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Parkinson’s disease is a degenerative condition whose severity is assessed by clinical observations

of motor behaviors. These are performed by a neurological specialist through subjective ratings of

a variety of movements including 10-s bouts of repetitive finger-tapping movements. We present

here an algorithmic rating of these movements which may be beneficial for uniformly assessing the

progression of the disease. Finger-tapping movements were digitally recorded from Parkinson’s

patients and controls, obtaining one time series for every 10 s bout. A nonlinear delay differential

equation, whose structure was selected using a genetic algorithm, was fitted to each time series and

its coefficients were used as a six-dimensional numerical descriptor. The algorithm was applied to

time-series from two different groups of Parkinson’s patients and controls. The algorithmic scores

compared favorably with the unified Parkinson’s disease rating scale scores, at least when the latter

adequately matched with ratings from the Hoehn and Yahr scale. Moreover, when the two sets of

mean scores for all patients are compared, there is a strong (r¼ 0.785) and significant (p < 0:0015)

correlation between them. VC 2012 American Institute of Physics. [doi:10.1063/1.3683444]

Parkinson’s disease (PD) is a common disease affecting

tens of millions of people worldwide. Its cardinal signs

are resting tremor, bradykinesia (slowness clumsiness of

movement), rigidity, and loss of postural reflexes. The

disease evolves slowly and, to adjust medications to the

severity of the disease, there is a need for automatic and

objective evaluation of movements. Such objective move-

ment assessments would supplement subjective clinical

ratings, which are ordinal rather than metric and often

show large inter-rater variability. Rather than using a

spectral based technique, we rated dynamical features of

each individuals’ finger-tapping—one of the items from

the unified Parkinson’s disease rating scale (UPDRS)

used for rating the severity of the disease—by using data

models based on nonlinear delay differential equations

(DDEs). The coefficients of the DDEs are then used to

assess the severity of the disease.

I. INTRODUCTION

PD is a chronic neurodegenerative disease whose pri-

mary pathophysiology is loss of the dopamine containing

cells in the basal ganglia.1 Deprived of their normal dopami-

nergic inputs, nuclei within the basal ganglia become dys-

functional leading to abnormal neural oscillations and

synchronization within multiple basal ganglia-cortical cir-

cuits.2 These circuit disturbances lead to the clinical mani-

festations of the disease, which include such motor

impairments as bradykinesia (slow movements), muscle ri-

gidity, resting tremor, and postural instability. The impair-

ment in voluntary movement in PD is characterized by a

number of specific sensorimotor processing deficits, includ-

ing a generalized slowness of movement;3 a difficulty in car-

rying out sequential movements;4 a reliance on sensory

input, particularly visual input, to guide and correct move-

ment;5,6 and difficulties in timing, synchronizing, and coordi-

nating movements.7–9

Since Parkinson’s disease is a degenerative disease, an

effective tool is needed to track changes in its severity and

the effectiveness of remedial treatments. Clinical evaluations

can be costly and difficult to execute consistently over the

long duration of the disease. The first rating scale—the

Hoehn and Yahr (HY) scale10—was designed originally to

be a simple descriptive scale for providing a general estimate

of clinical function, combining functional deficits and objec-

tive signs. 0.5 increments were later introduced.11 The origi-

nal HY scale is as follows:

(1) Unilateral involvement only usually with minimal or no

functional disability;

(2) Bilateral or midline involvement without impairment of

balance;

(3) Bilateral disease: mild to moderate disability with

impaired postural reflexes; physically independent;

(4) Severely disabling disease; still able to walk or stand

unassisted; and

(5) Confinement to bed or wheelchair unless aided.

As in any clinical rating scale, subjective measures are

used in the HY scale and thus may vary among physicians.

Consequently, another rating scale—the UPDRS—was
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introduced later12 to overcome the inter-rater variability and

to provide a more fine-grained assessment of motor dysfunc-

tion (see Ref. 11 for a review about limitations in the use of

HY scale). The UPDRS is a rating tool to characterize PD se-

verity and to follow the evolution of the disease.13 It is com-

prised of four sections: (1) mentation, behavior, and mood, (2)

activity of daily living (ADL), (3) motor function, and (4)

complications of therapy, totaling 45 items. Each item is eval-

uated by interview, or for motor function, by visual scoring of

specific movements and by passive manipulation of the joints.

The most commonly used section of the UPDRS is the motor

section, since motor dysfunction has been the core defining

clinical feature of the disease. The UPDRS motor section has

a maximum score of 108 points representing the worst (total)

disability and 0 corresponding to no disability.

One of the most important characteristics of impaired

movement in PD is bradykinesia, a broad term encompassing

slow, clumsy movements. Bradykinesia is widely tested for in

the motor section of the UPDRS. There are three tests of arm

and hand movements, all involving sequential movements,

which reliably evaluate bradykinesia. These three tests are fin-

ger-to-thumb tapping (item 23), hand opening and closing

(item 24), and hand pronation and supination (item 25). Finger

tapping correlates better with the overall UPDRS clinical

scores than items 24 or 25 (Ref. 27). Moreover, the motor per-

formance of PD patients degrades with task completion far

more easily during sequential opposition of individual finger

movements than during non-individual finger oppositions.28

The dynamics underlying movements of PD patients was,

therefore, investigated by recording 10 s bouts of individual

finger tapping movements. These movements were repetitive

index-thumb oppositions, instructed to be of large constant

amplitude, produced smoothly and rapidly.

While the UPDRS provides an improved instrument for

rating PD motor severity compared to the HY scale and has

overall better clinimetric properties than other scales,14 it

does not completely overcome the issues of inter-rater vari-

ability and subjectivity15,16 and remains a time consuming

rating technique. Hence, although it is the most studied and

used scale, it cannot be applied as often as desired to track

the progression of the disease.

Consequently, there is a need for automatic, graded

measurements of Parkinsonian motor dynamics that are met-

ric rather than ordinal. For this purpose, commercial acceler-

ometer and gyroscope sensors are often used (see for

instance Ref. 17). The time series these generate have been

analyzed using spectral analysis18 or adaptive Fourier

modeling.19

However, spectral analysis has serious limitations when

applied to short time series. The 10 s sessions recommended

for evaluating patients20 provide about 30 or 40 oscillations,

which are not enough for an accurate spectral analysis of the

underlying dynamics. To overcome these limitations, we pro-

pose an alternative technique based on non-linear modeling

that is known to be efficient even when applied to short time

series.21–23 A global modeling technique extracts from a time

series a set of difference or differential equations whose itera-

tion or integration reproduces the dynamics underlying the

measurements. To enlarge the domain of applicability of this

technique, we do not look for global models, but rather for a

rough approximation of the underlying dynamics by using

delay differential equations, which are known to provide

good classifiers.24–26

In the present study, PD motor dysfunction, made appa-

rent by abnormal or dysfunctional finger-tapping dynamics,

was assessed using rough approximations of the underlying

dynamics using delay differential equations (DDE) (Refs.

24–26). DDEs are known to be very flexible, that is, to cap-

ture a wide variety of dynamics with few terms. Moreover,

DDEs are robust against noise contamination. The coeffi-

cient space associated with these DDEs was used to provide

a measure of PD severity. These results then were compared

to those obtained using the UPDRS to rate the quality of the

finger tapping movements.

The remainder of this paper is organized as follows. Sec-

tion II describes the patients and the protocol for recording the

finger tapping movements. Section III discusses dynamical

analysis of the data using a few tools borrowed from nonlinear

dynamical systems theory and shows that these cannot dis-

criminate PD patients from control subjects. Section IV is

devoted to the classification of PD patients and control sub-

jects using optimized coefficients of a selected DDE. We then

compare these results to the UPDRS tapping ratings. Section

V provides some conclusions and perspectives.

II. PATIENTS AND MEASUREMENTS

Thirteen PD patients, together with thirteen controls,

selected so that their ages were in approximate 1-1 correspon-

dence with patients’ ages, were enrolled in our protocol after

signing the informed consent document approved by the

human subjects ethics committee of the University of Califor-

nia at San Diego. We began this study with data from the first

six patients and controls, who we refer to as group i. The next

seven PD patients and controls were enrolled later as part of a

different study and are referred to here as group ii. There is a

slight difference in data acquisition, detailed below.

All patients were studied “off-medication,” as defined in

Ref. 20, using the same operational criteria of having not

taken their anti-parkinsonian medications for at least 12 h

prior to testing; all patients were tested at the same time dur-

ing the day (in the morning); and the same 12 camera 3D

optoelectronic camera system was used (see below). The 3D

movement tracking system was quite precise—each camera

has an optical resolution of 3600� 3600 (12 megapixels)

using two linear detectors with 16-bit dynamic range and has

an onboard processor that produces a subpixel resolution of

30000� 30000. Given the precision of the movement

recordings and the nature of the human movements being

recorded, a sampling frequency of 120 Hz, as well as that of

480 Hz, was deemed sufficient.

The clinical severity of the 13 PD patients at the time of

testing was rated according to item 23 (finger tapping) of the

UPDRS using the rules as follows:13

0¼Normal;

1¼Mild slowing and/or reduction in amplitude;

2¼Moderately impaired. Definite and early fatiguing. May

have occasional arrests in movement;
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3¼ Severely impaired. Frequent hesitation in initiating

movements or arrests in ongoing movement; and

4¼Can barely perform the task.

All clinical severity ratings were given by the same

person.

Item 23 counts for 4 points out of a total of 108 for the

entire UPDRS motor score and correlates well with the over-

all motor score. Also, PD patients were given an overall se-

verity rating according to the HY scale (Table I) as

recommended.20 They ranged from mild (2) to moderately

(3) impaired.

All subjects—both PD patients and controls—were

asked to tap the index finger and thumb together making

large, smooth, rapid movements for 10 s, spaced apart by 1

min. Subjects had their eyes open throughout.

To track finger movements, the subjects’ index fingertip

and thumb were fitted with light-weight infrared emitting

diodes (IREDs) approximately 5 mm in diameter. Our active

marker 3D motion capture system (PhaseSpace, Inc., San

Leandro, CA) consisted of twelve cameras placed in a semi-

circle 1-2.5 m from the subject, who was seated at a table.

We calibrated the system prior to each data collection. We

checked that placement of the IRED markers did not perturb

the motion of the digits in the following manner. The

markers were taped to the index fingernail and to the nail of

the thumb, and visually inspected to make sure that no part

of a marker was in contact with the digital interphalangeal

joint of either digit. This left all joints of the hand free to

move. Subjects were then asked to fully flex and extent the

fingers of their hand. The movements were visually

inspected to make sure that there was no restriction in the

motion, and subjects were asked if they felt any restriction.

No restriction of perturbations of the finger movements were

observed or reported. The data may have occlusion artifacts

which occur when fewer than two cameras detect either of

the IRED markers.

The data acquisition protocol for groups i and ii was

almost identical,29 but differed in sampling frequency—120

Hz for group i and 480 Hz for group ii—and in camera

placement. The ratio of mild to moderate patient impairment

was roughly the same for both groups.

Three 10 s sessions of individual finger tapping by the

dominant hand were recorded for group i subjects and six

sessions, three for each hand, for group ii subjects. The rates

of recorded occlusions, defined as 100* (number of occluded

data points)/(total number of data points), are reported in

Table II. When occlusions are present in a data set, the

data analysis procedure, described below, causes more data

points to be removed, thus raising the rate of effective

occlusions.

The two groups of patients are characterized by a similar

mean age, (69 6 10) years for group i and (67 6 3) years for

group ii, but the disease duration was significantly different

(p < 0:01) (mean duration was (7:0 6 1:3) years for group i

and (11:7 6 5:6) years for group ii). Importantly, the mean

UPDRS finger tapping ratings were 24% higher for group i

(2:1 6 0:8) than for group ii (1:7 6 0:4), reflecting a greater

severity of motor impairment. However, this difference just

failed to reach statistical significance p � 0:087. These sta-

tistics are summarized in Table III. All p-values reported in

this paper are computed from a Wilcoxon T-test.

Note that group i patients had a larger standard deviation

for their age and UPDRS finger-tapping score, but had a

smaller standard deviation for disease duration. In other

words, group i was less homogeneous than group ii in their

age and UPDRS finger-tapping scores. Since Parkinson’s

disease always progresses with age (i.e., UPDRS scores

increase), one expects to see a correlation between variance

in age and variance in UPDRS score. Table III, columns 4

and 6, is consistent with this observation. Although PD

patients in both groups had typical, idiopathic Parkinson’s

disease, and all were in Hoehn and Yahr stage 2 or 3 of the

disease, patients in group i exhibited greater severity of

motor dysfunction on the UPDRS rating of finger tapping.

Having groups differing in motor severity, even within the

same overall stage of the disease, allow us to examine our

method across a wider range of motor deficits in PD patients

TABLE I. Clinical characteristics of Parkinson’s disease patients for the two groups.

Group PD patient number Age (years) Sex Handedness Disease duration (years) HY score UPDRS score Medicationsa

i 1 66 M R 7 2 1.0, 1.0, 1.5, 2.0 Sel, Lev, Br

2 75 M L 8 2 0.5 Br, Ras

3 75 M R 6 3 3.0, 3.0 St

4 49 M R 8 3 3.0, 3.0, 3.0 Lev, LevR, Sel, Ent, Rot

5 73 M R 8 2 1.5, 2.0, 2.5 Lev, Pr, Sel, Am

6 76 M R 5 2 2.0, 2.0, 2.0 Lev, Pr, Am

ii 7 71 M R 12 2 1.0, 2.0, 3.0 St, Rop, Sel

8 67 M R 9 2 2.0, 1.5, 2.5 Lev, Ent, Art

9 68 F R 11 3 1.0, 1.0, 1.5 Lev, Pr, Ent

10 62 F R 9 2 1.5, 1.5, 2.0 Lev, Pr

11 66 F R 9 2 2.0, 1.5, 1.0 Pr, Sel, Am

12 70 M R 24 3 1.5 LevR, Ent, Pr, Am, Sel

13 67 M L 8 3 2.0 Lev, Pr, St

aMedication codes: Am, Amantadine; Art, Artane (trihexyphenidyl); Br, Bromocriptine; Ent, Entacapone; Lev, Carbidopa/levodopa (regular formulation);

LevR, Carbidopa/levodopa sustained release; Pr, Pramipexole; Ras, Rasagiline; Rop, Ropinirole; Rot, Rotigotine; Sel, Selegiline; and St, Stalevo (Carbidopa/

levodopa/entacapone).

013119-3 Rating of finger tappings with DDEs Chaos 22, 013119 (2012)



who are clinically typical, and without the cognitive and

emotional decline that occurs in more advanced stages of the

disease.

We use the data without any preprocessing (not even the

filtering above 10 Hz commonly used when human motions

are investigated), since preprocessing such as filtering or

smoothing could change some dynamical information in the

data. One or more recorded occlusions give rise to several

more effective occlusions after derivatives have been taken

and a particular nonlinear DDE model applied. The rate of

effective occlusions depends on the model used.

So that the same DDEs could be used on the data from

both groups, all the time series of group i were upsampled to

480 Hz using the MATLAB routine “resample.” This upsam-

pling increased the rate of effective occlusions: in each data

set, the first and last 10 data points of each continuous data

segment had to be removed due to the ambiguity of

upsampled data at the beginning or end of a data segment.

Therefore, a time series with one big occlusion has fewer

points removed than the same time series with a lot of small

occlusions since each continuous data segment loses 20 data

points in this procedure. Fig. 1(a) presents the time series of

the raw distances between the thumb and index finger for a

subject in group i, whose movements were recorded at

120Hz. This trial had 7% occluded data points in the origi-

nal, raw, data recording. Fig. 1(b) presents the occlusions af-

ter the data have been upsampled to 480 Hz, and Fig. 1(c)

shows the effective occlusions.

The effective occlusions depend on the computation of

derivatives and on the structure of the DDE model being

used. Depending on the window size used to compute the de-

rivative, data points at both ends of a contiguous segment of

data have to be removed. Finally, consider that the DDE

models used in this paper relate data points at time t to data

points at delayed times t� sj; with j¼ 1, 2, 3. The data point

at time t is removed and effectively occluded if the deriva-

tive cannot be computed or the necessary delayed data points

do not exist. If the effective occlusion rate was more than

50% of the time series, the time series was discarded. In

dataset i, 13 out of 34 datafiles had effective occlusion rates

greater than 50% and hence were rejected, and in dataset ii,

no files had effective occlusion rates greater than 50%.

The majority of data files (81%) had no occlusions what-

soever. For those trials in which occlusions did occur, the

small sections of the time series corresponding to the missing

data were simply left blank.

The distance between index finger and thumb was com-

puted at each time step from the raw data files containing the

xyz-coordinates of the finger and thumb IREDs. Typical

time series are shown for a control subject (Fig. 2(a)) and a

PD patient (Fig. 2(b)) from group ii. The cycle time for PD

patients was generally around 200 ms. Both controls and

PDs show variability in the amplitude of finger tapping.

III. DYNAMICAL ANALYSIS

Fig. 2 suggests that finger-tap amplitude might distin-

guish between controls and PD patients. To evaluate whether

there is significant difference in the statistics of the finger-

tapping amplitude An—the difference between the maximum

and the minimum of the distance for the nth tap—we com-

puted the amplitude of each finger tap for all sessions for ev-

ery subject. The standard deviation rA is slightly less for the

control subjects (�rA ¼ 0:22 6 0:09) than for the PD patients

(�rA ¼ 0:26 6 0:07), but not significantly so (p ¼ 0:1 > 0:05).

Therefore, fluctuations in the finger tapping amplitude cannot

be used to discriminate between control subjects and PD

patients.

When the six 10 s sessions are concatenated in the order

of recording, from the first to the last, there is a general

TABLE II. Rate of recorded occlusions for the data of both groups.

Group Control subjects (%) PD patients (%)

i 16.1 5.9

ii 3.5 3.8

TABLE III. Statistics for age, disease duration, and UPDRS finger-tapping

score.

Average SD

Age Duration UPDRS Age Duration UPDRS

Group i 69 7.0 2.1 10 1.3 0.8

Group ii 67 11.7 1.7 3 5.6 0.4

FIG. 1. (Color online) Distance between thumb and index finger markers

are plotted over time. Example of a time series with 7% occlusions in the

recorded data (a). The dots denote the occluded points. The upsampled data

(b) have an occlusion rate of 16%. In (c) after removing all effective occlu-

sions, 70% of the original data is usable.
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tendency for a reduction in the finger tapping amplitude (Fig.

3). Could the difference in rates of reduction distinguish

between controls and PD patients? Using the slope of the

regression line ( _A) normalized by the mean amplitude ( �A),

we find _A= �A ¼ �0:03 6 0:05 in control subjects and _A= �A
¼ �0:0860:05 in PD patients. Once again, these differences

are not significant (p � 0:2 > 0:05). In both groups, small as

well as large amplitude fluctuations can be observed. This

confirms the well known fact that there is significant vari-

ability across different instances of producing a given move-

ment pattern, shown by control subjects as well as by

patients. It is, therefore, necessary to use tools borrowed

from nonlinear dynamical systems theory to investigate the

dynamics underlying finger tapping.

One of the very first steps of a dynamical analysis is to

reconstruct a phase portrait from measurements using delay

or derivative coordinates.30 Delay coordinates are here used

with a delay sr equal to 25dt where dt ¼ 1
480

s, that is, to a

value around a quarter of the pseudo-period of the observed

oscillations.31,32 Typical phase portraits are shown for a con-

trol subject (Fig. 4) and a PD patient (Fig. 5), respectively.

Six phase portraits are shown for each subject, one for each

10 s session. In both cases, the tendency of the finger tapping

amplitude to decrease with time is recovered, since the diam-

eter of the phase portrait is larger during the first sessions

(Figs. 4(a) and 5(a)) than during the last ones (Figs. 4(f) and

5(f)).

These phase portraits reveal a highly structured dynam-

ics, that is, in any neighborhood of the phase portraits, trajec-

tories are mainly governed by a unique vector field since

they are locally parallel. This feature suggests a low-

dimensional underlying dynamics. To check this, an embed-

ding dimension was estimated using a false nearest neigh-

bors algorithm.33 The rate of true nearest neighbors evolves

in similar ways for control subjects (Fig. 6(a)) and PD

patients (Fig. 6(b)). The curves do not saturate for a dimen-

sion less than 6 (control subjects) or 7 (PD patients). Once

again, it is rather difficult to discriminate control subjects

from PD patients.

The evolution of the rate of true nearest neighbors ver-

sus the dimension of the reconstructed phase portrait in

Fig. 6 is similar to the one observed when the Rössler attrac-

tor is reconstructed from the third variable, z, in the Rössler

equations (see Fig. 6 in Ref. 34). The rate of true neighbours

decreases after a first maximum when the dimension used

for reconstructing the phase space is equal to three. Such an

oscillation of the rate of true neighbours was also observed

when variable z of the Rössler system was used in the recon-

struction procedure. In both cases, the reconstructed phase

portrait presents a zone, known as a lethargy, where each

revolution is not well distinguished from the others.

FIG. 2. Time series of the distance between the thumb and the index finger

during the individual finger tapping for a control subject (a) and a PD patient

(b) from group ii. The sampling rate equals to 480 Hz. Note, that the PD

patient has much reduced movement amplitude. However, there was sub-

stantial overlap in movement amplitude between the control subjects and PD

patients and amplitude alone was not sufficient to discriminate the groups.

FIG. 3. (Color online) Amplitude versus time for individual finger tapping

by control subjects—(a) and (b)—and by PD patients—(c) and (d)—from

group ii. The six 10 s sessions are concatenated to exhibit the tendency. Lin-

ear regression is shown as a red line. A� is the slope of the regression line

and A� is the mean amplitude.
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Consequently, due to limited measurement accuracy, it is no

longer possible to have different pre-images for every pair of

different states: in other words, there is a lack of observabil-

ity. This means that two different states, well distinguished

in the original phase space, cannot be distinguished in the

reconstructed phase portrait.35 In the Rössler system, this

comes from long lethargies observed in variable z, during

which the system evolves in the x-y plane but not along the

z-axis. As a consequence, there is a domain of the recon-

structed phase space where all revolutions in the attractor

pass through a small cylinder—whose diameter is of the

order of the data resolution—where they cannot be distin-

guished. As in variable z of the Rössler system, lethargies

occur in the PD data when the distance between the index

finger and the thumb is near the minimum (Fig. 2). More-

over, all minima are close to the same value, that is, near the

distance between the two IRED markers when the index fin-

ger touches the thumb. Since it is known that variables pro-

viding weak observability of the associated dynamics can

make dynamical analysis more difficult, the weak variable

measured could be at the origin of the difficulties encoun-

tered for discriminating control subjects from PD patients.

IV. CLASSIFICATION USING DYNAMICAL MODELS

A. Delay differential equations

It is known that global modeling is a useful technique

when the time series at disposal are too short to safely perform

a dynamical analysis.23 This advantage remains when dynam-

ical models are used for classification. Unfortunately, global

modeling techniques are also known to depend on the choice

of the measured variables,34,36 at least when global models

have the form of differential or difference equations without a

strong structure selection.37 Such a difficulty is not avoided

when DDEs are used. The main problem arises from the

region of the phase space where trajectories cannot be distin-

guished. Difference or differential equations work with rather

small time steps. Consequently, when investigating time se-

ries with long lethargies, global models cannot capture the

underlying determinism but DDEs can still be applied. This is

why delay differential equations as introduced in Ref. 24 can

be useful. In DDEs, derivatives at time t are related to states at

delayed times t� s1, t� s2, etc. where the si’s are larger than

the time steps commonly used in differential or difference

equations. Moreover, the use of different delays leads to a so-

called “non-uniform embedding,” as introduced by Judd and

Mees,38,39 which they show to be particularly efficient when

there are widely different timescales in the dynamics.

Typically, a nonlinear delay differential equation has the

form

_x ¼ a1xs1
þ a2xs2

þ a3xs3
þ…þ ai�1xsn

þ aix
2
s1
þ aiþ1xs1

xs2
þ aiþ2xs1

xs3
þ…

þ aj�1x2
sn
þ ajx

3
s1
þ ajþ1xs1

2xs2
þ…

..

.

…þ alx
m
sn
; (1)

where x¼ x(t) and xsj
¼ xðt� sjÞ. In the form (1), a DDE has

n delays, l monomials with coefficients a1; a2; :::; al, and a

degree m of nonlinearity. By a k-term DDE, we mean a DDE

with k monomials selected from the right-hand side of Eq.

(1). Although quite flexible, as for any global modeling tech-

nique, there is a significant gain in accuracy by carefully

selecting the structure of the model.37,40 By structure

FIG. 4. Phase portrait reconstructed from the distance between the index

finger and the thumb using the delay coordinates. Case of control subject no.

13 (group ii).

FIG. 5. Phase portrait reconstructed from the distance between the index

finger and the thumb using the delay coordinates. Case of PD patient no. 8

from group ii.
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selection, we mean retaining only those monomials that

make the most significant contribution to reproducing the

data dynamics. An equally important task is to select the

right time-delays, since they are directly related to the pri-

mary time-scales of the dynamics under study. In the present

work, structure selection is performed using a genetic algo-

rithm (GA). Delays are needed to render the model sensitive

to dynamics on different time-scales, whereas coefficients

are actually the most dependent on dynamical regimes.

Unfortunately, exact relationships between delays and coeffi-

cients are only known for linear systems and cannot be

obtained in this study.

Our aim is to discriminate the dynamics underlying con-

trol subjects from those underlying PD patients. It is not our

purpose to look for a DDE that accurately captures the physi-

ological dynamics underlying the data but to capture major

features of the data sufficiently well to discriminate between

the finger-tapping movements of PD patients and controls

and between Parkinsonian finger-tapping of different degrees

of dysfunction. Even with this restricted task, selecting an

appropriate model structure is crucial. Since the DDE chosen

here plays the role of an approximate global model for repro-

ducing the dynamics underlying the data, it is not possible to

specify which aspects of the data induce changes in a given

coefficient. This can only be done when the model is linear,

which is not the case in the present work.

B. Structure selection using genetic algorithm

A GA is a global problem-solving search algorithm

based on ideas from natural genetics.41,42 GAs are widely

used in industrial applications, e.g., Ref. 58, have an exten-

sive body of theory57 and often incorporate well-known

heuristics.56

Given a problem to be solved, a GA maintains a popula-

tion of individuals, each being a proposed solution to the

problem and drives this population of solutions towards a

collection of solutions at a higher level of fitness. The popu-

lation begins as a collection of random guesses. A method to

measure “fitness” must be provided; typically, for models of

a time-series, this is a mean-square error. A GA uses evolu-

tion operators to generate new individuals from the old ones.

Evolution proceeds iteratively: at each step, new individuals

are born, tested for fitness, and the least fit members of the

population are discarded. New individuals are created by (1)

recombination, (2) mutation, and (3) junk.41,42 Recombina-

tion mixes bits of parental solutions to form a new, possibly

better, offspring. Mutation on the other hand modifies a sin-

gle individual, while junk adds new randomly created

individuals.

Here, given a finger-tapping data set, the problem is to

find the DDE model _x ¼ Fðxs1
; xs2

;…Þ that best character-

izes discriminating features of the data. The error at point x
is the difference between the time derivative _x and the right-

hand side of model (1). The fitness of a model on a data set,

the residual, is the mean of the squared errors at each point

x:

f � ½ _x� Fðxs1
; xs2

;…Þ�2
D E

: (2)

This mean-square error is computed for certain windows of

the data. For the GA part, the window was the length of each

data set and later, for computing the DDE scores, the win-

dows were 200 data points which is about two typical cycles

in the data. Successive data windows overlapped by 20

points. For a model with a selected structure, the coefficients

that minimize the mean-square error are numerically esti-

mated by a singular value decomposition (SVD) algorithm.43

The GA is split in two parts: the first part searches for

optimal time delays and the second part searches for the opti-

mal structure—the most relevant monomials in Eq. (1) based

on the n delays chosen—for a DDE model. Allowing both

the delays and the model structure to vary simultaneously

would significantly complicate the algorithm without signifi-

cant expected gain. Consequently, the GA alternates between

time-delay evolution and model evolution and maintains two

distinct populations: the set of time-delays and a collection

of model structures. For time-delay evolution, the best indi-

vidual in the current population of models is selected and

kept fixed while the population of the remaining time-delays

is evolved, using the fixed model to evaluate the fitness of

each set of time-delays. In the model evolution, the best set

of time-delays is kept fixed while the model population is

evolved, using it in evaluating the fitness of each model.

In the GA used here, the starting population size was

200 individuals for the delay selection part and between 10

and 100 for the model structure selection part, depending on

the order of nonlinearity and the number of delays desired.

The population size changes during the run of the GA: If the

best fitness (lowest mean square error) is constant for around

five generations, the population size is increased in order to

escape possible local minima of the residual. To further

avoid being trapped in local minima, the best five individuals

are taken out for five iterations at this point. During these

five iterations, the mutation rate is increased by 5% and

more randomly created individuals (junk) are added. After

those five generations, the five best individuals that had been

FIG. 6. Estimating the embedding dimension using a false nearest neighbors

technique. Case of a control subject (a) and a PD patient from group ii. The

fourth finger tapping session was here used.
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removed are added again and are also crossed over with the

existing generation. We found that five generations was an

excellent middle ground between excessive computation

time and the need to avoid entrapment in a local minimum.

This procedure is done twice for each run. The GA is

stopped when the best fitness does not change for 7 new

generations.41,42,56

The GA was run with models having up to six terms and

three delays. Models with fewer delays or fewer terms

yielded a much higher error and were less efficient for our

classification task. More terms and more delays did not lower

the least-square-error significantly and did not improve the

performance. Among those, smaller models with a slightly

higher residual are preferred to models with more terms. If

this did not give satisfying results, the number of terms in

the model and/or the number of delays were increased.

C. Selecting the DDE model structure and delays

We only used data from group ii to run the GA since the

group ii dataset has fewer occlusions. It further was not

upsampled, whereas the upsampling from 120 Hz to 480 Hz

applied to group i could have slightly modified its dynamical

information. Also, group ii is more homogeneous in that the

variance for the age and for the UPDRS score is smaller (Ta-

ble III). As data were available for both hands for group ii,

we used the data for both hands since this provides more

constraint for the GA search and did not change the models

selected by our procedure.

The next question is: when selecting the model form and

delays, does it make any difference whether we use data

from controls and/or PD patients? This question will be

answered in the following two sections: We run the GA on

all the data and then examine the statistics of each of the two

groups, PD and controls, both separately and combined.

It would be preferable to have one DDE model structure

that characterizes the dynamics of finger-tapping, regardless

of the presence of disease. Since delays are closely related to

different dynamical timescales and their interactions, and the

timescale information for PD patients and controls should,

intuitively, be very different, we expect that the delays

selected by the GA will vary according to the presence or ab-

sence of the disease and, when present, on its severity. We

would hope that delays with a low error for controls could

serve as a dynamical “baseline.” Any departure from this

baseline could then be used to assess the severity of the

disease.

To conclude: we use data from group ii for selecting the

model structure and test if the selected model (in Sec. I) and

delays (in Sec. II) depend on the presence of the disease in

the data.

1. Selecting the model structure from group ii

Group ii consists of seven control subjects and seven PD

patients, and six sessions around 10 s long for each. For each

of the 2� 7� 6 ¼ 84 recorded time series, we used a GA to

select a model with the best structure from these time series.

The resulting 84 “best” models—with their structures and

associated delays—are independent from each other. Each

model has six ordered terms, chosen from the 19 terms on

the righthand side of the DDE

_x ¼ a1xs1
þ a2xs2

þ a3xs3
þ a4x2

s1
þ a5xs1

xs2

þ a6xs1
xs3
þ a7x2

s2
þ a8xs2

xs3
þ a9x2

s3

þ a10x3
s1
þ a11x2

s1
xs2
þ a12x2

s1
xs3
þ a13xs1

x2
s2

þ a14xs1
xs2

xs3
þ a15xs1

x2
s3
þ a16x3

s2

þ a17x2
s2

xs3
þ a18xs2

x2
s3
þ a19x3

s3
: (3)

To select the six terms for the model, we proceed as follows.

For j¼ 1, …, 6, we construct a histogram of those terms from

Eq. (3) which occur as the jth term of a selected model.

These are shown in Fig. 7. The most often retained mono-

mials are collected to write the 6-term DDE

_x ¼ a1xs1
þ a2x2

s1
þ a3xs2

xs3

þ a4x3
s1
þ a5xs1

x2
s2
þ a6x3

s3
(4)

actually used for discriminating control subjects from PD

patients. It is interesting to note that when the selection pro-

cess is run on only the 6� 7 ¼ 42 time series recorded from

controls, or alternatively on the 42 time series from PD

patients, the same 6-term model is selected in both cases.

This indicates that the selected model structure captures

finger-tapping dynamics regardless of the presence of the

disease.

FIG. 7. (Color online) Histograms for the retained monomials in the 19-

term DDE (3) for the 84 runs of the structure selection algorithm on group ii

data sets. The x-axis is the index of monomials as in Eq. (3).
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2. Selecting the delays from group ii

In contrast to the model structure, the delays selected by

the GA depend on the data (controls, PDs, or both) used: The

delays selected from the 42 data files of the PD patients are

(22, 60, and 105), the delays selected from the 42 data files

of the controls are (0, 29, and 41), and the delays selected

from the whole data set of 84 files are (0, 23, and 41). Fig. 8

shows the histogram used to select the delays from the 42

data files of the controls.

To discriminate control subjects from PD patients, we

used the coefficient space of model (4), that is, the six-

dimensional space R6ða1; a2; :::; a6Þ. For each session, the

vector of coefficients faig was estimated using a SVD, defin-

ing one point—the center of the cloud of points generated

from the sliding window positions—in the coefficient space.

In order to test the performance of the selected delays, a

K-fold cross-validation44,45 was used. The model coefficients

a ¼ ða1; a2; :::; a6Þ were split into K subsamples aK;n (each

subsample is one control subject and one PD subject). We

have K¼ 6 for group i and K¼ 7 for group ii according to

the number of patients for each condition in each group.

Each of the K subsamples consists of n outputs an, one a for

each time series.

From the K subsamples, a single subsample an was

retained as the validation data for testing the model and the

remaining K – 1 subsamples were used as training data. For

each validation, the K – 1 PD patients and the K – 1 control

subjects were used to estimate an hyperplane splitting con-

trol subjects from PD patients. The hyperplane was obtained

by running a linear support vector machine (SVM) (Refs.

46–48).

For each partition, the model was fit to the training data,

and then the model quality assessed on the validation data by

computing the area under the receiver operating characteris-

tic (ROC) curves, A0.49 A ROC curve is a plot of the cumula-

tive distribution function P1 of the first class against the

cumulative distribution function P2 of the second class (see

Ref. 49, p. 173 for exact definitions). In our case, we plotted

the function PCO of the control subjects against the function

PPD of the PD patients. To compute the area A0 under the

ROC curve (following the approach introduced in Ref. 49),

we ranked the outputs of SVM from the largest positive

value to the most negative value. Let ri be the rank of the ith
control subject point. The area under the ROC curve is

approximated by

A0 ¼ S0 � n0ðn0 þ 1Þ=2

n0n1

; (5)

where S0 is the sum of the ranks of the control subject points,

n0 the number of control subject, and n1 the number of PD

patients. The cross-validation process was repeated K2 times

for all possible combinations of training and validation sets.

The average of all K2 cross-validations is then the model

quality �A0 . This method has the advantage that all observa-

tions are used for both training and validation.

From the average value �A0 reported in Table IV, it

clearly appears that classification performance is better for

group i than for group ii. Moreover, the delays estimated

FIG. 8. (Color online) Histograms of the delays for the 42 data files of the

controls. The numbers on the x-axis are the delays and the numbers on the y-

axis are the number of occurrences. The dominant three peaks are

s ¼ ð0; 29; 41Þ.

TABLE IV. Delays and model quality. �A0 for the different sets of delays

obtained from group ii data sets. �A0 is the mean value of the estimates A0 of

the area under the ROC curves49,50 according to Eq. (5) from a K-fold cross-

validation framework.

Cohort s1 s2 s3

�A0

Group i Group ii

PD patients 22 60 105 0.75 0.61

Control subjects 0 29 41 0.95 0.84

Patients and controls 0 23 41 0.94 0.74

TABLE V. Statistics on the predictive accuracy obtained with model (4)

and delays selected using the control subjects from group ii.

Group i Group ii

Sensitivity 0.95 0.57

Specificity 0.83 0.79

FIG. 9. Comparing the UPDRS finger-tapping ratings and HY ratings for

Parkinson’s disease. Difference plotted versus mean, where S1 ¼ SUPDRS

and S2 ¼ SHY. The solid horizontal lines indicate the 95% confidence limits.

The dashed lines indicate the mean difference: positive for group i and nega-

tive for group ii.
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with control subjects provide better results than using those

estimated with PD patients. This means that the delays esti-

mated from the control group can serve as a dynamical

“baseline” that captures dynamical information about the

nonlinear dynamics of healthy subjects. Any departure from

this baseline can then be used to assess the severity of the

disease.

We performed a second K-fold, leave-one-out cross-val-

idation,50 as follows. The subsamples are made of one PD

patient or one control subject. Results are reported in Table

V, where the control subjects from group ii were used for

selecting the optimal delays. The sensitivity value 0.57 in

Table V means, surprisingly, that the model—its structure

and delays—selected from group ii data sets was not able to

accurately discriminate patients and control subjects of the

same group. However, we have seen from Table III that for

group ii, the standard deviation of the UPDRS finger-tapping

scores is 0.4 whereas the corresponding figure for group i is

double that, at 0.8. A smaller standard deviation suggests

that it should be harder to discriminate amongst group ii

patients than amongst group i patients. This is consistent

with the low sensitivity score in Table V.

D. Comparison of UPDRS, HY, and DDE scores

Although the UPDRS scale is known to be more reliable

than the HY-scale,14 the latter is still widely used. In the case

of group i, the two scales are significantly correlated

(r¼ 0.80 and p < 0:0002), whereas for group ii, the correla-

tion is very poor (r¼ 0.330 and p¼ 0.2). In addition, a

Bland-Altman test51 reveals that for both groups, there is a

general correspondence between the two clinical measures

with, in group i, a single point slightly outside the 95% confi-

dence limit (Fig. 9(a)).

For every subject, there are up to 3 time-series from the

dominant hand but due to windowing, each time-series gen-

erates a cloud of 6-dimensional points in coefficient space.

Each cloud was replaced by its center-point, giving up to 3

points in coefficient space for every subject, both controls

and PD. To define a central point for the 13 controls, we

took the center of these center-points and used this as the

central point, or base, for controls. The 1-dimensional DDE

scores for the PD patients are then defined to be the distance

D from the PD center-points for each time series to this base

point for controls.

For group i, distances D are significantly correlated

(r ¼ 0:80 and p < 0:0002) with the UPDRS finger tapping

scores (Fig. 10(a)). To be able to directly compare the dis-

tance D to the UPDRS scale using a Bland-Altman test, we

inverted the linear regression

D ¼ �99þ 141SUPDRS (6)

to obtain a rescale distance

~S ¼ Dþ 99

141
: (7)

We thus obtained an assessment of the Parkinson’s disease

finger-tapping dysfunction which correlates better with the

UPDRS finger tapping scale than HY-scale (Fig. 11). Such a

comparison is not reasonable with results for group ii since

(Fig. 10(b)) shows that the correlation between the UPDRS

finger tapping scale and distance D is rather low (r¼ 0.44

and p < 0:05). It is rather difficult to validate our scorings

using a DDE because there is no obvious “gold standard” to

use as a reference. The quite different results obtained with

the two groups of patients may result from the difference in

the UPDRS finger-tapping scores: compared to the HY-

scale, these scores overestimate the severity of Parkinson’s

FIG. 10. (Color online) Comparing the UPDRS and DDE ratings for Parkin-

son’s disease finger-tapping.

FIG. 11. Comparing the UPDRS and DDE ratings for Parkinson’s disease

finger-tapping: Difference versus mean. S1 ¼ SUPDRS and S2 ¼ S~. Data sets

from group i.
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disease for group i and underestimate it for group ii (Figs.

9(a) and 9(b)). Moreover the 95% confidence limits are 61

for group i and 61:5 for group ii. Our technique provides a

measure which we have shown is related to Parkinson’s dis-

ease severity, but a larger group of patients will be needed to

obtain a better estimation.

E. Comparison of UPDRS and DDE scores for groups i
and ii combined

Clinically, the mean scores for each subject are the main

item of interest, so we plotted, for all subjects from groups i

and ii together, the mean DDE distance �D vs. the mean

UPDRS finger-tapping score. This plot is not shown but was

similar to the plots in Fig. 10. The linear regression was

obtained, as in Eq. (6), and then inverted, as in Eq. (7), to

give the DDE-rescaled distance

~SG ¼ 1þ �D=150: (8)

Fig. 12 shows ~SG plotted against the mean UPDRS finger-

tapping score. The regression line is the diagonal, due to the

rescaling, and the two scales are significantly correlated

(r¼ 0.78 and p < 0:0015). (Note that r is invariant under

rescaling.) The difference vs. means plot (Fig. 13) has a 95%

confidence limit¼ 1.05, slightly less than the confidence

limit 1.2 for the group i ratings (Fig. 11). This 95% confi-

dence limit is just over 25% of the range [0, 4], which, being

less than 30%, is considered an acceptable percentage value

when introducing a new measurement technique in

cardiology.55

V. CONCLUSION

A. Basic findings

An objective assessment of the severity of Parkinson’s

disease is needed to augment clinical evaluations which are

time consuming, expensive, and present inter-rater variabili-

ty. We proposed a novel algorithmic means of assessing PD

motor dysfunction through use of dynamical models based

on delay differential equations. In this method, we selected

the best structure of a nonlinear delay differential equation

using a genetic algorithm fitted to a given movement time se-

ries. The coefficients of the nonlinear delay differential equa-

tion then were used as a six-dimensional numerical

descriptor of the movement. This method was applied to re-

petitive finger-to-thumb tapping movements of PD patients

and matched control subjects. We showed that under certain

conditions—when there was substantial variation in disease

severity across PD patients within a group and a small rate

of marker occlusions—it was possible to obtain a structure

for the model which, when associated with appropriate time

delays, adequately discriminated PD patients from control

subjects. When we compared the algorithmic scores derived

with our method with clinical rating scales of PD motor se-

verity, we found that the algorithmic scores compared favor-

ably with the unified Parkinson’s disease rating scale.

Finally, when we took a subject-centered view of our results

and compared each subject’s mean rescaled DDE score with

each subject’s mean UPDRS score, we obtained a correlation

of 0.785 (p < 0:0015), which shows that our DDE-based

algorithmic scoring technique could be considered clinically

acceptable.

The method for non-linear dynamical analysis of move-

ment presented here can be used to characterize and assess

not only the degree of dysfunction of movements of Parkin-

son’s patients but also the nature of the movement structure

of a wide variety of motor disorders, including the move-

ment dysfunction due to stroke, or that due to developmental

motor dysfunction in childhood. Such quantitative and objec-

tive non-linear dynamical analysis can provide a new tool

for clinicians to use in tracking recovery of function, pro-

gression of dysfunction, or the effectiveness of medical, sur-

gical, or physical treatments in reversing dysfunction.

B. Study limitations

The total number of PD patients tested was small, six

patients in group i, and seven in group ii. A much larger sam-

ple size will be needed to more fully determine the reliability

of our classification technique. Moreover, the data collection

protocols we used differed slightly for the two groups of

patients studied: group i data were recorded at 120 Hz and

group ii at 480 Hz. This difference in sampling rate might

have led to the greater number of marker occlusions

observed in the recordings of group i, an effect accentuated

after upsampling to 480 Hz. Alternatively, the greater num-

ber of marker occlusions in group i may have resulted from

FIG. 12. (Color online) Comparing the mean rescaled DDE and mean

UPDRS, finger-tapping ratings for all subjects from groups i and ii com-

bined: r ¼ 0:785ðp < 0:0015Þ.

FIG. 13. Comparing the mean rescaled DDE and mean UPDRS finger-

tapping ratings for all subjects together: Difference versus mean. S1 ¼ ~SG

and S2 ¼ SUPDRS. 95% confidence limit¼ 1.05.
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group i patients having greater PD severity than those of

group ii. More severely affected patients often rotate their

hands or otherwise occlude view of one of the markers at

certain points during the movement. Having groups differing

in motor severity, even within the same overall stage of the

disease, allowed us to examine our method across a wider

range of motor deficits in PD patients who are clinically typi-

cal, and without the cognitive and emotional decline that

occurs in more advanced stages of the disease. We also note

that most aspects of the data collection protocols for the two

groups were virtually identical: The same 12 camera opto-

electronic 3D movement tracking system was used for both

groups; IREDs were affixed in the same locations on the

index finger and thumb and in the same manner, for both

groups; data were collected in the same experimental room

in both groups; the same duration of the finger tapping move-

ment was recorded for each group; the same patient selection

criteria were used for each group, namely, diagnosis of typi-

cal, idiopathic Parkinson’s disease of Hoehn and Yahr stage

II-III in severity (mild to moderate); patients in both groups

were tested at least 12 h off of their anti-parkinsonian medi-

cations; testing sessions occurred in the mornings; and con-

trol subjects were age-matched to the PD patients in the

same manner for both groups.

A further limitation of our study is that the clinical rat-

ing scales used, the UPDRS and the Hoehn and Yahr scales,

provide only somewhat global measures of motor severity.

The UPDRS is the most widely used scale for rating PD se-

verity, but even its functional divisions of deficits are quite

broad (e.g., mild, moderate, or severe). The UPDRS has

recently undergone a movement disorders society-sponsored

revision to correct identified shortcomings.52 This revised

scale has been undergoing clinimetric testing and is begin-

ning to be used clinically. Use of such enhanced clinical rat-

ing scales could provide a more precise and objective

reference for comparison with our algorithmically derived

scores, and thus, to more adequately assess the reliability of

our classification technique.

C. Future studies

Future investigations planned in our laboratory will test

not only finger tapping movements but also a variety of other

repetitive movements that are also impaired in PD, such as

rapid, alternating forearm supination-pronation. Currently, it

still is an open question whether individual finger tapping is

sufficient to evaluate the severity of Parkinson’s disease. The

non-linear dynamical analysis presented here could also be

used to help determine the effects of aging on loss of sensori-

motor function. It is known that sensorimotor function

degrades with aging.53 Moreover, in normal aging, we lose

approximately 4.7% of our dopamine-containing cells per

decade,54 and, indeed, a key element of Parkinson’s disease

is the age-dependent reduction of dopamine coupled to a dis-

ease process that produces an exponential loss of dopamine

cells.54 Thus, elderly subjects provide a naturally occurring

condition of mild dopamine depletion that is associated with

loss of sensorimotor function. However, the degree of motor

dysfunction at various age spans has not been systematically

characterized. Use of the non-linear, dynamical analysis pre-

sented here could help provide such a systematic characteri-

zation. Likewise, the techniques presented here could be

used to characterize and assess the degree of motor dysfunc-

tion in a wide range of motor disorders, varying from motor

disorders due to stroke to those due to developmental child-

hood disorders.

D. DDE data analysis technique used in this paper

The technique described here, using GAs to find a DDE

model that can be used as classifier, has been used

previously24–26 and is currently being improved and applied

to various medical data sets. Technical and mathematical

details of this technique and further applications are under

investigation and are planned to be published separately.
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