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Summary
Systems biology offers cutting-edge tools for the study of complementary and alternative
medicine (CAM). The advent of ‘omics’ techniques and the resulting avalanche of scientific data
have introduced an unprecedented level of complexity and heterogeneous data to biomedical
research, leading to the development of novel research approaches. Statistical averaging has its
limitations and is unsuitable for the analysis of heterogeneity, as it masks diversity by
homogenizing otherwise heterogeneous populations. Unfortunately, most researchers are unaware
of alternative methods of analysis capable of accounting for individual variability. This paper
describes a systems biology solution to data complexity through the application of parsimony
phylogenetic analysis. Maximum parsimony (MP) provides a data-based modeling paradigm that
will permit a priori stratification of the study cohort(s), better assessment of early diagnosis,
prognosis, and treatment efficacy within each stratum, and a method that could be used to explore,
identify and describe complex human patterning.
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Introduction
Systems biology offers sophisticated objective tools for investigating how complementary
and alternative medicine (CAM) treatments could result in complex and individualized
effects on the body [1–5]. Most scientific research aims to identify the hidden patterns that
exist within a population or among populations by decoding data complexity. These patterns
could be biological variations or behavioral patterns, depending on the hypothesis being
probed. Statistical methods have dominantly been employed to support the existence or lack
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of such patterns, whether the subject of the study is a human population, a plant family, or a
cell culture.

However, recent evidence suggests that data averaging has significant limitations when
dealing with heterogeneity as it masks intrapopulation diversity and homogenizes otherwise
heterogeneous subpopulations. Heterogeneity at all levels is a product of evolution [6]; it
confers better fitness on individuals and thus positions populations to survive bottleneck
events. Evolutionary processes produce heterogeneity at many levels from cellular (e.g.,
genes, chromosomes, genomes, epigenetics, and tissues) to behavioral patterns (e.g., dietary,
exercise, health promotion patterns). Variations at these levels constitute the basis of natural
selection [6, 7].

Recent whole-genome sequencing projects have shown the presence of millions of
variations as single-nucleotide polymorphisms (SNPs), small insertions and deletions, and
copy number variations (CNVs) [8]. However, the lack of proper analytical tools has
reduced the significance of genetics studies and prevented meaningful interpretation of the
data [9, 10].

The scientific community is addicted to statistical and phenetic approaches, and despite their
inapplicability to certain high-throughput high-dimensional biological data, statistical
parameters continue to be invoked even when their usefulness is doubtful [11]. The
commonly cited reason for this is the perceived absence of an alternative; but as we will
detail in this paper, such alternatives indeed exist, and they should be studied and employed.
They are based on the fact that heterogeneity, whether in normal or disease conditions, is an
evolution-based phenomenon that has to be dealt with by applying evolutionarily compatible
methods.

Dealing with Data of Heterogeneous Populations
Although the paradigmatic and methodological argument is broadly applicable across
domains and disciplines, we will present the case for the proposed approach using biological
exemplars. Heterogeneity has implications for many aspects of research and clinical
practice. It necessitates compensating for individual variations that produce significant
differences in rates of treatments efficacy, effectiveness and side effects as well as responses
to various therapeutic modalities, including whole systems of complementary and alternative
medicine (WS-CAM) [12, 13]. For example, in a clinical trial where the study population
encompasses individuals who are poor responders to a particular treatment, the treatment’s
effects in good responders will be underestimated [12]. As in other fields, this is an issue
that is particularly important in WS-CAM research, where personalized intervention
packages and individualized trajectories of treatment response are the norm [14, 15].

Rather than focusing on the commonalities of certain genes, metabolites, or proteins,
profiling heterogeneity is better suited for dynamic systems [7]. Prior to 1966, natural
populations were assumed to be more or less genetically uniform, even though Lewontin
and Hubby [16] and Harris [17] demonstrated that polymorphisms are common throughout
populations. Today, we recognize variation at several levels; a gene-nucleotide level of
variation could manifest in mutations and genetic polymorphism, while a genome-
chromosome level heterogeneity can be present as CNVs, loss of heterozygosity (LOH), and
epigenetic heterogeneity such as DNA methylation, non-coding RNAs, or chromosomal
folding [18]. Additionally, there are changes that take place independent of epigenetic
alterations; these are influenced by environmental factors and are affected by nutrition,
stress, exposure, and immune responses [18].
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Analyzing Heterogeneous Data for Biological Significance
The recent clinical trials of targeted biomedical cancer treatments are examples of the
current reductionist trend that has produced mostly disappointing results [19]. However, the
failed targeted treatment approach has served the purpose of bringing the issue of
heterogeneity to the forefront of scientific thought [18, 20].

More recently, by recognizing the ubiquity of heterogeneity in complex systems and the
negative effects of ignoring it, statisticians and researchers are calling for the two-stage
study, whereby in the first stage, the study group is stratified into well-defined but broad
populations using traditional experimental methods, followed by the construction of
subgroups in the second stage [12, 21]. Similarly, CAM researchers previously identified a
need for two-stage diagnosis, with the conventional medicine disease entity group diagnosis
followed by the individualized WS-CAM diagnosis [4]. Although the two-stage approach
can be achieved fairly readily in a small non-complex situation with one to a few variables,
it becomes difficult to conduct when the contributing variables are scaled up to the tens,
hundreds, or thousands [22–26].

In a disease context, data heterogeneity can point out several phenomena, such as inter- and
intra-specimen diversity in diseased specimens, a high rate of variability generation, and
multiple pathways of disease development [18, 20]. Additionally, the disease process is
further complicated by the multiphasic and dynamic nature of some pathologies, such as
cancer and degenerative diseases, which pose the challenge of whether a multiphasic and
dynamic process can be modeled by a bioinformatic paradigm.

Data interpretation requires analysis and synthesis compatible with the existing biological
conceptual framework(s) and hypotheses. Thus, a biologically compatible analytical
paradigm should incorporate four elements: the high-throughput data (e.g., genomics,
metabolomics, proteomics), the disease phenotypes (e.g., hyperplasia, primary tumor,
metastatic tumor), evolutionary theory, and bioinformatics (an analytical algorithm that
processes the data). Parsimony phylogenetics offers an analytical algorithm that can bring
these elements together to achieve novel multidimensional systems biology synthesis
without the traditional overdependence on statistical methods.

Parsimony Phylogenetics for Analyzing and Modeling Heterogeneity
Phylogenetics, also termed cladistics, is an analytical paradigm based on the principles of
evolution [27]. Its current codes known as phylogenetic systematics were laid down in the
mid-1950s by the German systematist Willi Hennig [28]. Phylogenetics differs from other
systems of classifications in that, rather than using overall similarity to classify objects, it
utilizes shared derived similarity as evidence of relatedness. The practice has been applied in
many fields such as botany, microbiology, and zoology to construct relationships among
species, populations, and individuals in an evolutionary sense [27].

The goal of a phylogenetic analysis is to model the data to produce a hypothesis of
relationships among the specimens under study that accurately reflects the biological
processes that led to the diversity of specimens. Phylogenetics constructs the hypotheses of
relationships by sorting data points into ancestral (normal/within the normal parameters) and
derived (abnormal, above or below the selected baseline, or falling outside the normal range)
categories, and then grouping together the specimens that share the same derived states [28,
29]. The process of sorting out data points into derived and ancestral states is termed
polarity assessment, data polarization, or outgroup comparison. The derived states represent
the aberrations or the new changes; for example, in a disease, the aberration can be an
overexpression of a gene, up-regulation of a protein, or a mutation.
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In phylogenetic terminology, a shared derived state is termed synapomorphy (a potential
biomarker); because sharing a synapomorphy is indicative of a relationship, a group of
specimens that share one or more synapomorphies is called a clade. Phylogenetics presents
its hypotheses in a graphical tree format called the cladogram (fig. 1), which is a map of
clades (groupings) and their supporting synapomorphies.

There are a few methods to constructing phylogenetic cladograms (trees); among these are
parsimony, maximum likelihood, and neighbor joining. They differ in their algorithmic
functions and the type of data they handle. These methods have been compared, and
parsimony has turned out to be the most suitable for the purposes of dealing with
heterogeneous high-throughput data of various diseases. Parsimony, also known as Occam’s
razor or the ‘principle of simplicity’, is generally defined as selecting the simplest
hypothesis among competing ones. In phylogenetic analysis, it is the hypothesis that
requires the least number of steps to construct, i.e., the shortest tree/cladogram, which is
usually called the most parsimonious tree. A parsimonious approach produces a
multidimensional analytical tool that is data based, not specimen based, which accounts for
and integrates disease heterogeneity, nature of biological data, and principles of evolution
[30, 31]. Yet, it is important that any analytical method has high predictive power; it must be
able to differentiate between groups of people (e.g., those that are healthy from those with
disease, or those who respond to treatment from those who do not), present the changes that
distinguish between the two groups, show the transitional specimens that fall in between the
two states [27], and stratify populations [32].

We provide an example to illustrate the application of a parsimony analysis of gene
expression microarray data. We selected dataset GDS1439 from the National Center of
Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov/sites/entrez?db=gds), which
contains 6 benign specimens, 7 primary, and 6 metastatic prostate carcinoma specimens
[33]. When dealing with large datasets that contain thousands of variables, especially
datasets obtained from high-throughput microarrays or mass spectrometry, there are two
steps in carrying out parsimony analysis; first, polarity assessment of data points through
outgroup comparison into either derived (abnormal in case of disease phenotypes) or
ancestral (normal) must be carried out. Polarity assessment transforms the continuous
quantitative data points of gene expressions into discrete entities of zeros (0s) and ones (1s),
where zero indicates that the value is ancestral (normal) and one indicates that the value is
different and therefore assumed to be derived in an evolutionary sense. So, the new data
matrix of polarized bivalent values has only zeros and ones, and it is this matrix that will be
processed in a parsimony algorithm. The second step is the processing of the polarized
values through a maximum parsimony algorithm to classify the specimens into a cladogram.
The first step of the analysis was carrying out polarity assessment of the gene expression
values that sorted the expression values into derived (abnormal) and ancestral (normal) by
comparing the values of the cancerous specimens against the range of the benign specimens
for every gene in the dataset. The new matrix was processed with the computer program
MIX (the parsimony program of the PHYLIP package) using Wagner’s parsimony method
[34], which produced only one most parsimonious tree/cladogram (fig. 1).

The cladogram of figure 1 is a graphical summary that showed the groupings (clades), their
synapomorphies, and a topology that reflects the relationships among the clades and the
direction of change accumulation among the clades and their specimens. The analysis
showed the primary and metastatic specimens grouped separately from each other in two
groups; while the metastatic occupied the top of the cladogram, the primary was nested in
between the metastatic and benign clades. Separating the metastatic cases from the primary
ones on the basis of their gene expression is an excellent outcome that confers confidence
that this approach has good validity. The primary and metastatic clades shared a list of 302
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synapomorphies (uniquely shared derived expressions or potential biomarkers in a
biomedical sense) that separate them from the benign clades. The metastatic specimens at
the top end of the cladogram are separated from the primary specimens by a list of 577
synapomorphies that are shared by their respective specimens. The cladogram topology has
directionality; the specimens with the highest number of derived states occupy the upper part
of the cladogram. Therefore, one could interpret the tandem arrangement of the primary and
metastatic groups as a sequential relationship, where the initiation of the cancer required 302
derived gene expressions, while the transformation to a metastatic phenotype required an
additional 577 changes.

Implications of Parsimony Phylogenetics
As our example demonstrates, maximum parsimony has efficiently and accurately modeled
the heterogeneous expression profiles of the diseased specimens, in this case, cancer with a
rapid mutation rate. The analysis precisely classified the phenotypes (or genetic patterns)
based on modeling of the disease genotypes (gene expressions); there was no mixing of the
three phenotypes, and the gene expression data were perfectly congruent with their
phenotypes.

The process of data polarization has the added advantage of reducing measurement
variability. By transforming data points to distinct 1s and 0s, the comparison between
specimens becomes qualitative rather than based on absolute quantitative values.
Polarization of the data allows pooling of multiple experiments, and therefore facilitates
intra- and inter-compatibility of the observed clades, types or classes. In this regard, the
analysis is a systems biology approach that can pool data from related diseases to identify
the common aberrations and differential features among them, e.g., several cancer types [30]
or WS-CAM diagnostic subgroups [14, 15, 17, 35]. For example, Alraek and Baerheim [14]
subgrouped their cystitis patients in three groups: (1) spleen yang/qi xu, (2) kidney yang/qi
xu, and (3) liver qi stagnation; such subgrouping can more objectively be carried out by a
phylogenetic analysis. Also, as Frei et al. [15] have shown, subgrouping of patients with
attention deficit hyperactivity disorder (ADHD) before the commencement of a trial is
important in order to avoid failure, since patients vary in their response to treatment and
poor responders require alternative medication (see below on the use of phylogenetics for
the stratification before clinical trial).

From a practical aspect, a parsimony approach can be translated into a clinical setting for
diagnosis, prognosis, and post-treatment evaluation [27]. By constructing a comprehensive
cladogram that incorporates many diseases (for example, a tree of cancer), the cladogram
becomes an instrument for diagnosis. To diagnose a case, data can be entered into the
comprehensive cladogram, thus placing the case on the cladogram. This approach might also
facilitate more accurate prescriptive practices, like those used in homeopathy, in which the
process of choosing an individualized remedy or therapeutic schema often requires
categorizing each patient’s global homeopathic phenotype, i.e., remedy type, by kingdom
(animal, plant, or mineral) and specific family [36].

Parsimony phylogenetics could also be applied to WS-CAM and integrative therapies
research. CAM clinicians have often claimed that a portion of the population responds
positively to a particular therapy (responders) while others seem to have little to no change
in outcomes (non-responders) [14, 15, 35, 37, 38]. Clinical trial limitations, often cited in the
CAM literature, have fueled a call for new methodological strategies and sophisticated
analyses. The successful analytical tool is the one that does not obviate or underplay
heterogeneity-driven variability. Solutions such as genomic control, which adjusts
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association statistics for each marker by a uniform overall inflation factor, compensate only
partially for heterogeneity [39, 40].

Parsimony phylogenetic methods can be used to differentiate among responder types by
classifying into responder-type clades, based on shared synapomorphies or sets of intra-
population characteristics. Thus, a wider set of study participants could be enrolled into
CAM clinical trials, more closely aligning the trial population with those seen in clinical
practice. CAM researchers could better evaluate treatment-effect variability and treatment-
related risks, while predicting those persons who are most likely to benefit from a particular
CAM therapy in a given solution [15, 41].

Others have suggested conducting multiple trials of treatment on each individual in an ‘n-of-
one’-type design in order to minimize the data heterogeneity. Phylogenetic analysis would
allow pooling of data across these types of studies to again identify responders and non-
responders. Thus, information gained from clinical trials could be more informative and
more easily extrapolated to the clinic [42].

We propose a three-stage clinical trial model that starts with a stratification of the study
sample based on phenotypic and genotypic characters. A pre-trial phase using a priori
stratification by parsimony phylogenetics will delimit the subpopulations that share common
biological traits (classes) (fig. 2). A small blood sample subjected to high-throughput
analysis could provide the data needed for stratification. Because the stratification is done
without a priori weighing of variables, parsimony may also reveal the variables that define
the subpopulation partitioning. Essentially, in the first stage, the recruitment could include a
wide spectrum of inclusion criteria in order to embrace a heterogeneous study population
that would reflect the ‘real-world’ setting. Based on the identified clades that reveal
relatedness among groups and subgroups, the second stage of the trial could be implemented
knowing that we reached a level of homogeneity at baseline within each clade. Thus, each
clade could then be randomized to either control or intervention, depending on the clinical
trial type.

Among the individuals of each clade there will probably be variable levels of responsiveness
to the intervention, but most likely less variability than between clades. The cladogram will
serve as a dynamic database for the implementation of the third stage, which corresponds to
the translation of the clinical trial findings to the clinic. This means that, prior to using a new
therapy or intervention, the patient will need to submit a blood sample to determine his/her
clade. A clade membership determines the treatment options; what dosage he/she will need
or how responsive to treatment the patient will be. Thus, the health care provider could make
an informed decision when recommending a particular therapy or implementing a particular
type of treatment. Potentially, this could lead to decreased treatment-related risk, improved
outcomes, decreased costs, and treatment efficiency. Furthermore, in WS-CAM where the
practitioner stratifies patients on categorical yet unifying classes (types of doshas, humors,
temperaments, or imbalances in interrelationships among elements), this method could offer
a modern verification of these concepts and potentially include them in the clinical design.

The advantages of this three-stage clinical trial design could be summarized in three
significant points: (i) By employing parsimony analysis to carry out the pre-trial
populational stratification into natural clades, the baseline heterogeneity per clade will
significantly be reduced; (ii) individuals’ positions within a clade determine their treatment
options; and (iii) by using the clades as a dynamic data base, the physician could prescribe
the suitable treatment on the basis of the patient’s clade membership. Our proposed three-
stage clinical trial design encompasses the practice of personalized medicine using a systems
biology approach that addresses most of the currently debated issues of baseline
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heterogeneity, data heterogeneity, treatment-related risk, and translation of trials findings to
the clinic.

Conclusions
Using parsimony phylogenetics as a means to account for heterogeneity from the subcellular
to the whole-human behavioral level of function holds extraordinary promise in expanding
clinical knowledge related to CAM therapies, and clinical treatment in general. Using a
systems biology approach and putting data into an algorithm that can accurately model
subtypes of people/phenomena in an evolutionary context offers a novel methodology to
clinical design. This stands to deepen clinician understanding and confidence for matching
interventions to those who are most likely to benefit.
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Fig. 1.
The most parsimonious cladogram of the gene expression microarray of dataset GDS1439
(www.ncbi.nlm.nih.gov/sites/entrez?db=gds). The study group contains specimens
composed of 6 benign specimens, as well as 7 primary and 6 metastatic prostate carcinoma
specimens [33]. The primary and metastatic specimens grouped separately from each other
into two groups (clades); while the metastatic occupied the top of the cladogram, the
primary was nestled in between the metastatic and benign clades.
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Fig. 2.
Diagram illustrating the three-stage clinical trial design. Stage 1: Stratification of the
population based on their genotype into various clades, and randomization of each clade into
control and intervention. Stage 2: Classification of individuals based on their response to
treatment/intervention (conventional and/or CAM) and characterization of clades. Stage 3:
Translation of findings to the clinic and application of personalized medicine; patients
visiting their physician will be tested against the master clade, using a simple blood test
(omics-type of data or equivalent), and based on their position within a clade an
individualized treatment can be planned.

Abu-Asab et al. Page 11

Forsch Komplementmed. Author manuscript; available in PMC 2012 March 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


