent components that change
their relative contributions from sample to sample. The first
step in obtaining eigenvectors from a training set of data is to
determine the number of eigenvectors to use. Too many eigen-
vectors tend to overfit the calibration model, whereas too few
eigenvectors result in underfit calibration models and lead to

FIGURE 3. Protons potentially associated with resonances observed
in the 1H NMR spectra of human meibum.
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inaccurate predictions. To choose the proper number of eigen-
vectors, we used a prediction residual error sum of the squares
(PRESS) plot. The smaller the PRESS value, the better the model
is able to predict the contributions of the calibrated constituent
MGD/normal scores (Fig. 4A). Seven eigenvectors were neces-
sary to describe most of the variance in our NMR spectra for
the constituent MGD/normal score.

The contribution of each eigenvector can be evaluated by
plotting the eigenvector number versus the percentage of total
variance. In Figure 3B, eigenvectors 1 to 7 accounted for 50%,
27%, 7%, 4%, 3%, 2%, and 2% of the variance in the MGD/
normal constituent scores.

Spectral Discrimination. The group of spectra used to
generate eigenvectors is called a training set. The training

FIGURE 4. (A) A PRESS plot was
used to choose the proper number of
eigenvectors for PCA analysis. The
smaller the PRESS value, the better
the model is able to predict the con-
tributions of the calibrated constitu-
ent MGD/normal scores. (B) The
contribution of each eigenvector can
be evaluated by plotting the eigen-
vector number versus the percentage
of total variance. (C) (●) Mn. (‚) Md.
The training set used in PCA discrim-
inated between Mn and Md, with an
accuracy of 86%. A score below 58
was considered normal and above 58
MGD.

FIGURE 5. The scores for an eigen-
vector plotted against the scores of an-
other eigenvector were used to deter-
mine which eigenvectors were the most
important modeling components. (A)
Eigenvectors 1 and 2 grouped the Mn
and Md spectra into two classic ellipti-
cal Mahalanobis boundaries. (B) A neg-
ative score for eigenvectors 1 and 2
favored Mn. (C) A positive score fa-
vored Md. (●) Md, (▫) Mn.
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sets may eventually be used to model how the eigenvectors
relate to a component, such as age, or in this study, disease.
The training set we chose was used to discriminate between
Mn and Md, with an accuracy of 86% (Fig. 4C). There was a
bias toward more accurately predicting normal samples,
92% compared to predicting MGD samples, 78%. Cross val-
idation was used for each spectrum, removing a spectrum
from the training set and using the remaining training set
samples to perform the decomposition and calibration cal-
culations. Because we are able to discriminate between Mn
and Md, the eigenvectors must contain spectral features that
relate to compositional and conformational changes that
occur with MGD, as discussed in the following sections.

Scores and Mahalanobis Boundary Groupings. A mathe-
matically reconstructed spectrum can be obtained by adding all the
products of each score associated with an eigenvector times the
eigenvector. If the PCA model is good, that is if the spectral variations
are caused by the principal component (in this case MGD), the
reconstructed spectrum will be very similar to the actual original
spectrum. The scores for an eigenvector plotted against the scores of
another eigenvector were used to determine which eigenvectors
were the most important modeling components.

Eigenvectors 1 and 2 grouped the Mn and Md spectra into
two classic elliptical Mahalanobis boundaries (Fig. 5A).61 In
general, a negative score for eigenvectors 1 and 2 favored Mn
(Fig. 5C) whereas a positive score favored Md (Fig. 5B). Eigen-

FIGURE 6. The major eigenvector
spectra for the constituent MGD/nor-
mal score, used in PCA are shown:
(A) eigenvector 1, (B) eigenvector 2,
(C) eigenvector 3, (D) eigenvector 4,
(E) eigenvector 5, (F) eigenvector
6, (G) eigenvector 7. The average
spectra of MGD are presented on top
in each frame for comparison.
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vectors 1 and 3 grouped the Mn and Md spectra into three
classic elliptical Mahalanobis boundaries (data not shown). In
general, a positive score for eigenvectors 1 and 3 favored Md
(Table 2), whereas a negative score favored Mn (Table 2). The
average eigenvector scores for Mn and Md are presented in
Table 2. Positive 2 and 3 scores generally favored Md (Fig. 5A),
and negative 2 and 3 scores generally favored Mn.

Eigenvector Spectra. The seven major eigenvector spectra
for the constituent MGD/normal score, are shown in Figure 6.
The eigenvectors 1 to 4 accounted for 88% of the variance in
the spectra of Md and Mn (Fig. 4B). Some of the spectral
characteristics of the eigenvectors are listed in Table 3.

Positive scores for eigenvectors 1 and 2 favored Md com-
pared with Mn (Fig. 5B). This result means that eigenvectors 1
and 2 were added to the average spectrum to account for the
variance of Md. The 1.26-ppm resonance was negative for both
eigenvectors 1 and 2 (Table 2) so a lower intensity of the 1.26
resonance of Md was used to discriminate Md from Mn. This
finding was confirmed by the relative intensities of the 1.26
ppm resonance (Figs. 2A, 2C).

Eigenvectors 4 through 7 generally account for variability due
to shielding and deshielding in the chemical shifts and band width
adjustments, rather than intensity differences (Table 3). For ex-
ample, note in Figure 6E how the eigenvector shows a positive
intensity for the 1.26-ppm resonance at higher parts per million
and a negative intensity for the 1.26 ppm resonance at slightly

lower parts per million. Adding or subtracting this eigenvector
would shift the intensity of the 1.26-ppm band.

Double Bond Region

Proton resonances associated with CAC bonds were located
between 4.8 and 6 ppm (Fig. 1). One of the most intense
proton resonances in the 1H NMR spectra of human meibum
appeared at 5.45 ppm and was assigned to cis CAC bonds (Fig.
1, Table 4). Three proton resonances associated with other
double bonds appeared near 5.2, 5.0, and 4.87 ppm (Fig. 1,
Table 4). The resonances near 5 ppm in the 1H NMR spectrum
of human meibum have been assigned to squalene by Robosky
et al.49 by comparison of the NMR spectrum of meibum and
pure squalene. Others have identified this resonance as the
terpenoid squalene in other systems62–64 and as a general
terpenoid in olive oil.65 As covered in more detail in the
Discussion section, it is likely that the bands near 5 are due
to the proton (bold underlined) trans to the methyl group in
the repeating unit: trans O(CH3CACHCH2CH2)nO (Fig. 3).
This polymer is found in terpenoids in which squalene and the
carotenoids lycopene and � carotene are members (Fig. 3).
The four resonances due toACH protons between 4.8 and 5.5
ppm were lower, but only the area of the 5.2 ppm resonance
was significantly lower (P � 0.05) for Md compared with Mn
from children and adults (Figs. 2B, 2D; Table 5). The relative
area of the resonance at 5.2 ppm was measured using the area
of the resonances at 1.39 and 4.1, to assure that the differences
observed in Figures 2B and 2D were not an anomaly.

Oxidative Products Region

Products of lipid oxidation appear from 5.5 to 10 ppm.66,67 Four
proton resonances were observed at 7.9, 8.7, 9.65, and 9.71 ppm
in all the human meibum 1H NMR spectra (Fig. 1; Table 5). The
resonances between 6 and 9 ppm were assigned to hydroperox-
ides and those between 9 and 10 were assigned to aldehydes in
accordance with the assignments for oxidized waxes.66,67

The sum of the intensity of the resonances in the oxidative
products region was significantly lower (P � 0.05) for Md

TABLE 3. Sign of Eigenvector Band Intensity Change

Eigenvector 1.29 ppm 1.26 ppm 0.94 ppm 0.85 ppm

1 � � � �
2 � � NC �
3 � � � �
4 Shift � � �
5 Shift Shift � Shift
6 Shift Shift � Shift
7 Narrow width Shift � Shift

NC, no change.

TABLE 4. Integrated Band Areas Relative to the Area of the 1.39 CH2 Resonance

Chemical
Shifts (ppm)

Normal Child-Adult Unless
Indicated

Meibomian Gland
Dysfunction P Tentative Assignment†

0.72 0.00151 � 0.00022 0.00187 � 0.00025 0.33 No Assignment
0.89 0.0228 � 0.0033 (adolescent-adult) 0.026 � 0.003 0.43 ™CH3, except n-3
0.94 0.0043 � 0.0013 0.0038 � 0.0004 0.78 ™CH3, n-3

1.03 0.0014 � 0.0002 0.0019 � 0.0003 0.21
™CH2OHCH2 CH3 ™CH2™CH™(CH3)2,

isobranched
1.26 0.0041 � 0.0002 0.0029 � 0.0002 �0.0001* ™COO(CH2)nCH3, short chain esters
1.29 0.058 � 0.009 0.062 � 0.007 0.72 ™COO(CH2)nCH3, short chain esters
1.39 1 1 1 ™CH2)n™, core,
1.70 0.43 � 0.043 0.52 � 0.005 0.17 R™CH2™CH2™COO™R
4.10 0.026 � 0.0034 0.025 � 0.003 0.83 ROCH2-alkyl, wax ester

4.18 0.0031 � 0.0005 0.003 � 0.001 1
CHCH2OR; C1, 3 protons, glyceryl. 4 H

per molecule
4.25 0.0036 � 0.0004 0.0033 � 0.0003 0.55 C1, 3 protons, glyceryl
4.60 0.0047 � 0.0008 0.0036 � 0.0007 0.31 R™O™CH, C3 of cholesterol ester
4.85 0.014 � 0.0044 (adolescent-adult) 0.0121 � 0.0038 0.76 ¢CH™, terpenoid
5.00 0.050 � 0.097 (adolescent-adult) 0.032 � 0.0047 0.063 ¢CH™, terpenoid
5.20 0.036 � 0.0077 (adolescent-adult) 0.0175 � 0.0029 0.008* ¢CH™, terpenoid
5.45 0.206 � 0.013 0.212 � 0.016 0.79 ™CH¢CH™
7.90 0.0088 � 0.0013 0.0066 � 0.0004 0.024* Hydroperoxides
8.70 0.108 � 0.012 0.024 � 0.006 �0.001* Hydroperoxides
9.65 0.002 � 0.0008 0.0053 � 0.0036 0.6 trans-2-Alkenals
9.71 0.00026 � 0.00004 0.00043 � 0.00007 0.96 R™CH¢O, n-alkenals

* Significantly different, P � 0.05.
† The bold underlined proton is the proton for which the tentative assignment was made.
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compared with Mn from children and adults (Fig. 7C). This
relationship was due to the lower relative intensity of both the
7.85- and 8.6-ppm resonances (Figs. 7A, 7B). As oxidation
progresses, the amount of aldehydes increases relative to the
amount of hydroperoxides.66,67 Even though the amounts of
hydroperoxides and aldehydes were lower in Md than in Mn
(Fig. 7C), the ratio of aldehydes (sum of areas of resonances at
9.65 and 9.71) to hydroperoxides (sum of areas of resonances
at 7.9 and 8.7) increased with age and MGD (Fig. 7D). The
lower content of hydroperoxides and aldehydes in Md com-
pared with Mn shows the degree of lipid oxidation is less with

MGD. Since the ratio of aldehydes to hydroperoxides was
larger in Md than in Mn, the breakdown of hydroperoxides was
greater in Md (Fig. 7D).

DISCUSSION

When the NMR spectra of Md were compared with those of
Mn, three statistically significant decreases were observed in
the relative amounts of CH3 moieties at 1.26 ppm, products of
lipid oxidation above 7 ppm, and ACH moieties at 5.2 ppm

TABLE 5. Relative Band Areas

Chemical
Shifts (ppm)

Normal MGD

Tentative Assignment†A/A1.39ppm A/A4.1ppm A/A1.39ppm A/A4.1ppm

0.09 0.0067 � 0.0046 0.045 � 0.012 0.00063 � 0.00008 0.032 � 0.004 No Assignment
0.72 0.0015 � 0.0002 0.012 � 0.03 0.0017 � 0.0003 0.15 � 0.03 No Assignment
0.89 0.022 � 0.003 1.7 � 0.4 0.025 � 0.003 1.7 � 0.2 ™CH3, except n-3
0.94 0.004 � 0.001 0.21 � 0.03 0.0033 � 0.0003 0.19 � 0.02 ™CH3, n-3

1.03 0.0014 � 0.0002 0.9 � 0.02 0.0017 � 0.0003 0.11 � 0.02
™CH2OHCH2 CH3 ™CH2™CH™(CH3)2,

isobranched
1.26 0.0041 � 0.0002 0.29 � 0.06* 0.0037 � 0.0001 0.18 � 0.02* ™COO(CH2)nCH3, short-chain esters
1.29 0.058 � 0.009 0.48 � 0.09 0.054 � 0.007 0.4 � 0.1 ™COO(CH2)nCH3, short-chain esters
1.39 1 38 � 4 1 40 � 5 ™(CH2)n™, core
1.70 0.43 � 0.04 36 � 7 0.52 � 0.005 45 � 7 R™CH2™CH2™COO™R
4.10 0.026 � 0.003 1 0.025 � 0.003 1 ROCH2™alkyl, wax ester

4.18 0.003 � 0.001 0.20 � 0.04 0.003 � 0.001 0.13 � 0.01
CHCH2OR; C1, 3 protons, glyceryl. 4 H

per molecule
4.25 0.0036 � 0.0004 0.25 � 0.05 0.0033 � 0.0003 0.27 � 0.04 C1, 3 protons, glyceryl
4.60 0.0047 � 0.0008 0.28 � 0.04* 0.0036 � 0.0007 0.17 � 0.02* R™O™CH, C3 of cholesterol ester
5.00 0.042 � 0.008 3.3 � 0.8* 0.033 � 0.005 1.6 � 0.2* ™CH¢CH™, conjugated
5.20 0.036 � 0.003 2.7 � 1.1 0.016 � 0.005 1.7 � .7 ™CH¢CH™, conjugated
5.45 0.21 � 0.01 13 � 2 0.20 � 0.02 17 � 2 ™CH¢CH™
7.90 0.009 � 0.001 0.77 � 0.13 0.0065 � 0.0005 0.53 � 0.08 Hydroperoxides
9.65 0.0026 � 0.0008 0.014 � 0.002 0.0017 � 0.006 0.0098 � 0.0024 trans-2-Alkenals
9.71 0.00026 � 0.00004 0.0037 � 0.0009 0.00045 � 0.00009 0.0064 � 0.0015 R™CH¢O, n-alkenals

* Significantly different, P � 0.05.
† The bold underlined proton is the proton for which the tentative assignment was made.

FIGURE 7. (A) The ratio A7.85/A1.39

is the ratio of hydroperoxides to CH2

moieties. (B) The ratio A8.6/A1.39 is
the ratio of aldehydes to CH2 moi-
eties. (C) The sum of the area of the
resonances in the oxidative products
region (resonances �7 ppm) was sig-
nificantly lower (P � 0.05) for Md
than for Mn from children and adults.
(D) The area ratio of aldehydes (sum
of the areas of the resonances at 9.65
and 9.71 ppm) to hydroperoxides
(sum of the areas of the resonances
at 7.9 and 8.7 ppm) increased with
age and MGD. As oxidation pro-
gressed, the ratio of aldehydes to hy-
droperoxides generally decreased.
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associated with terpenoids. All three changes could account
for the higher degree of lipid order of Md compared with
age-matched Mn.37,38 Lipid order was measured as the percent-
age of trans rotomers in the hydrocarbon chains and is related
to meibum viscosity.37,38 The higher the lipid order/viscosity
the stronger the lipid–lipid interactions. At 34°C, 47% of the
Md hydrocarbons were ordered compared with 35% of the Mn
hydrocarbons.36,37 The major factor governing the order of
lipids in the lens68 and meibum25,38 is lipid saturation. The
decrease in unsaturation in the same samples used in the
present study was confirmed by infrared spectroscopy.22

Aldehydes and hydroperoxides, which are hydrophilic
groups in the hydrophobic hydrocarbon chain region of lipids,
inhibit lipid–lipid interactions and fluidize the hydrocarbon
chains,69,70 and therefore the lower level of products of lipid
oxidation in Md observed in the present NMR study could also
contribute to the higher order of Md compared with Mn.37,38

Chain length is another factor that is related to lipid order,
longer hydrocarbon chains have more extensive van der Waals
interactions that contribute to stronger lipid–lipid interac-
tions.38 A decrease in the shorter chain length segments asso-
ciated with the 1.26-ppm resonance in the present study would
also contribute to lowering the hydrocarbon chain order of
Md. In addition to lipid compositional changes that contribute
to the ordering of Md hydrocarbon chains, Md has more pro-
tein than Mn.22 The amount of protein and lipid order was
related to age in Mn and in MGD.22

Lipid order and the amount of lipid observed on the lid
margin correlated indirectly. Possibly, and as a consequence of
a more ordered viscous meibum with MGD, less lipid flows out
of the meibomian gland orifice and, in conjunction with ele-
vated protein content, could facilitate the plugging of the
meibomian gland orifices.71 The amount of lipid on the lid
margin with MGD does not influence tear stability, because
there is at least 17 times more lipid pooled on the lid margin
than is needed to cover the tear surface, even with MGD.71

However, the lipid composition, especially the lipid in plugged
glands, could change. We noted that even though the amount
of products of lipid oxidation was lower in Md compared with
Mn, the rate of the breakdown of hydroperoxides to aldehydes
was higher in Md. Perhaps inflammation and the slower rate of
meibum expression contribute to the greater degree of oxida-
tion observed in the present study.

The resonances near 5 ppm in the 1H NMR spectrum of
human meibum have been assigned to squalene on the basis of a
comparison of the spectra of human meibum versus that of
squalene.49 Others have also identified those resonances to the
terpenoid squalene in other systems62–64,72 and as a general
terpenoid in olive oil.65 A careful NMR evaluation of purified
squalene shows that the resonance at 5.1 is from the protons
on C3 and C4 carbons, and the resonance at 5.17 ppm is
from the proton on C11.73 In a pilot Raman spectroscopic
study, carotenoid-like molecules were found in human
meibum.25 The compounds decreased with increasing age
and MGD. In the present study, it is likely that the bands
near 5 ppm are due to the proton trans to the methyl group
in terpenoids (Fig. 3). The repeating unit of the polymer:
trans O(CH3CACHCH2CH2)nO is found in terpenoids in
which squalene, and the carotenoids lycopene and �-caro-
tene are members (Fig. 3).

Terpenoids exhibit a plethora of mostly positive biological
functions, such as being anticarcinogenic, and possess antimy-
cobacterial properties.74–76 More than 140,000 papers and
more than 8000 review articles have been written on the
function of terpenoids to date. The benefits of dietary carote-
noids, a type of terpenoid, have been reviewed.77 Terpenoids
protect against many diseases.78–80 The terpenoid lycopene
found in the eye, is a powerful antioxidant82 that inhibits

reactive oxygen production, controls cholesterol synthesis,
reduces inflammatory response through changes in cytokine
production and regulates apoptosis.75 Terpenoids are impor-
tant for biological function and the lower level of terpenes
found in Md could influence the composition of meibum,
enhanced oxidation, and tear stability.

The terpenoid squalene is a precursor of cholesterol syn-
thesis. It is not surprising that the lower levels of terpenoids
found in Md are associated with lower levels of cholesterol
esters.24 Terpenoids influence the fluidity of pure phospho-
lipid vesicals much as cholesterol does, ordering them, lower-
ing their phase transition temperature, and decreasing the
cooperativity between the lipids.83–87 On the other hand,
lycopene, a carotenoid, increases the phase transition temper-
ature of microsomes.88 Therefore, the effect of a decrease in
terpenoids on the Md phase transitions would be too specula-
tive to comment on signaling the need for further investigation.

On the surface of the eye, terpenoids could act a surfactants
and stabilize the lipid layer, bridging the multiple layers of wax
sheets much as they span and reinforce the phospholipid
bilayer.89 Loss of terpenoids with MGD could cause detrimen-
tal changes in the structure of the tear film lipid layer. It would
be useful to purify and characterize the terpenoids in human
meibum to begin to understand their significance.

Future Studies

Future studies will be designed to isolate, identify, and/or
confirm the assignment of the resonance at 5.2 ppm. It would
also be informative to examine the meibum from donors with
other subclasses of MGD. The present study included donors
with obvious signs and symptoms of MGD. There are early and
mild forms termed nonobvious MGD (NOMGD) that can only
be diagnosed by physical expression.90 Inflammation is not
present in NOMGD and is likely to be missed frequently during
clinical examination.90 Spectroscopy could be beneficial as a
diagnostic tool if changes in meibum due to NOMGD could be
detected, but given the negligible amount of meibum ex-
pressed in this variant of MGD, it may be difficult. At present,
a standard technique for measuring expressibility is subjective
and lacking. A custom expression device, recently developed,
could be the solution.91 In the present study, the meibomian
glands were gently but firmly expressed by a single clinician in
an effort to obtain uniform results. A custom device that con-
trols the amount of pressure applied to the eye lid could
eliminate variability in the quantity and perhaps quality of the
meibum obtained from different clinicians or different variants
of expression.91

In addition to the power of NMR spectroscopy to detect
differences in the composition of meibum, NMR is promising
as a diagnostic tool. The accuracy of PCA improves with the
number of samples. It is reasonable that with more samples
PCA of NMR data from human meibum samples could reach an
accuracy of 99% or better. The Mahalanobis groupings could
be used as a diagnostic tool.
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