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Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique
developed with dramatically increasing utility for both scientific and therapeutic purposes. Short
interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many
therapeutic applications, and commonly used as a tool for elucidating disease-associated genes.
Osteoporosis and their associated osteoporotic fragility fractures in both men and women are
rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New
therapeutics are needed for this increasing patient population. This review describes the diversity
of molecular targets suitable for RNAi-based gene knock-down in osteoclasts to control
osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted
siRNA delivery and efficient gene silencing, and describe opportunities and challenges of
introducing siRNA as a therapeutic approach to hard and connective tissue disorders.
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1. Introduction
Current treatments for osteoporosis can be divided into two categories: antiresorptive
modulators and anabolic therapies. Estrogen, estrogen receptor modulators, calcitonin and
bisphosphonates fall into the first category. Only one anabolic agent—teriparatide—is
clinically approved, administrated by daily injection.[1] The limited number of options in
antiresorptive therapy reflects inadequate efficacy, severe side effects, high dosing
frequency or low patient compliance:[1–6] estrogen treatment exhibits known side effects on
breast and uterus inappropriate for long-term use; long-term calcitionin treatment can induce
tolerance since more than half of the patients produce circulating antibodies to calcitionin.
[7] Bisphosphonates, the most common current osteoporosis treatment, exhibit general side
effects including gastrointestinal irritation, bone/joint pain and jaw osteonecrosis.[8–10] The
latter two adverse effects can persist and even spread to new areas of unaffected bone after
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bisphosphonate therapy is discontinued. Because of bisphosphonate’s long half-life, e.g.,
alendronate’s half-life in bone is 10.9 years,[11] drug can remain active in bone for long
periods after drug therapy is discontinued. Severe suppression of bone turnover has also
been noted.[12, 13] Long-term bisphosphonate therapy increases fracture risk, including
atypical fractures first reported in 2005.[14, 15] Recently, oral bisphosphonates were
associated with 23 cases of esophageal cancer.[16] Therefore, maximum treatment duration
for bisphosphonates is suggested to be five years.[17] Bisphosphonates are consequently
counter-indicated in the context of fragility fracture healing. This enduring drug bioactivity
presents substantial challenges for treatment of osteoporosis. Moreover, clinical studies of
systemic bisphosphonate administration in combination with implants for 6 months or 2
years showed significant bone loss in the peri-implant area within three months post-
operation.[18, 19] Similarly, in total hip arthroplasty, up to 14% bone loss was reported
during the first three months post-surgery.[20]

Human clinical experience indicates that improved therapeutic strategies are needed in the
context of osteoclastic bone resorption therapies. In 2010, denosumab (Prolia™, Amgen), a
fully humanized monoclonal antibody targeting receptor activator of nuclear factor-kappa B
ligand (RANKL), was approved by the FDA as a twice-yearly subcutaneous injection for
treating postmenopausal osteoporosis. This antibody therapeutic appears well-tolerated and
superior to the common bisphosphonate drug, aldendronate, in preserving bone mineral
density in several clinical trials to date.[21, 22] Additional new therapeutics are actively
under investigation to meet the requirements of this fast-growing patient population
worldwide.

2. RNA interference and siRNA delivery as a new therapeutic approach
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing tool.[23]
The process of gene-specific silencing through destruction of its mRNA transcript can be
triggered by endogenous or exogenous small interfering RNAs (siRNAs).[24] Long double-
stranded mRNAs derived from endogenous gene transcription or transfected transgene
plasmids present in the cytoplasm can trigger the cleavage activity of the intracellular
enzyme, Dicer, to cut mRNA into 19-nucleotide pairs with two nucleotide overhangs at both
3’-ends, called small interfering RNA (siRNA).[25] These double-stranded siRNA pieces
then incorporate into RNA-induced silencing complexes (RISCs) which have a catalytic
core comprising Argonaute (Ago) family proteins.[26, 27] Ago-2 then cleaves and removes
the siRNA sense strand and thereafter RISC becomes activated with the remaining antisense
siRNA strand. The antisense siRNA strand guides RISC activity in the cytoplasm to cleave
its targeted complementary mRNA molecules, resulting in down-regulation of the targeted
gene and corresponding protein expression. The mechanism of RNAi operation in
mammalian cells is shown in Figure 1. First introduced in 2001, RNAi has been exploited
for its highly specific mechanism of mRNA transcript targeting, and as a target screening
and validation tool for cell signaling studies of many types.

RNAi is used for investigating and elucidating mammalian gene function as an alternative to
knockout techniques. Specifically, siRNA also shows great potential for future targeted
therapeutics for gene-associated diseases. Gene silencing using siRNA has several
advantages intrinsic to RNAi, such as its high specificity, intrinsic biological response [28]
and more efficient and specific silencing effects with lower dosing requirements, compared
to antisense-based gene silencing.[29]

However, as polyanions, synthetic or in situ transcribed siRNAs do not readily or reliably
enter mammalian cells. The main challenge in developing siRNA therapies, like other
nucleic acid therapeutics, is to deliver them specifically into targeted tissues or cells. Viral
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and non-viral vectors have been employed to address siRNA cell transfection inefficiency,
and non-viral delivery is typically achieved by cationic lipoplexing reagents.[24, 30] Viral
vector-based delivery is consistently associated with vector-based short hairpin RNA
(shRNA) production systems, a DNA-based strategy to encode and obtain host-synthesized
shRNAs in situ. These shRNAs can be further intracellularly processed into siRNA by
Dicer. Both methods have their advantages and disadvantages. Non-viral delivery uses
siRNA directly to generate potent silencing effects; therefore, it is simple and controllable.
However, single-dose siRNA silencing effects are transient (up to five days in dividing
cells),[24] and lipid-based siRNA delivery complexes can be removed from circulation by
the liver rapidly, and lack tissue/cell specificity. The viral vector-based shRNA strategy has
the potential of being able to provide stable, enduring gene silencing. Gene therapy can in
principle continuously generate siRNA. The major bottleneck of the viral vector is its well-
known safety issues.[24] Nevertheless, while non-viral delivery avoids the pitfalls of viral
vector delivery, including high viral toxicity, possible carcinogenicity, proven
immunogenicity, and significant cost limitations,[31] it is extremely inefficient in targeting,
transfection and expression. Because of the substantial challenges with reliable systemic
siRNA delivery and targeting, almost all current clinical foci for siRNA-based therapeutics
are based on local or topical siRNA therapeutics. Successful siRNA delivery approaches
currently include ocular, respiratory, central nervous system, dermal and vaginal delivery
where local dosing accesses target cell populations directly.[32–36] One largely unexplored
delivery route is via implantable combination devices facilitating local siRNA delivery
directly from medical implants to adjacent tissue sites.[37]

3. RNAi applications in new osteoporosis therapies
As a nucleic acid therapeutic precedent, DNA-based gene therapy has developed rapidly for
musculoskeletal applications in the last two decades. The therapeutic approach has been
introduced to various disease categories: osteogenesis imperfecta,[38] lysosomal storage
disorders,[39] rheumatoid arthritis,[40, 41] osteoarthritis,[42] and osteoporosis.[43–45]
Specific to osteoporosis, gene transfer strategies deliver genetic material, either using
intravenous injection of viral vectors carrying osteoprotegerin (OPG) cDNA[44, 45] or local
injection of interleukin-1 receptor antagonist cDNA-transduced cells.[43] Due to desirable
short-term transgene expression without the need to closely regulate transgene expression,
DNA-based gene therapy has recently produced progress in musculoskeletal tissue healing.
In a rat critical size defect model in femurs, BMP-2 cDNA-transduced cells seeded into
collagenous scaffolds showed better healing compared with use of recombinant BMP-2
protein directly.[46] The feasibility of intralesional injection of viruses carrying cDNA
encoding osteoinductive genes has been demonstrated in both rabbit and rat segmental
defect models.[47, 48] Gene transfer strategies have been developed for many applications
for musculoskeletal healing, such as spine fusion, articular cartilage and meniscus,
intervertebral disc, ligament and tendon.[49] As DNA-based transgene therapies continue to
demonstrate the potential for treating musculoskeletal diseases, providing a solid foundation
for developing siRNA-based approaches in this field.

Applications of RNAi to musculoskeletal therapies can target a large and increasing number
of signaling cascades in several tissue types, primarily bone and cartilage. In addition, RNAi
can be utilized in several therapeutic categories: inflammation, degeneration, and
regeneration. RNAi use in the context of treating rheumatoid arthritis has been actively
investigated to date.[50] Osteoporosis is less studied but represents a particularly interesting
application for RNAi therapeutics, targeting a diverse number of possible pathways
achieved by local delivery to fragility sites via bone augmentation strategies. Instead of
complete gene knock-out, both site-specific and temporally selective control over cellular
signaling activity are perhaps more appealing for developing new osteoporosis therapies.
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FDA-approved denosumab demonstrates precedent success in this regard. The transient
efficacy of siRNA means it can be turned off and on, facilitating this transient programmed
benefit. Notably, siRNAs have new targets distinct from other drug classes, with their own
unique characteristics: they interrupt intrinsic cellular pathways with high targeting
specificity.

4. Osteoclastogenesis and osteoclastic bone resorption
Normal bone is constantly replaced by resorption of old bone by osteoclasts and deposition
of new bone by osteoblasts. Continuous bone turnover results in the adult human skeleton
being completely replaced every 10 years.[51] This balance of bone turnover is tightly
regulated in healthy individuals as shown in Figure 2. Osteoclasts residing at or near the
bone surface are multinucleated phagocytic cells formed by the fusion of monocyte
macrophage precursor cells.[52] They are responsible for resorbing bone, working together
with osteoblasts (bone producing cells), and playing a central role in normal bone
remodeling. Two cytokines - nuclear factor kappa B (NF-κB) RANK ligand (RANKL, also
called TRANCE/OPGL/ODF) and macrophage colony-stimulating factor (M-CSF) [53, 54]
- are essential to this process [55–57] as shown in Figure 3. Previously published evidence
shows that osteoclast formation can be stimulated in vitro using co-cultures of bone marrow
cells and stromal cells/osteoblasts expressing those two cytokines.[58–60] M-CSF
interacting with its c-fms receptor provides signals necessary for precursor cell survival and
proliferation by receptor binding on early osteoclast precursor cells.[61] RANKL is the key
cytokine for promoting osteoclastogenesis. Interactions between soluble RANKL and
RANK receptor on the surface of osteoclast precursors are essential for expression of
osteoclast-specific genes,[62] bone resorption and survival of mature osteoclasts.[63]
Furthermore, osteoclastogenesis is negatively regulated by OPG (or osteoclastogenesis
inhibitory factor, OCIF), also expressed by stromal cells and osteoblasts.[64] OPG is a
decoy receptor that competes with RANK for binding RANKL.[65] Osteoclast production
can be blocked by over-expression of OPG, resulting in osteopetrosis in mice.[64, 66] In this
RANKL/RANK/OPG regulatory axis, positive regulator RANKL and negative regulator
OPG are coordinated through interaction with RANK to regulate normal bone formation and
degradation.

RANK is therefore a central factor in this bone metabolic regulatory pathway. It is central to
much of the osteoclast functional phenotype and to bone metabolic balance. Therefore,
RANK was chosen as the knock-down target to suppress osteoclast-mediated bone
resorption.[67] Selective knockdown of RANK in mouse bone marrow cells can
significantly block formation of Tartrate Resistant Acid Phosphatase (TRAP)-positive cells
with RANKL and M-CSF in vitro. Cell-cell fusion can be inhibited in RANK siRNA-
transfected osteoclasts, consistent with the fact that RANKL stimulation is critical for cell
fusion to osteoclasts.[68] Successful transfections have been seen in mature osteoclasts, and
osteoclast-mediated bone resorption was dramatically inhibited by RANK siRNA using the
pit formation assay in vitro.[67]

Activation of RANK by RANKL not only induces osteoclast differentiation and survival,
but also leads to activation of bone resorption by mature osteoclasts. Once activated,
differentiated osteoclasts move to the target matrix and attach to the bone surface. After
attachment, an isolated extracellular microenvironment, called the sealing zone, formed
between the interface of the underlying bone with osteoclast membranes, is actively
generated by osteoclasts.[69] Osteoclasts polarize themselves to form a ruffled membrane
adjacent to the bone surface which is their resorptive organelle in the sealing zone.
Osteoclasts then acidify and dissolve the underlying bone matrix by pumping hydrogen ions
mediated by a vacuolar H+-adenosine triphosphatase (H+-ATPase) through the ruffled
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membrane into the sealing zone. Osteoclast intracellular pH is maintained by HCO3
−/Cl−

exchange across cell surfaces other than the ruffled membrane area.[70] These ion
transporting events result in an acidic pH of ~4.5 only within the resorptive
microenvironment.[71] The mineral phase of bone is first digested under this acidic milieu,
followed by degradation of the collagen-rich demineralized organic component of bone by
released hydrolytic enzymes.[72] Bone matrix degradation proteins are taken up by
osteoclasts through the ruffled membrane from the resorption lacuna and released through
the basolateral membrane into the extracellular space.[73] After local bone resorption is
complete at this site, osteoclasts detach from the bone matrix and migrate to a new site to
begin the next functional cycle.

Because of this central role in bone processing, osteoclasts are naturally a major target for
most studies seeking to suppress bone resorption. In this review, siRNA targets for
osteoporosis are sorted into three categories: osteoclastogenesis, osteoclastic bone resorption
activity and osteoclast survival, including other potential associated targets identified to
date. In addition, progress in developing efficient target silencing, delivery issues, and
emerging opportunities and challenges to exploit siRNA for therapeutic purposes are
discussed.

5. Targets for siRNA in osteoporosis and bone metabolism
5.1. Osteoclastogenesis

Transcription factors essential for osteoclastogenesis, including NF-κBdownstream of
RANK,[74] mediate osteoclast differentiation and inflammatory osteolysis.[75] Osteoclast
differentiation failure is reported to be caused by mutant NF-κB in mice.[76] Its upstream
regulator, IκB kinase (IKK) complex, contains IKKα and IKKβ as catalytic subunits and
IKKγ as a regulatory subunit.[77, 78] IKKα and IKKβ are required for normal bone
homeostasis. IKKβ is essential for osteoclastogenesis and osteoclast survival since deletion
of IKKβ impairs osteoclast differentiation in vitro and in vivio.[79, 80] IKK alpha(−/−) mice
did not show overall skeletal defects, but IKK alpha(−/−) hematopoietic cells failed to
differentiate into multinucleated osteoclasts.[81] Nonetheless, the role of IKKγ is unclear.
Recently, transient transfection of siRNA to inhibit IKKγ in bone marrow-derived
osteoclast precursors was reported using a retroviral delivery approach.[82] When IKKγ
was knocked down, formation of multinucleated osteoclasts was reduced 83% compared
with controls. In addition, the role of IKKγ was confirmed through observation that
RANKL-induced osteolysis was impeded by preventing oligomerization of IKKγ
monomers using peptides in mice.[82] The study suggested that IKKγ is essential for
osteoclastogenesis, and thus, all three IKK subunits could be potential targets for inhibiting
osteoclastogenesis and osteolysis using siRNA.

Interactions between RANKL and RANK are essential for osteoclastogenesis. RANK has
three TNF receptor-associated factor 6 (TRAF6) binding sites and recruits TRAF6 to
activate the transcription factors NF-κB and activator protein-1 (AP-1).[83, 84] Nuclear
factor of activated T cells (NFATc1) has been demonstrated as the transcription factor most
strongly induced by NF-κB activation.[85] NFATc1 is also known to be important in
immune response and also play an essential role in osteoclastogenesis.[85, 86] Therefore,
siRNA targeting NFATc1 in both RAW 264.7 cells and RAW-induced osteoclasts under
LPS stimulation was examined.[87] Specific knockdown of NFATc1 led to reduced
formation of mature osteoclasts and significantly decreased osteoclast-specific gene
expression, including TRAP and cathepsin K, both responsible for effective osteoclastic
bone resorption.

Wang and Grainger Page 5

Adv Drug Deliv Rev. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Once RANK is activated by its ligand, several signaling cascades are induced during
osteoclast formation or activation, resulting in activation of several transcription factors
mediated by protein kinases,[88] such as c-Fos, NF-κB, c-Jun, NFATc1.[84] Transcription
factor c-Jun has recently shown its essential role in osteoclastogenesis.[89] Interaction
between RANK and RANKL can stimulate JNK and activate c-Jun which complexes with c-
Fos downstream to form AP-1.[84] Moreover, c-Jun was reported to regulate
osteoclastogenic activities of NFATc-1: dominant-negative c-Jun transgenic mice were
unable to form osteoclasts due to arrested activation and expression of the NFAT family
proteins.[90] Recently, using a proteomic approach, a member of a family of growth
regulatory genes, schlafen2 (Slfn2), was found to be highly induced by RANKL activation
and capable of regulating c-Jun activation.[91] Using RNA silencing technology,
knockdown of Slfn2 resulted in significantly reduced expression of c-Jun and NFATc1 and
50% less TRAP-positive multinucleated cells compared with control. Furthermore, over-
expression of Slfn2 enhanced c-Jun phosphorylation. Slfn2 therefore functions downstream
of RANK/RANKL signaling and upstream of c-Jun and NFATc1 in osteoclastogenic
regulation.

Dendritic cell-specific transmembrane protein (DC-STAMP), a seven subunit-
transmembrane protein originally found in dendritic cells [92] is highly expressed in
osteoclasts but not in macrophages.[93] Expression levels of DC-STAMP can be rapidly up-
regulated under RANKL-mediated osteoclastogenesis in osteoclast precursors.[94] Using
siRNA to specifically knock down its expression in RAW-D cells completely abrogated the
formation of multinucleated osteoclast-like cells stimulated with RANKL and TNF-α in
vitro.[94] Consistent with this, osteoclastogenesis can also be enhanced by over-expression
of DC-STAMP and vice versa.[94] In addition, DC-STAMP has been further proven
essential for both osteoclast and foreign body giant cell fusion. [93] No multinuclear
osteoclasts were observed in bone sections from DC-STAMP-deficient mice, and their
mononuclear cells were unable to differentiate to multinuclear osteoclasts under stimulation
with RANKL and M-CSF in vitro, remaining mononuclear, TRAP-positive cells. [93] These
cells are able to resorb bone, but with much lower efficiency, exhibiting the pathogenesis of
moderate osteopetrosis.[93] Consistent with these results, bone mineral density and bone
volume per tissue volume in DC-STAMP−/− mice increased compared with wild type
controls.[93] DC-STAMP is therefore concluded to be indispensable for osteoclast
multinucleation.

A novel gene bearing significant similarity to the DC-STAMP family, called osteoclast
stimulatory transmembrane protein (OC-STAMP), was identified in both primary bone
marrow cells and RAW264.7 cells in 2007.[95] It is strongly up-regulated in response to
RANKL stimulation as a multiple transmembrane protein in osteoclasts. Blocking OC-
STAMP expression by either RNA interference or OC-STAMP antibodies showed similar
results as blocked DC-STAMP: mononuclear, TRAP-positive cells.[95] The results suggest
that both DC-STAMP and OC-STAMP are responsible for cell fusion and each of them can
not compensate for the other since knock-down of only one of them impaired osteoclast
multinucleation.

A study aimed at protecting biomaterials by inhibiting macrophage fusion at implant sites
showed that using siRNA targeting Rac1 can limit fusion without limiting phagocytosis.[96]
As the study attempted to find the fusion target shared by foreign body giant cells formed by
monocyte fusion and also by osteoclasts, osteoclast formation theoretically should be
inhibited as well. Further study is required to confirm the effect of Rac1 silencing on
monocyte fusion to osteoclasts.
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A membrane glycoprotein, CD9, one of the tetraspanins, has been reported to play an
important role in cell fusion during osteoclastogenesis.[97] CD9 has been reported to be
involved in cell-cell fusion and cell motility in different cells.[98, 99] In RAW 264.7 cells,
CD9 locates to the cell membrane and its expression is up-regulated by RANKL stimulation.
[97] Targeted inhibition of CD9 using siRNA is able to significantly inhibit the formation of
RAW 264.7 differentiated osteoclasts by inhibiting cell fusion in cultures. Over-expression
of CD9, interestingly, can promote cell fusion in RAW 264.7 cultures without RANKL
stimulation, but fused cells are TRAP-negative. In the same study, CD9 is confirmed to be
expressed in osteoclasts in vivo by immunohistochemical analysis of tissue sections from
mouse femoral bone.

During the osteoclastogenesis cell-cell fusion process, sialic acid which is involved in a
number of biologic responses, was hypothesized to play a role in this process.[100] Takahata
et.al.[101] found that alpha(2,6)-linked-sialic acid degraded during osteoclast differentiation
and desialylated cells only could form mononuclear TRAP+ cells with normal expression of
osteoclast markers. Using siRNA to knock down alpha(2,6)-sialyltransferase produced
significant inhibition of osteoclast multinucleation, which suggests a role for alpha (2,6)-
linked-sialic acid in cell-cell fusion processes during osteoclastogenesis.

A novel gene, nha-oc/NHA2 is significantly upregulated in RANKL-stimulated osteoclast
precursors.[102] As the murine orthologue of the human gene HsNHA2,[103] encoding a
cation-proton antiporter (CPA) localized on the mitochondria, it is proposed to regulate
proton concentration in osteoclast mitochondria. NHA-oc/NHA2 selectively expressed in
differentiated osteoclasts regulates Na+-dependent mitochondrial pH changes and
mitochondrial passive swelling. Importantly, nha-oc/NHA2 siRNA inhibits TRAP-positive
multinucleated cell formation and resorption activity under RANKL stimulation. This
reduction partially resulted from apoptosis induced from the loss of inhibition of caspase-9
activation by NHA-oc/NHA2. Therefore, NHA-oc/NHA2 is integrally involved in osteoclast
formation, resorption and survival.

Ovarian cancer G-protein-coupled receptor 1 (OGR1) is a histidine-enriched proton-sensor.
The OGR1 gene was found to be 7-fold up-regulated in the long bone of CSF-1-null
osteopetrotic rats after CSF-1 injections compared to untreated mutants.[104] Expression of
OGR1 can also be induced in RAW 264.7 cells under RANKL stimulation during osteoclast
differentiation. Specifically knocking down OGR1 expression by siRNA (>1µg/ml)
produced almost 50% inhibition of osteoclast formation in both mouse bone marrow
mononuclear and RAW 264.7 cells without significant cell death. Concomitant with
confirming OGR1’s role in regulating osteoclastogenesis, the expression and function of the
regulators of G-protein signaling (RGS) proteins of osteoclastogenic RANKL signaling
cascades were investigated. RGS proteins have been suggested to physiologically regulate
G-protein cycles and G protein signaling in hematopoietic cells.[105, 106] In this protein
family, RGS18, specifically expressed in hematopoietic cells, showed consistent decreases
in mRNA expression levels during RANKL stimulated osteoclastogenesis.[107, 108]
Target-specific knockdown of RGS18 in RAW264.7 cells using siRNA resulted in enhanced
osteoclast formation under RANKL induction. Additionally, antibodies against OGR1 with
Zn2+ ion addition (antagonist of OGR1)[109] significantly reversed the effects of RGS18
siRNA. These observations suggest that the ability of RGS18 to suppress osteoclastogenesis
depends on the OGR1 signaling pathway and inhibition of OGR1-mediated cell signaling.
[108]

Another RGS member, RGS12, is reported to be significantly upregulated after RANKL
stimulation, with its expression being dose-dependent on RANKL.[110] Using vector-based
RNAi technology, stable RGS12-silenced RAW 264.7 cells showed 18.7 times lower
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numbers of TRAP-positive multinucleated cells under RANKL stimulation compared with
control groups. The mechanism of completely blocking osteoclast differentiation was
suggested to lie in regulation of intracellular Ca2+ oscillations in the NFAT2 pathway during
differentiation. Such Ca2+ oscillations can be completely blocked and the expression of
NFAT2 simultaneously significantly inhibited in RGS 12-silenced cells.[110]

Triggering receptor expressed in myeloid cells-1 (TREM2) is produced in myeloid cells in
bone marrow, and locates to these cell surfaces. Interactions between TREM2 and DAP12
produced from the TYROBP gene transmit signals to activate the cells. Osteoclast precursor
cells harvested from DAP12−/− mice only form mononuclear TRAP-positive cells under
stimulation with RANKL and M-CSF. These cells exhibit only 50% ability to resorb bone
compared with wild type cells.[111] siRNA against TREM2-transfected RAW264.7 cells
largely reduces numbers of TRAP-positive cells, and most were small (<10 nuclei) or
mononucleated cells. Thus, TREM2/DAP12 signaling plays an important role in osteoclast
differentiation under RANKL stimulation.[112] The same study blocked TREM2 in murine
primary cell-induced osteoclasts using antibodies and showed decreased bone resorption,
providing evidence that the TREM2/DAP12 signal also regulates osteoclast function.

Extended space flight can cause severe bone loss in astronauts due to microgravity.
Compared with normal gravity, microgravity can accelerate osteoclastogenesis about 2-fold.
[113] Gene expression profiling of RAW 264.7 cells under microgravity conditions has
shown increased expression of the calcium-binding protein A8/calgranulin A (S100A8).
siRNA knockdown of S100A8 in RAW 264.7 cells significantly suppressed
osteoclastogenesis under microgravity conditions. S100A8 could be a therapeutic target for
preventing bone loss during extended space flights.

Retinoblastoma protein-interacting zinc finger 1 (RIZ1) protein also participates in RANKL-
induced osteoclastogenesis,[114] binding with both retinoblastoma protein and estrogen
receptors and reportedly involved in osteosarcoma.[115–117] RIZ1 expression increases
under RANKL induction at 24 hours, and RIZ1 siRNA-transfected RAW 264.7 cells
showed significantly inhibited NFATc1 activation 3 days post-RANKL and M-CSF
treatment, but with no significant influence on TRAF6 expression. Thus, RIZ1 is suggested
to positively regulate NFAT-1 activity at the last stages of osteoclastogenesis. RAW 264.7
cells with reduced RIZ1 expression exhibited substantially reduced ability to form TRAP-
positive multi-nucleated osteoclast-like cells under RANKL and M-CSF stimulation.
Recently, c-Abl SH3 domain-binding protein-2 (3BP2) has been recognized as a key
regulator of RANKL-induced osteoclastogenesis.[118] 3BP2 regulates several
immunoreceptor signaling pathways in immune cells, such as T, B, and NK cells, and was
reported to promote activation of NFAT in T and B cells.[119–123] Knockdown of 3BP2 in
RAW 264.7 cells decreased expression of NFATc1 and completely suppressed RANKL-
induced TRAP-positive multinucleate cell formation.[118]

The family of disintegrin and metalloproteinases (ADAM) peptides are cell surface proteins
involved in cell adhesion and cell fusion.[124] ADAM8 is a transmembrane glycoprotein
expressed in monocytes and significantly up-regulated during osteoclastogenesis.[125, 126]
Recently, ADAM8 has been shown to promote osteoclastogenesis whereby vitamin 1,25-
(OH)D3-stimulated osteoclast formation was inhibited by ADAM8 antisense treatment.[126]
Its direct effect on osteoclastogenesis was also investigated using siRNA.[127] Silencing
ADAM8 in RAW264.7 cells decreased osteoclast formation and cell size compared with
controls, and modestly decreased osteoclast marker mRNA levels when stimulated with
RANKL. In contrast, transfection of ADAM8 into RAW264.7 cultures increased osteoclast
marker mRNA expression levels and increased the number of TRAP-positive cells. The
study also showed that ADAM8 was highly expressed in rheumatoid arthritis (RA) pannus

Wang and Grainger Page 8

Adv Drug Deliv Rev. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



macrophages and multinucleated cells adjacent to eroded cartilage. Therefore, ADAM8 was
a recommended target for suppressing RA progression by preventing osteoclast formation.

Epidermal growth factor receptor (EGFR) has been the focus of increasing attention in
osteoclastic bone resorption, shown to promote bone resorption in vitro.[128] Its inhibition
in vitro resulted in suppression of bone marrow stromal cell induced osteoclast
differentiation.[129] Yi et al[130] investigated EGFR function in osteoclast formation and
survival, and found that EGFR expression was highly up-regulated by RANKL. Knockdown
of EGFR in bone marrow monocytes using lentivirus expressing shRNA completely
suppressed osteoclastogenesis with RANKL and M-CSF. In addition, EGFR siRNA blocked
NFATc1 expression completely under RANKL stimulation. This study also showed that
EGFR co-immunoprecipitated with RANK and Gab2 which mediates the RANK signaling
cascade. These data imply that EGFR may couple with RANK via the signaling mediator
Gab2 to regulate RANK-stimulated downstream pathways, playing an important role in
osteoclastogenesis.

Multinucleated osteoclasts are formed by fusion of monocyte macrophages. Therefore, the
role of integrins important for trafficking monocytes in osteoclastogenesis has been assessed
using siRNA. Only two integrin pairs are found on pre-osteoclast monocytes: CD11a/CD18
(LFA-1), and CD11b/CD18 (Mac-1) which is considered the premier marker of pre-
osteoclasts.[131, 132] Antibodies against CD11b and CD18 to block Mac-1 both in
RAW264.7 and primary cell culture can significantly inhibit osteoclastogenesis, but not
antibodies against CD11a.[133] Specific knockdown of CD11b using siRNA in RAW 264.7
cells, yielding a 50% decrease in CD11b expression, resulted in ~50% reduction in
osteoclast area. This inhibition was suggested to occur in the early stages of cell
differentiation since it was accompanied by a three-fold increase in the mRNA expression
level of NFATc1, a major regulator of osteoclastogenesis.[133] Taken together, integrin
Mac-1 is suggested to play an important role in early stage osteoclast differentiation via pre-
osteoclast cell-cell interactions.

A new member of the TNF family that induces cell apoptosis, called TNF-related apoptosis-
inducing ligand (TRAIL), shares a 25% amino acid homology with RANKL[134] and is
reported to inhibit osteoclastogenesis in both human peripheral blood mononuclear cells
(PBMC) and RAW264.7 cells, possibly by inhibiting the p38/MAPK pathway.[135] It is
also involved in human osteoclast apoptosis.[136] More recently, TRAIL has been found to
inhibit the accumulation of RANKL-dependent p27Kip1 in PBMC.[137] p27Kip1 is a cyclin-
dependent kinase inhibitor shown to be progressively upregulated to play an important role
in mediating RANKL-induced murine osteoclastogenesis.[138, 139] Addition of TRAIL
into pre-osteoclast cultures incubated with RANKL and M-CSF resulted in the 6-fold
decrease in formation of TRAP-positive cells and significant reduction in the expression of
p27Kip1.[137] Using siRNA to specifically knock down p27Kip1 in PBMC culture
dramatically reduces formation of TRAP-positive cells induced by RANKL and M-CSF,
consistent with the results of p27Kip1-deficient mice.[139] Taken together, p27Kip1 function
alone appears essential for RANKL-mediated osteoclastogenesis.

5.2. Bone resorption targets
After osteoclasts mobilize the bone mineral phase, several hydrolytic enzymes degrade the
organic bone component. The principal protease involved in this process is cathepsin K,[72,
140] a lysosomal protease mainly expressed in osteoclasts and released from the ruffled
membrane to the resorption lacunae in the sealed zone. Cathepsin K mRNA and protein
expression levels are stimulated by RANKL in a time- and dose-dependent manner, and
increase with osteoclast differentiation and activation.[141–143] Cathepsin K efficiently
degrades type I and II collagen, and gene mutation can cause osteopetrosis and exhibit

Wang and Grainger Page 9

Adv Drug Deliv Rev. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



features of pycnodystosis.[140, 144, 145] Specific down-regulation of cathepsin K mRNA
expression decreased both the number and area of bone pits more than 50% without
significantly changing cell viability.[146] The unchanged osteoclast number may benefit
maintenance of bone homeostasis since osteoclast and osteoblast activities are closely
correlated, and disruption of this communication may cause other issues.[147] In mature
osteoclasts, cathepsin K expression is increased by RANKL, both in vitro and in vivo.[141]
RANK-RANKL binding activates at least five distinct downstream signaling pathways.
[148] TRAF6 acts as a critical adaptor in binding with the cytoplasmic domain of RANK; its
mutations cause osteopetrosis.[149, 150] Activation of transcription factor AP-1 has been
suggested to result from TRAF6 signaling.[143] AP-1 is a heterodimeric protein composed
of Jun (c-Jun, JunB or JunD) and Fos.[151] Transfecting RAW 264.7 cells with either the
dominant negative form of c-fos or siRNA against either c-jun or junB down-regulated
RANKL-mediated cathepsin K gene expression. Both transfections inhibited CTSK
promoter activity, suggesting that AP-1 stimulated the cathepsin K promoter.[143] In
addition, c-Fos is known to play a critical role in osteoclastogenesis: over-expression of c-
Fos rescues RANKL-induced osteoclast formation previously blocked by N,N-dimethyl-d-
erythro-sphingosine treatment.[152]

H+-ATPase in the osteoclast ruffled membrane is responsible for reducing and maintaining
the low pH in the sealed resorption lacuna during the process of osteoclast-mediated
extracellular acidification. The ATPases have multiple subunits. One subunit isoform
located in the ruffled membrane, subunit a3, is reported to be highly expressed and essential
to osteoclast resorption function. Defects in this subunit of the vacuolar proton pump induce
severe osteopetrosis.[153, 154] Hu et al.[155] showed successful carrier-free a3 siRNA
transfection of primary rat osteoclast cultures, reporting that actin ring structures
characteristic of actively resorbing osteoclasts were reduced to 20% of controls after siRNA
transfection, but re-emerge after halting transfections. Bone resorption pits were
significantly reduced 48 hrs after transfections and type I collagen C-terminal cross-linked
telopeptides in the culture media were decreased more than 50% compared to controls or
non-targeting siRNA treated groups. H+-ATPase knockdown is similar with cathepsin K
knockdown: specific gene down-regulation reduces osteoclastic resorption activity without
inducing cell death.

H+-ATPases have two domains: V1 located on the cytoplasm side and V0 bound within the
membrane.[156] ATP-hydrolytic domain V1 has 8 individual subunits, A-H.[157, 158]
Subunit C in murine H+-ATPase has three isoforms: Atp6v1c1 (C1), Atp6v1c2a (C2a), and
Atp6v1c2b (C2b).[159] Only C1 is highly expressed in osteoclasts compared to the other
two, and is highly up-regulated after RANKL and M-CSF stimulation during differentiation.
[160] Feng et al.[160] depleted C1 expression in murine bone marrow macrophages with no
significant difference in numbers of TRAP-positive multinucleated cells compared with
untreated cultures. However, osteoclastic ability to actively produce H+ to acidify the
extracellular sealing zone environment was largely impaired, and areas of resorption pits on
dentin slices by siRNA-treated osteoclasts were 0.5~0.75% of control cultures. Co-
immunoprecipitation studies showed that C1 interacted with another essential ruffled border
H+-ATPase subunit a3 and co-localizes with microtubules, but distinct from a3 deficiency,
[62] C1 depletion was able to impair F-actin ring formation.[160] C1 was therefore
suggested to be a regulator of F-actin sealing ring formation during osteoclast activation.
Taken together, C1 knockdown does not affect osteoclastogenesis, but inhibits osteoclastic
bone resorption.

Electrostatic neutralization of the membrane potential gradient during osteoclast acid
secretion is maintained by Cl− ion channels on the osteoclast’s ruffled border.[161] CIC-7
Cl− channels are highly expressed in osteoclasts and localize to the ruffled border
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membrane. Disruption of CIC-7 in both humans and mice produced severe osteopetrosis.
[161] With the exception of CIC-7, CIC-3 in the CLC family of channels was identified in
osteoclasts as the functional Cl−ion-specific channel in intracellular organelles, such as
endosomes and lysosomes.[162] Both organelle acidity and bone resorption activity are
reduced using siRNA against CIC-3. Okamoto et al. concluded that observed osteoclastic
bone resorption relied on such internal organelle acidification, since CIC-3 only locates to
intracellular organelles, influencing this organelle acidity exclusively. However, bone
resorption activity remains in the absence of CIC-3 activity in osteoclasts, attributed to the
role of CIC-7 or other redundant Cl− ion channels.[162, 163] Since CIC-7 causes severe
osteopetrosis in chloride channel-deficient mice,[161] the functional role of K+/Cl− co-
transporters (KCCs) in mouse osteoclast-mediated bone resorption has been a focus. KCCs
exist in many tissues and cells, transporting K+ and Cl− ions each driven by their respective
individual chemical gradients.[164, 165] A previous study showed that both CIC-7 and
KCC1 mRNA was expressed in murine osteoclasts, with KCC1 locating to the cell
membrane.[163] The KCC inhibitor, R(+)-butylindazone (DIOA) was able to increase the
intracellular concentration of both Cl− and H+ in resorbing osteoclasts. Thus, inhibiting
KCCs can suppress Cl− secretion in resorbing osteoclasts, which eventually produces
reduced H+ pumping activity. Transfecting bone marrow cell-induced osteoclasts with
siRNA against KCC1 dramatically reduces of the area of bone resorption pits compared with
controls and these results are similar, but slightly less potent, to those from CIC-7 inhibition.
[163]

The Na+/Ca2+ ion exchanger (NCX) is a bi-directional membrane transporter regulating
Ca2+ homeostasis in many tissues on cell plasma membrane.[166] The NCX family
comprises homologous proteins: NCX 1, NCX 2, NCX 3.[167, 168] In murine osteoclasts,
three splice variants of NCX1 and NCX3, called NCX1.3, NCX1.41 and NCX3.2, were
detected.[169] NCX mediates both Ca2+ efflux and influx and is predicted to locate to the
ruffled border and control Ca2+ influx in resorbing osteoclasts.[169] SiRNA delivered
against each NCX1.3, NCX1.41 and NCX3.2 at 100nM in mouse bone marrow cell-induced
osteoclasts all significantly reduced the area of bone resorption pits per osteoclast
approximately 50%.[169] These data support the essential role of these three NCX in Ca2+

transport and their important role in regulating bone resorption.

The c-Src gene, encoding a cytosolic protein tyrosine kinase (PTK), [170] is also essential
for osteoclast activity. Lack of c-Src expression in mice resulted in osteopetrosis
characterized by inactive osteoclasts.[171] Previous work indicates that c-Src is functional
as an adaptor in osteoclasts, regulating cell attachment and migration by recruiting essential
signaling proteins.[172] Strong c-Src PTK activity has been found in ruffled borders in
active osteoclasts.[173] Osteoclast-mediated bone resorption can be abolished both in vivo
and in vitro by blocking c-Src PTK activity in osteoclasts.[174] Knockdown of Src
expression in RAW 264.7 cells reduces both size and number of actin rings, and decreased
cell spreading and fusion rates.[175] c-Src PTK activity is activated by dephosphorylation,
and a structurally unique osteoclast-specific transmembrane protein-tyrosine phosphatase
(PTP-oc) in osteoclasts is known.[176] RAW/C4 osteoclast-like precursor cells transfected
with PTP-oc siRNA in serum-containing media and showed RANKL-mediated suppression
of osteoclast differentiation. Both osteoclast number and size was significantly reduced by
decreasing endogenous PTP-oc mRNA levels.[177] In addition, apoptosis was induced
significantly by PTP-oc siRNA compared to control siRNA. Enhanced apoptosis from such
knock-down also suggests its role in osteoclasts. Additionally, PTP-oc is also indicated to be
involoved in regulating RANKL-mediated osteoclastic differentiation.[178] A homologous
recombination strategy was used to inhibit PTP-oc function in RAW264.7 cell culture. PTP-
oc knockout cells could not form TRAP-positive multinucleated osteoclast-like cells under
RANKL treatment after 7 days. Therefore, PTP-oc is a target not only on mature osteoclasts
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to inhibit bone resorption, but also on osteoclast precursors to limit differentiation into
osteoclasts.

The osteoclast sealing zone requires tight attachment between osteoclasts and the bone
surface for successful bone resorption[179] and this depends upon formation of a dense belt-
like actin ring surrounding the ruffled membrane. [180] These osteoclast actin rings have
high concentrations of actin filaments assembled locally into dynamic structures as
podosomes in bone attachment sites. With its significant prerequisite role in osteoclastic
bone resorption, actin ring formation is a target for inhibiting osteoclasts and has been
investigated in many studies. Gelsolin is an important actin regulator, necessary for
podosome formation but not necessary for actin ring formation, which means that gelsolin-
null osteoclasts are able to resorb bone, but with reduced potency.[181–183] However,
Wiscott-Aldrich syndrome protein (WASP) critical for podosome assembly exists in the
actin ring of gelsolin-null osteoclasts.[182] WASP interacts with phosphatidylinositol 4,5-
bisphosphate (PIP2) and Cdc42 in response to integrin αvβ3 signaling, enhancing the
sealing zone formation and bone resorption.[182] Mice without WASP expression exhibited
defects in formation of podosomes and actin rings in the sealing zone and bone formation.
[184] Attenuation of WASP using siRNA demonstrated the absence of podosome formation
of actin rings and reduced bone resorption. WASP is activated by the coordinated binding of
Cdc42 and PIP2, and full activation stimulates the actin-nucleating function of the actin-
related protein (Arp)2/3 complex by associating with Arp2/3.[185–188] The Arp2/3
complex initiates actin nucleation and crosslinking, and has been reported to be 3-fold
upregulated in RAW 264.7 cells in response to RANKL.[189, 190] Knock-down of Arp2 in
RANKL-stimulated RAW 264.7 cells using siRNA generated an average 70% protein
reduction 30 hours post-transfection.[190] Fewer podosome-like structures appeared, and
compared with control, less than 1% actin rings were observed after knockdown, proving the
vital role for Arp2/3 in actin ring formation and its potential to be a new target for
therapeutic agents. Actin nucleation requires phosphorylation of WASP’s C-terminal VCA
domain during WASP binding to Arp2/3 complex after integrating a number of signals.
[191–193] The PTP-PEST (protein-tyrosine phosphatase-proline, glutamic acid, serine,
threonine amino acid sequence) has been shown to be involved in WASP and Src
phosphorylation and dephosphorylation.[194] This regulates phosphorylation of proteins
associated with WASP and enhances interactions between WASP, actin monomers, and the
Arp2/3 complex by increasing the WASP conformational stability.[194] At the same time, it
regulates Src activity through (de)phosphorylation.[195] Reducing PTP-PEST expression
levels using siRNA in osteoclasts eliminated actin rings and significantly inhibited
formation of the sealing zone, formation of WASP-cortactin-Arp2 complexes[195] and bone
resorption.[194] This indicates a direct role of PTP-PEST in the formation of cell-sealing
zones while interacting with WASP.

Simultaneously with WASP, cortactin, a c-Src substrate, binds with Arp2/3 at its N-terminal
acidic domain to promote Arp2/3-induced actin assembly and stabilize actin filaments by
binding to their repeat regions.[196] Cortactin was not found in hematopoietic cell
precursors, but is induced in differentiated osteoclasts. Depletion of cortactin in primary
mouse osteoclasts using siRNA resulted in the absence of podosomes, sealing rings and loss
of bone-resorbing ability, suggesting an indispensable role for cortactin in osteoclastic bone
resorption. Cortactin’s mechanism for regulating sealing ring formation has been further
studied.[197] Instead of inhibiting the initial actin aggregate phase, knockdown of cortactin
using siRNA suppressed the subsequent sealing zone maturation process.

Osteoclast ability to attach to bone surfaces is essential for successful bone resorption. An
intracellular calcium channel, inositol-1,4,5-triphosphate receptor-1 (IP3R1) is involved in
the regulation of reversible osteoclast attachment.[198] IP3R1 can bind an endosomal
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isoform of IP3R–associated cGMP-dependent kinase substrate (IRAG). Using siRNA
against IRAG in human osteoclasts in vitro reduced cell spreading diameters and displayed
distributed podosomes.[199] Loss of podosome ring structures explained reduced cell
adhesion. Knockdown of the orphan nuclear receptor ERRα in RAW 264.7 cells[200]
generated similar effects as IRAG. Expression of osteopontin and the β3 integrin subunit is
down-regulated after silencing ERRα. Transfected cells detach from the substrate easily and
no podosome belts are observed. Though cell adhesion and migration is impaired, their
differentiation and precursor cell proliferation are not influenced by ERRα knockdown.

Given the essential role of actin assembly in osteoclastic bone resorption, the motor protein
family of myosins responsible for actin-based motility was examined in osteoclasts.[201,
202] Myosin X (Myo10) maintains low expression levels in most vertebrate tissues,[203]
binding actin and microtubules.[204] Assembly of podosomes and sealing zones in
osteoclasts depends on a complete intact microtubule system.[205, 206] RNAi-mediated
inhibition of Myo10 in both RAW264.7 and mouse bone marrow-derived osteoclasts
reduced the sizes of sealing zones and cell perimeters, but did not influence cell fusion.[202]

Brain-type creatine kinase (Ckb) exhibits high up-regulation upon osteoclast maturation as
witnessed with proteomic technology.[207] Increased expression occurs in both mice bone
marrow cells and RAW264.7 cells exposed to RANKL and M-CSF. Ckb regulates ATP
distribution and supply in cells, required in osteoclast actin formation and maintenance.[208,
209] Down-regulation of Ckb in cell cultures produced prominent reduction in areas of
resorption pits on dentin slices.[207] Reduced resorption ability was suggested to be
partially due to impaired actin ring structures observed in transfected osteoclasts. In
addition, Ckb was also shown to affect V-ATPase activity,[207] a major proton pump
essential for osteoclastic resorption. Normal osteoclasts can recover their intracellular pH
under challenge with strong acid over about 400 seconds. However, the lack of such
intercellular pH recovery observed when inhibiting Ckb, infers that Ckb influences
osteoclast bone resorption by affecting V-ATPase. In vitro cell culture data were confirmed
in vivo through reduced bone surface erosion in ovarectomized Ckb−/− mice. Interestingly,
no significant differences in numbers of osteoclasts were observed between Ckb−/− and
wildtype mice.[207] Therefore, Ckb is a target for altering osteoclast activity, not
osteoclastogenesis.

5.3. Osteoclast viability targets
In addition to targeting osteoclastogenesis and osteoclastic bone resorption, targeted
induction of osteoclast apoptosis is also an efficient strategy to suppress excessive bone loss.
EGFR is a target for regulating osteoclast differentiation (mentioned in Section 4.1).
Inhibition of EGFR expression was also reported to cause apoptosis of mature osteoclasts
through a caspase-9/caspase-3-dependent pathway by inhibiting the activation of P13K–
Ake/PKB.[130] Taken together, siRNA against EGFR can not only inhibit osteoclast
differentiation, but also suppress mature osteoclast survival.

RANK siRNA can be similarly characterized, as RANKL/RANK interaction is responsible
for osteoclast differentiation, bone resorption and mature osteoclast survival as well.
Therefore, mature osteoclasts transfected with RANK siRNA resulted in cell death.[67]
Taken together, transfection of either osteoclast precursors or mature osteoclasts with
RANK siRNA can reduce osteoclast-mediated bone resorption by inhibiting osteoclast
differentiation, resorption activity and osteoclast survival.

Bisphosphonates, the most commonly used pharmacological approach for targeting
osteoporosis currently, have several side effects which have clouded their therapeutic
efficacy.[9, 10, 15] As a alternative, siRNA against alendronate’s (a nitrogen-containing
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bisphosphonate, N-BP) known molecular target,[210] farnesyl pyrophosphate synthase
(FPPS), was investigated to inhibit osteoclasts and promote osteoblast activity
simultaneously. FPPS plays an important role in the mevalonate pathway which produces
lipids essential for cell survival.[211] Additionally, N-BPs are reported to induce human
osteoblast differentiation and mineralization in culture by inhibiting the mevalonate
pathway.[212] siRNA targeting FPPS significantly suppressed osteoclast cell viability with a
single transfection and significantly increased osteoblast differentiation with effects
sustained 5 days post-transfection in osteoblasts. However, this treatment does not
significantly change osteoblast proliferation and mineralization compared to controls.[213]
Therefore, selective knock-down of FPPS expression has the potential to inhibit osteoclasts
while at the same time promoting osteoblastic activity.

Other siRNA targets described above influence osteoclast survival as well. NHA-oc/NHA2,
mentioned as a target for osteoclastogenesis, inhibits osteoclast resorption activity partially
because reduced NHA-oc/NHA2 express induces apoptosis by loss of inhibition of
caspase-9 activation;[102] significant osteoclast death can also be induced by OGR1 siRNA
transfection (section 4.1); siRNA against structurally unique osteoclast-specific
transmembrane PTP-oc induces significant apoptosis in RAW/C4 osteoclast-like precursor
cells. (section 4.2). In addition, many other general cell apoptosis signals are reported. Using
siRNA targeting these proteins regulating these parthways, cell-specific delivery is essential
to avoid undesired side effects.

5.4. Other potential osteoporosis targets
Recognition of bone by osteoclasts is regulated by cell integrin receptors.[214] Integrins, as
calcium-dependent, heterodimeric transmembrane protein receptors, mediate cell attachment
with extracellular matrix or with other cells. Four different integrins are actively expressed
in osteoclasts.[215] Among them, αvβ3 is highly expressed in osteoclasts and exhibits an
important role in facilitating osteoclast attachment to bone and subsequent bone resorptive
processes.[216] Osteoclast-mediated bone resorption was shown to be significantly inhibited
by anti-αvβ3 antibody treatment in vitro [217] and increased skeletal mass, absence of actin
rings and abnormal osteoclast ruffled membranes were all observed in osteoclasts in αvβ3-
deficient mice.[216] Integrin αvβ3 recognizes the extracellular RGD peptide sequence and
therefore RGD peptide has been used to label and target αvβ3-positive cells in vivo.[218] In
addition, inhibition of αvβ3 using a soluble RGD mimic as a receptor antagonist reduced
osteoclastic bone resorption both in vitro and in vivo, suggesting that αvβ3 blockade
prevents rapid bone loss caused by estrogen withdrawal.[219] In a study seeking to identify
human peripheral blood monocyte subsets differentiating into osteoclasts, integrin-β3
subunit siRNA was transfected into human CD16+ monocytes.[220] This transfection
significantly reduced TRAP-positive multinucleated cells in a dose-dependent manner.
Silencing the β3 subunit in myeloma cells from human patients suppresses bone resorption
activity (i.e., osteoclast-like activity) of these cells in vitro.[221] These data reflect the
importance of β3 integrin subunit in RANKL-induced osteoclastogenesis. Therefore, αvβ3
could be an attractive target to attenuate or modulate osteoclastic bone resorption.

The soluble cell signaling protein, p53, is well known to protect cells from malignant tumor
transformation by coordinating several intracellular signaling networks.[222] The ubiquitin
ligase, murine double minute 2 (MDM2), regulates p53 activation by controlling p53 half-
life.[223] Recently, a small molecule inhibitor, Nutlin, is reported to competitively bind
MDM2 to interrupt p53-MDM2 interaction and activate the p53 pathway.[224, 225] In order
to investigate the effect of Nutlin-3 on pre-osteoclastic precursor cell survival, proliferation
and differentiation, human peripheral blood mononuclear cell pre-osteoclasts were
transfected with p53 siRNA.[226] Results showed that Nutlin-3 anti-osteoclastogenesis
activity was greatly compromised by p53 siRNA, indicating that the inhibitory effects of
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Nutlin-3 on osteoclast precursors require the p53 activation pathway. Using siRNA
technology to interrupt p53-MDM2 interactions may therefore have therapeutic implications
for controlling excessive osteoclastic activity.

OGR1 was mentioned (vida supra) as a possible target for controlling osteoclastogenesis.
This seven-pass transmembrane protein binds protons and exhibits pH-sensing activity.[109]
Given that increased extracellular proton concentrations led to nuclear translocation of
NFATc1, a downstream mediator of RANKL stimulation in osteoclasts,[227] OGR1’s role,
while still unclear, could be linked to bone pH homeostasis working as a proton sensor in
response to external acidosis.[109] Therefore, further studies investigating OGR1 function
in bone resorption sites is necessary to validate OGR1 as a target for osteoclast-mediated
excessive bone resorption.

FPPS has been used as an siRNA target to inhibit osteoclast viability, mimicking the
pharmacology of N-BPs (vida supra). However, depletion of intracellular geranylgeranyl
pyrophosphate (GGPP) has also been reported to produce analogous phenotypic effects of
bisphosphonate treatment on both osteoclasts and osteoblasts.[228, 229] Therefore, siRNA
inhibition of GGPP synthase may induce apoptosis in osteoclasts while simultaneously
promoting osteoblastic activities. Using siRNA against GGPP synthase could also
potentially suppress excessive bone loss by stimulating osteoblastic bone production.

As osteoclasts form from cell fusion, cell-to-cell contact is critical for osteoclastogenesis.
Cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), whose
expression is regulated by intracellular signalling through NF-κB and JNK, is involved in
cell-cell contact between osteoclast precursors and osteoblasts/stromal cells, or among
osteoclast precursors.[230, 231] ICAM-1 binds to integrin pairs, LFA-1 (CD11a/CD18),
blocking interactions between ICAM-1 and LFA-1, inhibiting osteoclast formation.[230]
Hidetaka et al. reported that siRNA knock-down of LFA-1 in RAW264.7 cells had no
effects on osteoclastogenesis. Alternatively, ICAM-1 could be an siRNA target to inhibit
osteoclasts as ICAM-1 is not only expressed on osteoclast precursors and mature osteoclasts,
but also on osteoblasts.[232, 233] Therefore, cell-specific targeted delivery will be essential
for the specific bioactivity and siRNA selectivity to osteoclasts as desired.

6. siRNA delivery to bone
6.1. Challenges and strategies

RNAi as a novel therapeutic approach has considerable potential to silence abnormal genes,
especially for gene targets not effectively targeted by conventional therapeutics (i.e., by
small molecules, proteins and antibodies). The major obstacle for developing siRNA for
therapeutics is also its targeted delivery with clinically acceptable formulations and reliable
routes of administration. This is particularly true of siRNA delivery to bone with its
intrinsically poor drug penetration and vascular perfusion. Bone is primarily composed of
three cell types: osteoclasts, osteoblasts, and osteocytes. Bone’s unique extracellular matrix
is strongly mineralized with calcium phosphate, forming ~70 wt% apatite, a major reservoir
of the body’s calcium most actively involved with physiological calcium and phosphorus
homeostasis. Increasing molecular and cellular understanding of bone biology has produced
continuous reports of new potential therapeutic targets for various bone pathologies.
Nonetheless, despite new targets identified as osteoclast-specific, targeting methods are not
yet reliably tissue-based specifically with requisite bone-specificity necessary for these
therapeutic agents. Serious complications from cross-reactivity with other non-target tissues
or poor efficacy due to low drug target tissue concentration require a reliable targeting
strategy. Many attempts to improve the targeting of drugs to bone mineral fraction (apatite)
include drug conjugation with bone-targeting ligands, such as tetracycline,[234] estradiol,
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and bisphosphonate.[235, 236] Bisphosphonates, especially N-BPs, as anti-resorptive drugs
having intrinsic high affinity to the bone apatite surface, are very attractive for delivery of
conjugated non-specific bone therapeutic agents. However, their exploitation as bone-
targeting agents must consider that free bisphosphonate itself also will increase anti-
resorptive activity.

SiRNAs are well known for their very short circulating half-lives in vivo.[237] Unmodified
naked siRNA cannot be directly administered directly in vivo, exhibiting only a 6 min half-
life after systemic administration to rats due to degradation by serum nucleases.[237] Many
studies seek to overcome the challenges of siRNA delivery by the chemical modification of
siRNA nucleotides, lipid/liposomal/polymer-based complexes, and collagen (atelocollagen)-
based[238, 239] formulations for siRNA, as well as viral vectors and polymer-complexed
siRNA carriers.[240] These methods each have their advantages and disadvantages, but non-
viral delivery is considered a more clinically relevant delivery mechanism, avoiding the
known problems of current viral vector delivery: high viral toxicity, possible
carcinogenicity, proven immunogenicity, and significant cost limitations.[31] Delivery of
siRNA targeted specifically to bone is not an entirely new story. To date, in vivo siRNA
studies in humans have focused on rheumatoid arthritis (RA) by local delivery (intra-
articular injection[241, 242], electroporated siRNA[243], topical cream[34]), or by systemic
delivery, each with modest effects.[244] Delivery of siRNA to bone osteoclasts in vivo,
either targeted to or addressing, is not yet reported.

To improve siRNA stability in vivo, various chemical modifications have been investigated.
SiRNA stability against nuclease degradation can be improved by introducing a
phosphorothioate (P=S) backbone linkage or modifying the ribose 2’-hydroxyl position as
2’-OMe or 2’-F, as well as a 4’-thioribose modification.[245] All show significant
improvements over unmodified siRNA.[246–248] Combination of 2’- and 4’-thioribose
modification results in substantially improved siRNA bioactivity and plasma stability.[249]
This improved siRNA plasma stability facilitates more reliable systemic dosing and versatile
delivery options. In addition, specific siRNA chemical modifications can potentially be used
to improve conjugation and targeting as well. Bone-targeting ligands, antibodies[250] or
small molecule drugs (vida supra) can be conjugated with siRNA molecules with various
chemistries for systemic delivery of siRNA-based bone disease therapeutics. For example,
bisphosphonates, can be conjugated to ribose hydroxyl groups in siRNA sugars.
Modification of the ribose 2’-OH at the 3’ end of the guide siRNA strand appears effective
for improving siRNA activity.[240] In this case, bisphosphonate performs both as a drug and
also as a targeting moiety to deliver siRNA specifically to bone.

Using tissue-specific targeting methods, both locally and systemically delivered siRNA can
be more reliably dosed by judicious combination of other “homing” molecules. The concept
of siRNA targeting to improve both systemic and local efficacy is shown in Figure 4.
Established drug delivery strategies can be utilized for both targeted systemic and local
siRNA delivery, including siRNA conjugation to cell membrane-targeting ligands,
antibodies, water-soluble polymers,[251] or cell-penetrating peptides. These methods seek
to improve amount of siRNA delivered specifically to targeted bone cells, and to limit drug
off-target effects in cells other than osteoclasts.

RANK expressed on osteoclast precursors as well as on mature osteoclasts serves as a
popular molecular target for osteoporosis therapies. Antibodies against RANK have been
tested for effective osteoclast targeting by conjugation with calcitonin, an anti-resorptive
protein drug.[252] The conjugate showed efficacy inhibiting osteoclast formation and bone
resorption. The strategy, using receptor ligand binding peptides as the targeting moiety,
provides a general approach to generating an osteoclast-targeting platform for specific drug
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delivery to osteoclasts. Other osteoclast-specific proteins can also be utilized for this
purpose, such as cathepsin K and NHA-oc/NHA2. In addition, many calcium-binding
proteins, recently reviewed,[253] including acidic proline-rich salivary proteins, osteocalcin,
sialoprotein, and osteopontin, have the potential as novel bone-targeting moieties.[253] The
hexapeptide (Asp)6 exhibited high affinity to bone and was used as bone-targeting moiety
conjugated with estradiol in ovariectomized mice. The conjugates maintained bone density
similarly to unconjugated estradiol, but without displaying increased liver and uterus weight.
[254, 255]

In addition to specific chemical modifications, protection of siRNA in plasma is also
provided by formulating siRNA into nano/macro-sized particles for delivery, as recently
reviewed.[256–258] Most drug delivery strategies to date primarily target the liver, either
deliberately or non-discriminately, a natural result of first-pass metabolism and highly
efficient liver-based drug and colloidal clearance. This is an advantage for liver targeted
therapies: for example, hydrodynamic tail-vein injection of Fas siRNA successfully
protected mice from liver failure and fibrosis.[259] However, the liver and other
reticuloendothelial (MPS/RES) system tissues efficiently filter most drug carrier particles
(i.e., >90%) despite active targeting to other target tissue sites. To avoid this massive dose
removal, locally delivered siRNA-particle formulations can be used in bone-targeted
therapeutics. Specifically to target osteoclast or osteoclast precursors, siRNA delivery can
exploit drug carrier particle size-selective cell-specific uptake to numerous phagocyte target
cells in bone tissue using local delivery. In the context of osteoporosis therapy, targeted cells
are pre-osteoclastic monocytes and osteoclasts -- all naturally phagocytic cells. Phagocytes
efficiently take up particles with diameters up to 10 µm.[260] However, particles with
diameters greater than 300 nm are too large to penetrate non-phagocytic cell membranes
(i.e., osteoblasts, fibroblasts) either passively or by endocytosis or pinocytosis.[261]
Therefore, siRNA-loaded microparticles with controlled sizes could be exploited for
selective internalization by osteoclastic phagocytic mechanisms, and to target siRNA to
these cells in new osteoporotic therapeutic strategies without a conjugated targeting moiety.
These particles could be delivered locally to bone sites in clinical cases, especially in bone
augmentation and implant surgeries. Additionally, for some bone molecular drug targets
appropriate both for osteoclasts and osteoblasts, siRNA-containing nanoparticles capable of
being taken up by both cell types might be effective for increasing bone mass by inhibiting
osteoclasts while simultaneously stimulating osteoblasts. Particle opsonisation by host
plasma proteins, commonly a problem for drug carriers, may confound target cell
phagocytosis since opsonisation (particularly, non-specific adsorption of immunoglobulins
and complement onto the particles) may activate macrophages and T-cells and cause
inflammation in surrounding tissues and damage to healthy cells.[262]

Currently, local siRNA administration is more efficient than its systemic delivery for short-
term therapeutic purposes.[263] Nonetheless, local delivery must also consider target
specificity. For example, intra-articular injection of siRNA for RA is not an effective route
of administration for transfecting osteoclasts located near or on bone surfaces at most
common osteoporotic bone sites, notably pelvis, vertebrae and wrist.[264] To maximize
drug availability to specific bone sites and obtain a reliable, reproducible and predictable
pharmcokinetic profiles, bioactive materials, including porous chitosan/collagen
scaffolds[265] and injectable FDA-approved calcium phosphate bone cements (CPC) are
being developed as drug carriers for local bone delivery. Polymethylmethacrylate (PMMA)
bone cements used clinically for implant fixation, kyphoplasty,[266] and bone
augmentation,[267] exhibit very poor control over entrapped dose release kinetics, often
leaving up to 40% of the drug trapped in PMMA.[268, 269] Injectable CPC exhibits several
unique properties for bone drug delivery, including peri-operative preparation and drug
loading, liquid-solid setting in situ, intrinsic osteoconductivity (degradable by osteoclasts),
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osteoinductivity (infiltrated by osteoblasts and replaced with new bone), and acceptable
biocompatibility.[270–272] CPC’s self-setting ability at ambient or body temperature within
the bone cavity [273] enables injectable formulation, largely expanding its therapeutic
utility.[274, 275] To date, a large body of evidence supports the feasibility and value of
using CPC as a local drug carrier in bone augmentation. Pharmacologically active molecules
are readily dispersed or distributed throughout CPC prior to setting and surgical placement,
providing a sustainable and controlled drug release medium. Several conventional small
molecule and protein-based drugs have been delivered using CPC in bone, including
antibiotics to decrease post-surgical infections,[276–279] anticancer drugs to reduce
tumorogenesis[280, 281] and growth factors to promote bone healing.[282, 283] Therefore,
despite its limited mechanical properties, CPC could also be used to deliver siRNA to bone
as a local delivery matrix.

A degradable cationic hydrogel comprising of gelatin and chitosan has been used for local
delivery of an antisense oligonucleotide targeting murine TNF-α to suppress endotoxin-
induced osteolysis in mouse calvaria.[284] Cationic polymeric chitosan complexes with
anionic nucleotides and also facilitates cell transfection. Osteoclast numbers and bone
resorption were significantly suppressed 4 weeks post-implantation. The same idea can also
be extended to siRNA local delivery to bone.

The intrinsically low pH in osteoclast resorption lacuna and in the cell lysosome is attractive
as a basis for targeting drugs conjugated to carriers containing acid-cleavable hydrazone
bonds.[285] Additionally, various acid-sensitive, cathepsin K-specific and MMPs-specific
peptide linkages (reviewed recently[253]) also provide disease- and environmentally
specific bone-targeting strategies appropriate for targeted siRNA bone delivery.

6.2. Non-specific siRNA-cell bioactivities and off-target side effects
The first clinical trials involving siRNA were applied by local intraocular injection in
patients with choroidal neovascularization (CNV).[33, 286] CNV is an age-related eye
disorder characterized by the choroidal vessel invasion to the retina beneath retinal
pigmented epithelium. Naked siRNA targeting VEGFA or VEGFR1 showed significant
suppression in a laser-injury-induced CNV mice model.[33, 286] However, in 2008, new
data showed that this therapeutic suppression is a general siRNA-class effect, independent of
siRNA sequence.[25] The observed therapy was based on interactions between cell-surface
(but not endosomal) toll-like receptor 3 (TLR3), a cell membrane double-stranded viral
RNA sensor found on numerous cell types,[287] and siRNA, regardless of RNA sequences,
target, and internalization. However, to bind TLR3, siRNA of 21 nucleotides or longer was
required to form a 2:1 TLR3-RNA conjugate. TLR3 plays an indispensable role in the
TRIF--NF-κB cell signalling cascade where TRIF is the TLR3 adaptor protein.[288] This
important discovery has revealed generic properties of siRNAs on vascular tissues, and
improved the global understanding of siRNA general bioactivities, both desired and
potentially undesired, through non-specific signalling pathways.

In this regard, primary human choroidal endothelial cells showed decreased survival in
serum-containing media cultured with serum-stable 2’O-methyl-Lus-siRNA (without
transfection reagents).[25] Such extracellular siRNA-induced cytotoxicity might affect other
organs, including bone. Osteoclast precursors but not mature osteoclasts express TLR3.[59]
Poly(I:C)dsRNA, which acts as a TLR3 ligand to stimulate cell surface TLR3, produced
strong inhibition of osteoclast differentiation in both mouse bone marrow cultures and
human peripheral blood monocytes at 1 ug/ml in a dose-dependent manner under induction
by M-CSF and RANKL. TLR stimulation induces the production of various
proinflammatory cytokines such as TNF-α[289] and prompts high levels of phagocytic
activity in osteoclast precursors,[59] indicating an enhanced immune response after TLR
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stimulation in osteoclast precursors. Taken together, both the unanticipated vascular and
immune-general siRNA-class effects should be carefully considered for siRNA therapies,
especially when delivered systemically.

7. Conclusions
Gene silencing using siRNA has many potential therapeutic applications due to several
advantages intrinsic to RNAi, such as its high target specificity and intrinsic biological
response.[28] Effective siRNA delivery and selective targeting to desired tissue sites
remains problematic. siRNA delivery to bone has developed relatively slowly compared to
its delivery to other tissues. In this regard, osteoporosis is an increasingly challenging
problem globally with a need for improved therapeutics. Many new cellular targets in
osteoclasts are continually reported and attractive for siRNA knock-down. Efficient siRNA
delivery methods and selective targeting to bone connective tissue and osteoclasts must be
developed, improved and optimized. siRNA’s efficacy, bioavailability, and therapeutic
duration in the context of osteoclast-mediated excessive bone resorption are largely
unexplored, but this strategy has attractive options for development of new therapeutics.
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Abbreviations

3BP2 c-Abl SH3 domain-binding protein-2

ADAM a disintegrin and metalloproteinases

Ago Argonaute

AP-1 activator protein-1

Ckb brain-type creatine kinase

CNV choroidal neovascularization

CPA cation-proton antiporter

CPC calcium phosphate bone cements

DC-STAMP dendritic cell-specific transmembrane protein

EGFR epidermal growth factor receptor

FPPS farnesyl pyrophosphate synthase

GGPP geranylgeranyl pyrophosphate

H+-ATPase H+-adenosine triphosphatase

ICAM-1 intercellular adhesion molecule-1

IKK IκB kinase

IP3R1 inositol-1,4,5-triphosphate receptor-1

IP3R1 inositol-1,4,5-triphosphate receptor-1

KCCs K+/Cl− co-transporters

M-CSF macrophage colony-stimulating factor
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MDM2 murine double minute 2

N-BP nitrogen-containing bisphosphonate

NCX Na+/Ca2+ ion exchanger

NFATc1 nuclear factor of activated T cells

NF-κB nuclear factor kappa B

OCIF osteoclastogenesis inhibitory factor

OC-STAMP osteoclast stimulatory transmembrane protein

OGR1 ovarian cancer G-protein-coupled receptor 1

OPG osteoprotegerin

PBMC blood mononuclear cells

PIP2 phosphatidylinositol 4,5-bisphosphate

PTK protein tyrosine kinase

PTP-oc osteoclast-specific transmembrane protein-tyrosine phosphatise

PTP-PEST protein-tyrosine phosphatase-proline, glutamic acid, serine, threonine
amino acid sequence

RA rheumatoid arthritis

RANK receptor activator of NF-κB

RANKL RANK ligand

RGS regulators of G-protein signalling

RISC RNA-induced silencing complexes

RIZ1 retinoblastoma protein-interacting zinc finger 1

RNAi RNA interference

shRNA short hairpin RNA

siRNA small interfering RNA

TLR3 toll-like receptor 3

TRAF6 TNF receptor-associated factor 6

TRAIL TNF-related apoptosis-inducing ligand

TRAP tartrate resistant acid phosphatase

TREM2 triggering receptor expressed in myeloid cells-1

WASP Wiscott-Aldrich syndrome protein
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Figure 1.
RNA interference mechanism.
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Figure 2.
Normal bone metabolic homeostasis as a balance of bone resorption and deposition
mechanisms. This balance goes awry in osteoporosis pathology.
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Figure 3.
Cellular mechanisms of osteoclastogenesis involving osteoblast/macrophage precursors cell
interactions, mediated by RANK, RANKL, and OPG among other signaling partners.
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Figure 4.
The concept of therapeutic siRNA targeting delivery to improves siRNA bioavailability and
therapeutic efficacy.
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