Skip to main content
. 2012 Jan 20;13:13. doi: 10.1186/1471-2105-13-13

Table 5.

Conditional probabilities of mating type and child genotype

Mating type = i Pr(Mating type = i|D, pop = k) Child genotype Notation Pr(Child genotype|D, Mating type = i, pop = k) (t = 1/2 when k = 2) Pr(xabc|D, pop = k)
MM × MM (i = 1) μk,1 MM x222 1 μk,1
MM × MNC(i = 2) μk,2 MM x212 t μk,2 t
MM × MNC(i = 2) μk,2 MN x211 (1 - t) μk,2 (1 - t)
MM × NN(i = 3) μk,3 MN x201 1 μk,3
MN × MN(i = 4) μk,4 MM x112 t2 μk,4 t2
MN × MN(i = 4) μk,4 MN x111 2t(1 - t) 2 μk,4 t(1 - t)
MN × MN(i = 4) μk,4 NN x110 (1 - t)2 μk,4(1 - t)2
MN × NN(i = 5) μk,5 MN x101 t μk,5 t
MN × NN(i = 5) μk,5 NN x100 (1 - t) μk,5 (1 - t)
NN × NN(i = 6) μk,6 NN x000 1 μk,6

In this table, the high risk allele is M. Also, we define D to be the event that the child is affected. Note that 1 ≤ k ≤ 2. The last column is computed using the definition of conditional probability. Schaid and Sommer [63] also demonstrated this calculation. Note that Pr(xabc|D,pop=k)=fB(xabc;θk). Finally, t = Pr(heterozygous parent transmits an M allele to an affected child).