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Abstract
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis
imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and
performed mutation analyses covering the coding exons and adjoining intron sequences for the six
proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence
similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin
(MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected
candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in
AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI.
Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing
mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H
coding-region or splice-junction mutations were identified in three probands with autosomal-
dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the
aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and
disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No
disease-causing mutations were found in 11 families with only one affected member. We conclude
that mutation analyses of the current candidate genes for AI have about a 50% chance of
identifying the disease-causing mutation in a given kindred.
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Amelogenesis imperfecta (AI) is a group of hereditary conditions featuring the pathological
formation of dental enamel. By the narrow definition used here, the phenotype is limited to
the dental apparatus and is not associated with more generalized defects (1). Enamel
malformations are categorized as hypoplastic, hypocalcified, or hypomaturation types (2, 3),
which reflect the timing of the developmental disturbance. During the secretory stage of
amelogenesis, the enamel layer achieves its final dimensions by the lengthening of enamel
crystals (4). Hypoplastic (thin) enamel results from secretory-stage pathologies. During the
maturation stage the enamel layer hardens by the widening and thickening of the crystals
deposited during the secretory stage (5). Hypomaturation enamel has normal thickness, but
is soft and contains residual protein as a result of maturation-stage disturbances.
Hypocalcified AI is the most severe form of AI and may be the result of pathology starting
in the secretory stage and continuing through maturation. When mode of inheritance is
included in the classification, 14 subtypes of AI are recognized (2, 3). The complexity of the
AI aetiology is suggested by the diversity of its phenotypes and its multiple patterns of
inheritance.

Dental enamel formation is a specialized process. Unravelling the mechanisms of dental
enamel formation requires knowledge of all critical molecular participants. Determining the
genes that cause syndromic and isolated AI provides this information. Identifying the genes
that cause isolated AI narrows the focus to components that are most specialized for dental
enamel formation. At the time of writing there were six proven candidate genes for AI:
amelogenin (AMELX, Xp22.3-p22.1); enamelin (ENAM, 4q21); WD repeat containing
domain 72 (WDR72, 15q21.3); family with sequence similarity 83, member H (FAM83H,
8q24.3); enamelysin (MMP20, 11q22.3–q23); and kallikrein-related peptidase 4 (KLK4,
19q13.4). The major secretory-stage enamel constituents (amelogenin, enamelin,
ameloblastin, and MMP20) are thought to be specialized for tooth formation, as these genes
degenerate in mammals that have lost, during evolution, the ability to make teeth or dental
enamel (6–10).

At the Enamel VII conference (in 2005), we presented a paper that summarized the results
of mutational analyses of 24 kindreds with isolated AI (11). At that time, only six of their
disease-causing mutations had been identified. Since that report, new candidate genes for AI
have been identified, and additional AI kindreds have been recruited. We now know the
disease-causing mutations for 12 of the original 24 families and have ruled out the presence
of coding region and splice junction mutations in the six known AI candidate genes plus
ameloblastin (AMBN) in the families where the genetic cause could not be determined. Here
we report the results of mutation analyses in the original 24 and 15 additional AI kindreds
and discuss them in the context of new information concerning normal and pathological
enamel formation.

Material and methods
The human study protocol and patient consents were reviewed and approved by the
Institution Review Boards at the University of Michigan.

Fifteen families with isolated enamel defects were recruited for genetic studies. Mutational
analyses for AMBN were conducted in all families. Based upon the enamel phenotype and
pattern of inheritance, the most likely of the six proven candidate genes for AI (AMELX,
ENAM, FAM83H, WDR72, MMP20, and KLK4) was selected and the coding exons and
nearby intron sequences were amplified, using genomic DNA from each proband as the
template. The amplification products were characterized by DNA sequencing and then other
family members were tested to determine their genotype with respect to each sequence
variation; however, typically there were too few people in each family for haplotype
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analyses. All subjects received an oral examination, and intra-oral photographs and dental
radiographs were obtained.

In most cases, 10 ml of peripheral whole blood was obtained from participating family
members. Alternatively, buccal swabs were performed. Genomic DNA was isolated using
the QIAamp DNA Blood Maxi Kit and protocol (Qiagen, Valencia, CA, USA). Genomic
DNA (50 ng) from affected individuals was amplified using the Platinum PCR Supermix
(Invitrogen, Carlsbad, CA, USA), and the amplification products were purified using the
QIAquick PCR Purification Kit and protocol (Invitrogen). The concentration of purified
amplimer was estimated by the intensity of its ethidium bromide-stained band on a 1%
agarose gel. The DNA-sequencing reactions used 1.0 pmol/µl of oligonucleotide primer and
3 ng/µl for each 1000 bp of amplification product, and were analyzed using an ABI Model
3700 DNA sequencer (Applied Biosystems, Foster City, CA, USA) at the University of
Michigan DNA sequencing core. The primer pairs and PCR conditions for the amplification
of the coding regions were as previously described for AMBN (11), AMELX (12), ENAM
(13), FAM83H (14), WDR72 (15), KLK4 (16), and MMP20 (17).

Results
Original 24 AI kindreds

Disease-causing mutations in 12 of our original 24 AI kindreds (11) have been identified
(Table 1). Two families showed an X-linked pattern of inheritance and both had AMELX
mutations (12). Eleven families showed a dominant pattern of inheritance. Three of these
families had ENAM mutations, and five had FAM83H defects. Five families showed
recessive transmission. Six families had only a single affected individual (simplex
pedigrees), so the pattern of transmission could not be determined. Simplex cases are usually
recessive, but they can be the manifestations of de novo mutations with any inheritance
pattern possible. Among the five families showing recessive transmission, we identified one
disease-causing mutation in both alleles of MMP20 and one in both alleles of WDR72.
Among the six simplex cases, a disease-causing mutation was identified in a single allele of
FAM83H, so the inheritance pattern in this simplex case was actually autosomal dominant.
In addition to the six proven AI candidate genes, mutational analyses for AMBN were
performed for all of the probands, but no disease-causing mutations were identified in this
gene.

Success in determining the causative mutation in these AI kindreds varied, depending upon
the pattern of transmission. The disease-causing mutations were identified in both cases
showing X-linked inheritance (100%). Among the 12 kindreds with dominant conditions (11
with a dominant pattern of inheritance and a dominant de novo mutation), disease mutations
were characterized in eight (67%). Among the five recessive conditions, only two (40%) of
the causative mutations were identified.

Additional AI kindreds
Fifteen additional AI kindreds were recruited and extensively, but not exhaustively,
characterized. Of these additional kindreds, two were X-linked, six were dominant, and
seven were simplex. Mutational analyses for the six AI candidate genes were prioritized
based upon previously established genotype–phenotype correlations, and their transmission
patterns were deduced from the pedigrees. Using this approach we were not able to identify
a disease-causing mutation in eight of the 15 probands (Fig. 1). Among the seven remaining
probands, four had novel mutations (Fig. 2), which included a nonsense mutation (p.W34X)
in both alleles of MMP20 (18), a complete deletion of AMELX (H-C. Chan, unpublished
data), a FAM83H nonsense (p.Q398X) mutation (19), and an ENAM compound
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heterozygote (p.S216L/p.422FsX448) (20). The final three AI kindreds in the new group
were found to have previously identified disease-causing mutations: two had FAM83H
nonsense mutations [p.Q677X (Fig. 3) and p.Q452X (Figs 4 and S1)], and one had an
AMELX missense mutation [p.P70T (Figs 5, S2, and S3)]. Thus, in the 15 additional AI
kindreds, both X-linked mutations (100%), four of the six dominant mutations (67%), and
one of the seven simplex mutations (14%) were identified (Table 1).

Among the 39 AI kindreds characterized, disease-causing mutations were identified in 19,
so screening a given AI kindred for mutations in the six proven candidate genes has about a
50% chance of success. AMELX mutations were identified in all four of the X-linked
families (100%). Four ENAM and eight FAM83H mutations were identified among the 18
autosomal-dominant families (67%). One WDR72 and two MMP20 mutations were found
among the six AI kindreds with known recessive conditions (50%). In addition, there were
11 simplex cases in which the disease-causing mutation could not be identified by
mutational analyses of the known candidate genes.

Discussion
Screening the six proven AI candidate genes in kindreds with isolated AI has about a 50%
chance of identifying the causative mutation, but the odds vary depending upon the pattern
of inheritance. Next we discuss the findings of this study in the light of recent advances in
our understanding of each form of AI according to its transmission pattern.

X-linked AI
About 5–10% of all AI cases are X-linked (21). Currently, 16 different AMELX mutations
have been reported in subjects with X-linked AI (Table 2). If the AI is X-linked, a mutation
in AMELX is predictably found, suggesting that no other genes on the X-chromosome are
involved in its aetiology. In all 16 AMELX mutations, the phenotype was limited to the
enamel layer, excepting an open bite, which is probably a secondary effect as it is observed
in all forms of AI, regardless of which gene is defective.

None of the reports that describe the dental phenotype resulting from defined AMELX
mutations detected developmental abnormalities in the periodontium (cementum,
periodontal ligament, and alveolar bone), despite the fact that such abnormalities would
certainly have been diagnosed if they were part of the dental phenotype, given that dental
examinations and radiographs are routinely used to characterize the dentition in patients
with AI. In addition to there being no reports of developmental periodontal defects in
individuals with AMELX mutations, there are solid data showing no, or only trace expression
of amelogenin along developing tooth roots (22–24). These findings undermine the
conclusions of an extensive and growing literature that describes amelogenin as a signalling
molecule which serves important functions in the formation and healing of the
periodontium.

As a rule, enamel malformations in X-linked AI are more severe in men than in women
(who have a second copy of AMELX). Women often show vertical grooves in their enamel
crowns. These are believed to result from alternating bands of ameloblasts secreting normal
and defective amelogenin during amelogenesis, depending upon which X-chromosome had
been inactivated by the individual cells that later developed into ameloblasts (2, 25). The
severity of the enamel phenotype in women can be influenced by skewed X-inactivation,
where a disproportionate number of cells inactivate the X-chromosome carrying the mutant,
or alternatively, the normal allele (26). The enamel phenotype in subjects with AMELX
defects generally correlates with the nature of the AMELX mutation (27, 28). The phenotype
in our family with the p.P70T defect in AMELX is consistent with previous descriptions of
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hypomineralization/hypomaturation enamel with brown discolouration (Figs 5, S1, and S2)
(29–32).

Although amelogenins comprise 90% of the enamel matrix, only 5–10% of cases AI are X-
linked. Abundance of the protein product is not a factor in determining the relative
importance of AMELX in the aetiology of AI, which is a collection of many diseases
exhibiting isolated enamel malformations. The number of AI-causing genes relates to the
number of genes specialized for dental enamel formation (i.e. a loss of function would result
in isolated enamel defects) plus the number of genes that function in multiple places, but
enamel formation is most sensitive to their absence or alteration. Even if we knew the
number of genes involved in the aetiology of AI, their individual contributions (in
percentages of the total number of cases) would vary significantly, depending upon the
number of mutations in each gene that could cause AI, the chances of these mutations
occurring, and whether the resulting phenotypes would be dominant or recessive. Identifying
the pantheon of genes that cause AI, and understanding their pathogenesis and mode of
inheritance will allow us to appreciate the contributions of individual genes to the aetiology
of AI as a whole.

Autosomal-dominant AI
About 46% of our AI kindreds showed a dominant pattern of inheritance, which is a lower
proportion than found in Sweden (~61%) (33). It is likely, however, that a few of the
remaining 11 simplex cases will prove to be dominant mutations. Most of the autosomal-
dominant AI (ADAI) in our kindreds (12 out of 18 cases) was caused by defects in ENAM or
FAM83H.

To date, 11 different disease-causing ENAM mutations have been reported (Table 3). ENAM
defects show a dose effect (34). When one allele is defective the phenotype can range from
non-penetrant (35), to minor well-circumscribed pits or horizontal grooves (13, 20, 34, 36),
to pronounced horizontal grooves (37) with generally very thin enamel (38, 39), to virtually
no enamel (13). When both ENAM alleles are defective, there is extreme enamel hypoplasia
or no enamel (20, 34, 35, 40). In all four reported cases where both ENAM alleles are
defective, one or both alleles had the p.V422PfsX448 mutation. In one case where the
enamel was extremely thin and smooth, there was also defective eruption and coronal
resorption (40), which we hypothesize was caused by secondary pathology in the enamel
organ. The ameloblast layer becomes increasingly pathological as amelogenesis progresses
in the absence of a true enamel layer in the Enam null mice (41, 42).

Although only recently discovered to be part of the aetiology of inherited enamel defects,
FAM83H accounts for more cases of ADAI than any other gene. This was true for this study
and also for another study that performed mutational analyses on 91 families with inherited
enamel defects, 71 of which satisfied the classical criteria for non-syndromic AI (32).
FAM83H encodes an intracellular protein of unknown function that appears to be associated
with the Golgi apparatus or trans-Golgi network (19), and is most strongly expressed by pre-
a-meloblasts (43). In the last few years, 18 different FAM83H disease-causing mutations
have been reported (Table 4). All of the defects are missense or frameshift mutations located
within a discrete region of the last exon that truncate the protein and apparently target it to
the nucleus (44). The N-terminal region is the only part of the mutant proteins that is
translated. This domain shares homology with the phospholipase D superfamily and is
assumed to form dimers or to interact with another protein to cause dominant-negative
effects in ameloblasts or their progenitors.

Defects in FAM83H cause autosomal-dominant hypocalcified AI (ADHCAI). The enamel
layer has normal thickness in newly erupted teeth, but is rapidly lost by attrition following
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eruption and the teeth turn brown. Enamel that is not lost by attrition can sometimes persist
indefinitely, such as islands of normal enamel. In this report we show the oral phenotypes of
two new cases of hypocalcification AI caused by FAM83H defects. The first is the primary
dentition of a Caucasian 3-yr-old boy with a p.Q677X mutation in FAM83H (Fig. 4). The
second is a Caucasian family with a p.Q452X mutation (Figs 5, S2, and S3).

Some isolated cases of ADAI may come from defects in genes associated with syndromic
AI. Collagen, type XVII, alpha 1 (COL17A1) contributes to the aetiology of junctional
epidermolysis bullosa, a recessive disorder showing skin fragility, and AI (45). Mutations in
a single allele of COL17A1 can cause isolated enamel defects (46, 47) or enamel defects
combined with relatively minor skin fragility (48). Amelogenesis imperfecta can also occur
along with nephrocalcinosis. Although nephrocalcinosis can be associated with impaired
renal function, it is often asymptomatic and may go undiagnosed (49, 50). The genetic
aetiology of this condition is currently unknown.

Autosomal-recessive AI
The diversity of enamel phenotypes in autosomal-recessive AI (ARAI) suggests that a large
number of genes are involved in its aetiology (51). Only 10 mutations (in KLK4, MMP20,
and WDR72) causing ARAI have been reported (Table 5). Consanguinity is a major
contributor, as in all cases the same gene defect was observed in both alleles. Six of our 39
AI kindreds are known to have autosomal-recessive transmission patterns, and three of the
causative mutations have been characterized in this group. We suspect that most of our
simplex cases will turn out to be recessive conditions, as was determined for our kindred 33.

MMP20 is and KLK4 are secreted proteases that cleave amelogenin, ameloblastin, and
enamelin in developing teeth (52). Cleavage of amelogenin reduces its affinity for
hydroxyapatite (53). Mmp20 cleaves enamel proteins during the secrectory stage and the
cleavage products accumulate in the matrix. Klk4 is expressed in the maturation stage and
degrades the accumulated organic matrix to facilitate its reabsorption into ameloblasts (54).
The enamel produced by Mmp20 and Klk4 null mice is soft and chips away after the teeth
erupt into function (55–58). Based upon their known roles in enamel formation, it is not
surprising that MMP20 and KLK4 defects cause AI.

WDR72 had no suspected role in enamel formation before it was shown, by genetic
analyses, to cause AI (59). The gene is expressed by maturation-stage ameloblasts, and
defects in both alleles cause hypomaturation AI. The teeth erupt with a creamy-brown
colour, a rough texture, and reduced radiodensity when compared with normal enamel.
Posteruptive changes vary, but the enamel can turn a deep orange-brown colour and undergo
accelerated attrition, particularly on working surfaces. The five reported WDR72 disease-
causing mutations were all truncation mutations in both alleles. Perhaps the deleted C-
terminal domain performs an essential function in ameloblasts, although there are currently
no data showing that the defective transcripts are translated into protein.

Aetiology of ARAI
The six proven candidate genes for AI account for about half of all AI cases (Table 1).
Although the genes responsible for ADAI remain to be identified, less is known about the
genetic aetiology of ARAI. So far, no AI-causing mutations have been identified in the
genes encoding several proteins exported by ameloblasts, such as AMBN (60), amelotin
(AMTN) (61), and odontogenic ameloblast-associated protein (ODAM) (62). We suspect that
these genes are involved in ARAI. The characterization of large consanguineous AI kindreds
will continue to yield discoveries, but the application of whole-exome sequencing, which
involves fragmenting genomic DNA and capturing coding sequences by hybridization to a
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chip, followed by next-generation DNA sequencing, is likely to yield important information
concerning the diverse genetic aetiology of ARAI. This technique has recently been used to
discover that FAM20A is defective in subjects with AI and gingival hyperplasia syndrome
(63).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Oral photographs of probands and pedigrees of eight amelogenesis imperfecta (AI) families
of unknown aetiology. A dot on the pedigree marks subjects recruited in the study.
Numbering starts with 25, as a continuation of previous work reporting mutational analyses
of 24 AI kindreds (11). Pedigree analyses showed that families 25 and 26 have a dominant
pattern of inheritance. Families 27–32 have either a recessive pattern of transmission or are
de novo mutations.
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Fig. 2.
Oral photographs of probands and pedigrees of four amelogenesis imperfecta (AI) families
of known genetic aetiology. The proband of family 33 has autosomal-recessive
hypomaturation AI, resulting from a p.W34X mutation in both enamelysin (MMP20) alleles
(18). The proband of family 34 has X-linked dominant hypoplastic hypomaturation AI,
resulting from a complete deletion of amelogenin (AMELX) (H-C. Chan, unpublished data).
The proband of family 35 has autosomal-dominant hypocalcified AI caused by a p.Q398X
mutation in one allele of family with sequence similarity 83, member H (FAM83H) (19).
The proband of family 36 has a severe form of hypoplastic AI resulting from different
mutations (p.422FsX448 and p.S216L) in both enamelin (ENAM) alleles (20). The father (p.
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422FsX448) and mother (p.S216L) had only one affected ENAM allele and both showed a
very mild, but detectable, enamel phenotype.
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Fig. 3.
Pedigree and sequencing chromatograms for family 37 [with the amelogenin (AMELX)
missense mutation, p.P70T] and oral photographs of the proband’s affected mother. The
pedigree is consistent with an X-linked pattern of inheritance. The AMELX DNA sequencing
chromatogram shows a doublet of C and A (c.208C > A; arrowhead). (A) Maxillary
occlusal, (B) mandibular occlusal, (C) frontal, (D) right buccal, (E) left buccal, (F) frontal/
buccal views of mandibular teeth, and (G) occlusal/incisal views of mandibular teeth.
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Fig. 4.
Pedigree and sequencing chromatograms for family 38 (FAM83H, p.Q677X) and oral
photographs and radiographs of the proband. This 3-yr-old Caucasian boy showed
hypocalcified amelogenesis imperfecta (AI) in his primary dentition. (A) Maxillary occlusal,
(B) mandibular occlusal, (C) frontal, (D) left buccal, (E) right buccal, (F) radiographs, (G)
DNA-sequencing chromatograms showing a C/T doublet demonstrating the c.2029C > T
mutation in the proband, but not in the unaffected mother, and (H) a pedigree showing the
autosomal-dominant pattern of inheritance (a dot marks each person recruited in the study).

Chan et al. Page 16

Eur J Oral Sci. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Pedigree and DNA-sequencing chromatograms for family 39 (FAM83H, p.Q452X) and oral
photographs of the 8-yr-old proband. The sequencing chromatogram shows a C/T doublet
demonstrating the c.1354C > T mutation in one FAM83H allele. (A) maxillary occlusal, (B)
mandibular occlusal, (C) frontal, (D) left buccal, and (E) right buccal. The phenotype in this
Caucasian family is representative of autosomal-dominant hypocalcified amelogenesis
imperfecta (ADHCAI).
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Table 2

Amelogenin (AMELX) disease-causing mutations

Mutation no. Gene cDNA Protein References

  1 g.1378T > C c.2T > C p.M1T 12

  2 g.1387G > C c.11G > C p.W4S 12

  3 g.1387G > A c.11G > A p.W4X 65

  4 g.1390_1398del9 c.14_22del9 p.I5-A8delinsT 66

  5 g.2525_7247del4723 c.55-842_665del4723 No protein 67, 68

  6 g.4831C > T c.152C > T p.T51I 67

  7 g.(4832_4834)delC c.(152_155)delC p.P52LfsX53 68, 69

  8 g.4834G > C c.155C > G p.P52R 32, 70

  9 g.5157C > A c.208C > A p.P70T 29–32 (here)

10 g.5179 c.230A > T p.H77L 71

11 g.(5333_5335)delC c.(384_385)delC p.H129fsX187 72

12 g.(5367_5369)delC c.(418_420)delC p.Y141fsX187 73

13 g.(5421_5422)delC c.(472_473)delC p.P158HfsX187 32, 67

14 g.(5466_5477)delC c.(517_518)delC p.P173LfsX16 74

15 g.(5487_5490)delC c.(538_541)delC p.L181CfsX187 71, 75

16 g.5520G > T c.571G > T p.E191X. 67

AMELX gene structure: numbered boxes indicate exons; introns are lines connecting the exons. Shaded exon regions are non-coding. The numbers
below each exon show the range of amino acids encoded by it. Bold numbers indicate AMELX mutations. Mutation 5 is the deletion indicated by
dashed lines. The gene numbers start from the first nucleotide of the AMELX reference sequence NG_012040.1. The cDNA numbers start from the
translation initiation site of AMELX reference sequence NM_182680.1.
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Table 3

Enamelin (ENAM) disease-causing mutations

No. Gene cDNA Protein References

  1 g.3139A > T c.157A > T p.K53X 11, 37

  2 g.55636A > C c.211−2A > C p.M71_Q157del 13

  3 g.7152G > A c.534 + 1G > A p.A158_Q178del 76, 77

  4 g.9045A > G c.535−2A > G p.R179-N196del 32

  5 g.9048G > T c.536G > T p.R179M 78

  6 g.(9095–9101)delG c.(583−588 + 1)delG p.R179-N196del (or p.N197fsX277) 13, 36, 38, 39)

  7 g.13330 C > T c.647G > T p.S216L 20

  8 g.13420C > A c.737C > A p.S246X 34

  9 * † ‡ 34

10 g.13942_13943/insAG c.1259_1230insAG p.V422PfsX448 20, 34–36, 40, 79

11 g.15674delT c.2991delT p.L998WfsX1062 35

Both ENAM alleles affected

No. Allele 1 Allele 2 References

1 p.S216L p.V422PfsX448 20

2 p.V340_M341insSQYQYCV p.V422PfsX448 34

3 p.V422PfsX448 p.V422PfsX448 35, 40

ENAM gene structure: numbered boxes indicate exons; introns are lines connecting the exons. The numbers below each exon show the range of
amino acids encoded by it. Shaded exon regions are non-coding. Bold numbers indicate ENAM mutations. The gene numbers start from the first
nucleotide of the ENAM reference sequence NG_013024.1. The cDNA numbers start from the translation initiation site of ENAM reference
sequence NM_031889.2.

*
g.13703_13704insAGTCAGTACCAGTACTGTGTC;

†
c.1020_1021insAGTCAGTACCAGTACTGTGTC;

‡
p.V340_M341insSQYQYCV
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Table 4

Family with sequence similarity 83, member H (FAM83H) disease-causing mutations

No. Gene cDNA Protein References

  1 g.5411C > A c.860C > A p.S287X 80

  2 g. 5175T > A c.891T > A p.Y297X 64

  3 g.5207_5208delTC c.923_924delTC p.L308fsX323 80

  4 g.5257C > T c.973C > T p.R325X 14

  5 g.5476C > T c.1192C > T p.Q398X 14, 19, 32, 81

  6 g.5528G > T c.1243G > T p.E415X 64

  7 g.5573C > A c.1289C > A p.S430X 32

  8 g.5614C > T c.1330C > T p.Q444X 19, 81

  9 g.5638C > T c.1354C > T pQ452X 82 (here)

10 g.5650C > T c.1366C > T p.Q456X 81

11 g.5658C > A c.1374C > A p.Y458X 83

12 g.5663G > A c.1379G > A p.W460X 80

13 g.5664G > A c.1380G > A p.W460X 64

14 g.5692G > A c.1408C > T p.Q470X 80

15 g.6156_6157delCC c.1872_1873delCC p.L625fsX703 80

16 g.6277C > T c.1993 C > T p.Q665X 44

17 g.6313C > T c.2029 C > T p.Q677X 32, 44, 64 (here)

18 g.6364G > T c.2080G > T p.E694X 80

FAM83H gene structure: numbered boxes indicate exons; introns are lines connecting the exons. The numbers above each intron indicate the length
of the intron in base pairs (bp). The numbers below each exon show the length of the exon in bp and below that the range of amino acids encoded
by it. Shaded exon regions are non-coding. The 17 reported FAM83H missense or frameshift mutations are located between the sites marked 1 and
17 in bold. The gene numbers start from the first nucleotide of the FAM83H reference sequence NG_016652.1. The cDNA numbers start from the
translation initiation site of FAM83H reference sequence NM_198488.3.
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Table 5

Autosomal-recessive amelogenesis imperfecta (ARAI)-causing mutations in kallikrein-related peptidase 4
(KLK4), enamelysin (MMP20), and WD repeat containing domain 72 (WDR72)

No. Gene cDNA Protein References

KLK4 disease-causing mutation

1 g.2143G > A c.458G > A p.W153X 16, 32

MMP20 disease-causing mutations

1 g.115G > A c.102G > A p.W34X 18

2 g.16263T > A c.678T > A p.H226Q 84

3 g.18,755G > A c.910G > A p.A304T 85

4 g.30,574A > T c.954-2A > T IVS6-2ART 17, 32

WDR72 disease-causing mutations

1 g.57,427_57,428delAT c.1467_1468delAT p.V491DfsX497 15, 32

2 g.143805C > G c.2348C > G p.S783X 59

3 g.144143C > T c.2686C > T p.R897X 86

4 g.145982delA c.2857delA p.S976VX20 59

5 g.150132G > A c.2934G > A p.W978X 59

Exons are numbered boxes; introns are lines connecting the exons. The number below the intron indicates its length (in base pairs). The numbers
below each exon show the range of amino acids encoded by it. Shaded exon regions are non-coding. Below the WDR72 gene diagram is the
WDR72 protein (1104 amino acids) showing the seven WD repeats (boxes), with the range of amino acids indicated below each. Mutation sites are
numbered in bold. The gene numbers start from the first nucleotide of the genomic reference sequences (KLK4, NG_012154.1; MMP20,
NG_012151.1; WDR72, NG_017034.1). The cDNA numbers start from the translation initiation site (KLK4, NM_004917.3; MMP20,
NM_004771.3; WDR72, NM_182758.2).
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