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Traditionally, state-space models are fitted to data where there is uncertainty in the obser-
vation or measurement of the system. State-space models are partitioned into an
underlying system process describing the transitions of the true states of the system over
time and the observation process linking the observations of the system to the true states.
Open population capture—recapture—recovery data can be modelled in this framework by
regarding the system process as the state of each individual observed within the study in
terms of being alive or dead, and the observation process the recapture and/or recovery pro-
cess. The traditional observation error of a state-space model is incorporated via the
recapture/recovery probabilities being less than unity. The models can be fitted using a
Bayesian data augmentation approach and in standard BUGS packages. Applying this
state-space framework to such data permits additional complexities including individual het-
erogeneity to be fitted to the data at very little additional programming effort. We consider
the efficiency of the state-space model fitting approach by considering a random effects model
for capture—recapture data relating to dippers and compare different Bayesian model-fitting
algorithms within WinBUGS.

Keywords: Bayesian approach; BUGS; data augmentation; hierarchical model;
individual heterogeneity; mixed effects models

1. INTRODUCTION

Survival parameter estimation is of particular interest
within ecological systems for gaining insight into the
underlying biological system and for conservation or
management polices [1]. To obtain estimates of survival
probabilities, capture—recapture data are often
collected. The data collection process involves the
repeated (re-)capturing of individuals at a series of cap-
ture events, where each individual within the study is
uniquely identifiable, either by natural markings or a
unique mark applied to the individual at their initial
capture, such as a tag or ring. It is then possible to
specify a statistical model for the data, including an
explicit likelihood function for the data given the
model parameters and hence obtain estimates of the
survival probabilities and recapture probabilities
[2—4]. If individual animals can also be recovered dead
within the study period, this is referred to as
capture—recapture—recovery data, and the approach
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extended to obtain estimates for the survival, recapture
(of live animals) and recovery (of dead animals)
probabilities [5—8]. Survival parameters are often
subject to individual heterogeneity and recent interest
has included such additional complexities within
the statistical framework. For example, specifying the
survival parameters as a function of individual
covariates [9-16] and/or incorporating random effects
[17-20]. Including individual heterogeneity typically
increases the complexity of the model specification
and fitting process.

State-space (or hierarchical) models have become a
very useful modelling tool in the analysis of complex eco-
logical data. For example, state-space models have been
used in fisheries [21-23], animal count data [24—27] and
telemetry data [28—31]. Traditionally, state-space
models are fitted to data where the data obtained are
observed with error. We will show how capture—
recapture—recovery data can be modelled using a state-
space framework, where the observation error component
is incorporated as a result of a non-perfect recapture and/
or recovery process, i.e. the recapture and recovery
probabilities are less than unity. For capture—recapture—
recovery models, considering a state-space formulation
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can simplify the model specification by constructing the
model as the composition of a series of simpler models
corresponding to each separate process acting on the
population and permit additional complexity to be incor-
porated in a straightforward manner. We initially describe
the underlying ideas of the general state-space framework
and how these can be fitted within a Bayesian framework
before applying this to capture—recapture—recovery data.

1.1. State-space models

State-space models separate an observed process into
two components: a system process that models the
underlying biological process over time and an obser-
vation process that accounts for imperfect detection of
the system process, such as measurement error. State-
space models have become increasingly popular within
ecological problems, often separating the nuisance para-
meters (observational error) from the biological processes
of interest.

In general, the state-space framework takes the fol-
lowing form. Let w,...,yr denote the (possibly
multivariate) observations of the process; @, ..., Tr
the true underlying states at times t=1,...,7 and 0
the set of model parameters. The state-space model
can be described by,

f(x1|0) probability function for initial state;
f (x| xi_1,0) system process for timest=2,..., T;
f(y,|x:, @) observation process for times t=1,..., T.

When the underlying states of the system process,
Ty, ..., xparediscrete-valued the state-space model reduces
to a traditional hidden Markov model (although we note
that some authors have extended the term hidden
Markov model to include continuous state variables, see
Cappé et al. [32]). For such models with finitely many
states, there is an explicit closed form likelihood function
for the observed data, denoted by f(y|6) (by summing
over all possible states in the system process) which can
be maximized to obtain parameter estimates. Alterna-
tively, the EM algorithm [33] can be implemented to
obtain parameter estimates (see also van Deusen [34]
for an application of the EM algorithm to capture—recap-
ture data). For a continuous system process, in general
there is no such closed form expression for the likelihood
function of the observed data (although it can be
expressed in the form of an integral over the x values)
with the Kalman filter [35] traditionally used to obtain
parameter estimates, assuming a linear Gaussian state-
space model. More recently, Bayesian model-fitting
approaches have been used that permit a greater degree
of flexibility including, for example, nonlinear and non-
Gaussian processes. We focus on the Bayesian approach
and briefly describe a data augmentation approach for
fitting state-space models. See, Newman et al. [36] for
further discussion.

1.2. Bayestian model fitting

In order to fit a state-space model, we use a Bayesian
data augmentation approach [37], also referred to as
an auxiliary or latent variable approach, and, more
recently, a complete data likelihood approach [38,39].
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We treat the underlying states x as parameters (or
auxiliary variables) to be estimated in addition to the
model parameters, 6. The joint posterior distribution
of the model parameters and auxiliary variables can
be written in the form,

(0, z|y) o f(x|0)f(y|z, 0)p(0),

where

r
f(x|0) = f(x10) Hf (2| 211, 0),

T
f(ylz, 0) = Hf y, |z, 0)

t=

and p(@) denotes the prior specified on the model para-
meters. In general, the posterior distribution of the
model parameters is given by

w(Oly) = jww, 2ly)dz

However, the necessary integration to obtain the
posterior distribution is analytically intractable. We
will use Markov chain Monte Carlo (MCMC) to
obtain a sample from the joint posterior distribution
of & and 6. Considering only the sampled values of 6
(and ignoring the x values) indirectly performs the
necessary integration to obtain a set of sampled
values from the marginal distribution 7(@|y) which
can be used to obtain summary statistics of interest.
We note that the posterior (marginal) distribution of
x is often of interest itself, relating to the posterior dis-
tribution of the true underlying states of the system
under study.

For some studies, some of the underlying states & may
be observed without error. In such cases, we let =
{Zobss Tmis}, Where @, and @, denote the observed
and unobserved states, respectively. x, is observed
data and so regarded in the same manner as the
observations y, while x,; are auxiliary variables and
we can write

(0, Tunis |[Y, Tos) o< f(ylz, 0)(x[0)p(6).  (1.1)

At each iteration of the MCMC algorithm, the
auxiliary variables @ (in addition to the model
parameters 0) are updated.

The introduction of auxiliary variables is often used
in two particular circumstances: (i) when the likelihood
function of the observed data, f(y|@), is analytically
intractable or computationally expensive; and/or
(ii) when the inclusion of the additional auxiliary variables
simplifies or improves the MCMC algorithm. Thus, we
note that an auxiliary variable approach may be used
even if an explicit likelihood is available. For example,
for hidden Markov models (i.e. discrete system pro-
cesses), there is an explicit likelihood. However, using
an auxiliary variable approach (where @, corresponds
to the discrete underlying states) leads to a complete
data likelihood, f(y|x,0), that can be significantly com-
putationally faster to calculate than the observed data
likelihood, f(y|@). The auxiliary variable approach
may also lead to posterior conditional distributions of
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standard form for the model parameters (and auxiliary
variables) and use of the Gibbs sampler compared with
the Metropolis—Hastings algorithm when using the
observed data likelihood due to non-standard posterior
conditional distributions. See for example [27,36,39—42]
for further discussion of Bayesian model fitting in the con-
text of a range of ecological state-space models.

Finally, we comment on the issue of parameter
redundancy, or local identifiability, within the Bayesian
framework. A parameter redundant model has a ridge
in the corresponding likelihood surface leading to non-
unique maximum-likelihood estimates. Traditionally, to
remove this problem, restrictions are specified on the
parameter space to allow estimation of all identifiable
parameters. In general, parameter redundancy can be
difficult to identify, particularly for models with a
large number of parameters and/or processes acting,
although some advances have been made using sym-
bolic algebraic approaches [43—-47]. However, within
the Bayesian framework, the likelihood is combined
with the prior distribution to form the posterior distri-
bution of the parameters. Thus, parameter redundancy
still permits the estimation of the posterior distribution
(assuming a proper prior distribution), but due to the
identifiability issues, parameters (or functions of par-
ameters) suffer from strong prior sensitivity. For
example, suppose that a given parameter is unidentifi-
able (so that the likelihood is flat with respect to this
parameter), then the posterior distribution for this par-
ameter is simply the corresponding prior for the
parameter. The idea extends to when functions of par-
ameters are unidentifiable, and the individual
parameters within this function will typically exhibit
strong prior dependence. Gimenez et al. [48] used this
idea to assess potential identifiability issues, by consid-
ering the overlap between the posterior and prior
distributions. A large overlap may provide an indication
that the parameters are not being well estimated and
potential parameter identifiability issues. See also
King et al. [41] and Kéry & Schaub [42] for further
discussion and applications.

1.2.1. Model discrimination

The Bayesian approach can be extended to incorporate
model uncertainty. For example, suppose that there are
a total of M possible models. We introduce a discrete
model indicator parameter, denoted by m € {1,..., M}
with corresponding parameters 6),, (since the set of par-
ameters is model dependent). The joint posterior
distribution over the combined parameter and model
space is given by

7T( 0,,, M, Tyis |y7 mobs)
o< f(x|0n)f (y|z, 0,)p(0,|m)p(m),

where p(m) denotes the prior specified on model m. Mar-
ginal posterior model probabilities are often of particular
interest, providing a quantitative comparison of compet-
ing models, with the posterior probability for model m
given by

7T("n|y7 -'Bobs) = J 7T( 0, M, Tryis |y, mobs)dmmisdanr
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Bayes factors, defined to be the ratio of posterior
model probabilities to prior model probabilities, are
also frequently used to compare competing models [49].
Posterior model probabilities (or Bayes factors) are a
quantitative comparison of competing models and
hence naturally permit posterior model-averaged esti-
mates of parameters of interest. For example, suppose
that the parameter 6, is common to all models. The pos-
terior model averaged distribution for 6; is given by

M
77(01|ya wobs) = Z 77(01|ya Lobs m)

m=1

MCMC methods can again be used to obtain a
sample from the posterior distribution of interest to
obtain Monte Carlo estimates of interest. For example
the posterior model probabilities are estimated as the
proportion of time the chain is in each model. However,
an extension to the standard MCMC algorithm is
necessary in order for the constructed Markov chain
to move between models with a different number of
parameters. The most common such algorithm is the
reversible jump MCMC algorithm [50] but also see,
Godsill [51] for additional discussion. See King et al.
[41] and references therein for further discussion of eco-
logical applications.

1.2.2. Model checking

Model checking (or goodness of fit) is concerned with the
absolute fit of a model to the data. Many different
models may be fitted to the data, and a model discrimi-
nation procedure applied, but none of the models may fit
the data well. Within the Bayesian approach, model
checking is typically assessed by effectively simulating
data from the given model and comparing whether the
simulated data appear consistent with the observed
data. The most common approach is that of Bayesian
p-values [52], a posterior predictive checking approach.
The approach takes the form of repeatedly sampling par-
ameter values from the posterior distribution. For each
set of sampled values, a dataset is simulated from the
model and compared with the observed data using
some discrepancy function, g (for example, deviance,
Pearson x* statistic or Freeman—Tukey statistic). The
Bayesian p-value is simply the proportion of times that
the discrepancy function of the simulated data is less
than that of the observed data. If the data are incon-
sistent with the model, we would expect the Bayesian
p-value to be close to 0 or 1. For examples on the
use of Bayesian p-values in the context of capture—
recapture—recovery data see earlier studies [12,17,
39,41,42,53—55]. Bayesian p-values have also been
applied within a model-averaging context [8,12]. Pre-
vious applications of Bayesian p-values to capture—
recapture—recovery data include discrepancy functions
of the observed data m,,s given the model parameters 6
(i.e. g(aps/0)) [53] and discrepancy functions of the
observed data @, given the model parameters and
auxiliary variables @ (i.e. g(@%ps| 0, Tnis)) [54,55].
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2. CAPTURE-RECAPTURE-RECOVERY
DATA

Capture—recapture studies involve a series of capture
events. At the first capture event, all individuals
observed in the study population are uniquely marked
and released back into the population. For example, a
tag/ring is applied to each individual or more recently
photo-identification used when it is possible to use
natural physical features, such as individual markings
(often used for seals, newts or tigers) and dorsal fin fea-
tures (of dolphins). At each subsequent capture event,
all previously observed individuals are recorded, new
individuals are uniquely marked and all released back
into the population. A recapture (or initial captures
when using photo-identification techniques) of an indi-
vidual does not necessarily mean a physical capture but
often relates to a sighting of the individual; however, for
simplicity, we use the term recapture. Typically, for
such data a number of assumptions are made, including
no mark-loss, migration from the system is permanent
(so that apparent survival probabilities are typically
estimated), individuals behave independently from
each other and are representative of the population.
For a review of such data and associated models, see
Schwarz & Seber [56]. In some studies, in addition to
live resighting, dead recoveries of individuals may also
occur, leading to capture—recapture—recovery data.

Capture—recapture—recovery data are typically dis-
played in the form of the encounter histories of each
individual observed within the study. We let n denote
the number of individuals observed within the study
and T the number of capture events. We let w denote
the n x T encounter matrix, where

0 if individual 7 is unobserved at time ¢,
wy = < 1 if individual 7 is observed alive at time ¢,
1 if individual i is recovered dead at time ¢,

for i=1,...,nand t=1,..., T. The ith row of the
matrix w, denoted by wj; corresponds to the encounter
history of individual 4. For example, consider the follow-
ing encounter histories:

w: 1 011100 ¢
wp: 1 1.0 0 0 0 0 O

Individual 1 is first observed at time 1, unobserved at
times 2, 6 and 7, recaptured at times 3, 4 and 5 and
recovered dead at time 8. The second individual is
first observed at time 1, recaptured at time 2 but then
unseen throughout the remainder of the study—either
it survives until the end of the study and remains un-
observed, or is unobserved until it dies at some time
within the study and is not recovered.

For such data, the parameters of interest are typi-
cally demographic parameters (most notably survival
probabilities) and/or abundance. The traditional
Cormack—Jolly—Seber (CJS) model [2,4] considers
only capture—recapture data and the ring-recovery (or
tag-recovery) model [57] considers only capture—
recovery data. Each of these models, condition on the
initial capture of each individual observed within the
study with the corresponding likelihood a function of
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survival and recapture or recovery probabilities
(namely the product over each individual of the prob-
ability of their corresponding encounter history
conditional on their initial capture). These ideas can be
extended to integrated capture—recapture—recovery
data with an associated likelihood expression [5—8]. Con-
sequently, for CJS-type models (due to the conditioning
on the initial capture of individuals), abundance cannot
be estimated. The Jolly—Seber (JS) model [3,4] removes
this condition on the initial capture of individuals. For
both the CJS and JS models, the observed data likeli-
hood are available [58—60] permitting estimation of
abundance and demographic parameters.

We initially consider the state-space formulation for
the CJS model before extending the approach to allow
for additional system processes, including births (lead-
ing to JS-type models and abundance estimation) and
individual heterogeneity (in the form of discrete and
continuous individual covariates and/or individual
random effects).

2.1. State-space model formulation

The state-space model formulation of the CJS model has
been proposed independently by Royle [18], Gimenez
et al. [61] and Schofield & Barker [62] (although this mod-
elling approach dates back to (at least) Dupuis [63]—see
§2.3.1). The state-space approach separates the survival
process from the observation processes of individuals
observed within the study (either alive or dead). We
note that (as pointed out by an anonymous referee)
this underlying concept can be seen within the original
seminal papers, although not formally expressed in a
(conditional) state-space representation. For example,
both Jolly [3] and Seber [4] describe (in words) the two
separate processes acting on each individual member of
the population of surviving from one capture event to
the next and subsequently being captured (or not).
Formally, within the state-space formulation, cap-
ture—recapture—recovery data can be viewed as the
combination of two different processes: (i) individuals
surviving between successive time points and (ii) individ-
uals being observed (either alive or dead) with some
probability. Thus, we can regard each encounter history
as a combination of the processes of survival between
each capture event and observations of whether they
are recaptured (if alive) or recovered (if dead), and
thus dissect w into these distinct (conditional) com-
ponents. Mathematically, to represent the survival
process, we define @ to be the n x T matrix such that

0
Tit = 1

We note that z; = 0 corresponds to the cases where
an individual is either dead or has not yet entered the
study (i.e. before it is first observed). We let f(i)
denote the first time individual 7 is observed in the
study and ¢;; the probability individual i survives
until time ¢+ 1, given they are alive at time ¢, with
b={dy i=1,...,n; t=1,..., T— 1}. Submodels
are obtained by setting restrictions on these par-
ameters. For example, a constant survival model is

if individual 7 is not in the study at time ¢;
if individual 7 is alive at time t.
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Zit—l y it-1

Y it Zir+l y it+1

Figure 1. State-space representation of the system process, x, recapture observation process, y, and recovery observation process,
z, for capture—recapture—recovery data. Square notes represent observed data, circular nodes unknown states and arrows a

stochastic relationship between nodes.

obtained by setting ¢;= ¢ for all i=1, ..., nand t=
1,..., T — 1. However, we retain the more general nota-
tion as we will consider a range of models allowing for
temporal and/or individual heterogeneity. The under-
lying system process can be easily described as follows:

Tit|Tit—1, by_y ~ Bernoulli(e;_;zi—1), (2.1)

for t=f(i)+1,..., T and z;; =1 (since the CJS
model conditions on the first time an individual is
observed alive). For many encounter histories, the z;
values will not always be known. For example, consider
encounter history w, given above, we know that z,; =
299 = 1 but as the individual is unobserved thereafter
they may either be alive and not observed or have
died and not be recovered. Recall that we let x,,, and
T, denote the set of values of z;; that are known and
unknown, respectively.

For capture—recapture—recovery data, we partition
the observation process into two distinct processes cor-
responding to the (re-)capture (of live animals) and
recovery (of dead animals). We initially consider the
recapture process and let y denote the n x T matrix
such that

~_Jo
Yit = 1

We note that for an individual to be recaptured, it is con-
ditional on the individual being alive in the study at that
time (i.e. if z;; = 0 then y; = 0). Let p; denote the prob-
ability individual 7 is recaptured at time t, given they are
alive in the study area at this time, for i=1,...,n and
t=2,..., T. The observation process can be written as

if individual 7 is not recaptured at time t;
if individual 7 is recaptured at time ¢.

Yir| Zit, pir ~ Bernoulli( pyay), (2.2)

for t=f(i) + 1,..., Tand y;;) = 1.

The recovery process is defined similarly. For simpli-
city, we assume that the recapture and recovery pro-
cesses are observed over the same period of time,
though this can be easily relaxed. We let z denote the
n X T matrix with elements

{0
Zit = 1

fori=1,...,nand t=2,..., T. Once more the values
of this observation process, z, are conditional on the

if individual 7 is not recovered at time ¢,
if individual ¢ is recovered at time ¢,
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system process, . For an individual to be recovered
dead at time ¢, it is usually assumed that the individual
must have died in the interval (¢ — 1,#] (although see
below for further discussion of relaxing this assump-
tion). Let A; denote the probability individual i is
recovered at time t, given that they die in the interval
(t— 1,4, for i=1,...,nand t=2,..., T, and set A=
{Aigi=1,...,n,t=2,..., T} The observation process
can be written as

(2.3)

for i=1,...,n and t=f(i)+1,..., T. The product
(1 — %)z~ ensures that an individual can only be
recovered at time ¢ if they are alive at time ¢— 1
(ie. z3—1=1) but dead at time ¢ (ie. zz=0); in
other words, die in the interval (¢ — 1,1].

The observed encounter histories w can be separated
into the data components .., y and z. Note that a
glossary of these latent variables, or auxiliary variables
(and others introduced later in the manuscript), are
listed in table 4 in appendix A. In addition, we note
that this state-space formulation is simply a (partial)
hidden Markov model, with the system process com-
posed of the two discrete states ‘alive’ and ‘dead’,
with some of the states known. The corresponding
underlying state-space (or hidden Markov model)
representation is provided graphically in figure 1.

We fit the models using a Bayesian data augmenta-
tion approach to form the joint posterior distribution
(cf. equation (1.1)),

zit|w, /\it ~ Bernoulli()\it(l — xit)-z'itfl%

7T(¢7 p, A Tnis |ya zZ, mobs)
oc f(z|P)f (ylz, p)f (2=, A)p(b, p, A),

where f(z|¢), f(ylz,p) and f(z|z,A) denote the
(Bernoulli) probability mass functions associated with
the system and observation processes, respectively
(such that their product is the complete data likelihood)
and p( ¢, p, A) the joint prior on the survival, recapture
and recovery probabilities.

Using a state-space framework, when considering devi-
ations from the above model and/or additional
complexities, it is not necessary to explicitly derive a
new observed likelihood expression, but simply consider
each individual process in turn. For example, the assump-
tion of recovery only in the capture event following the
death of an individual is often reasonable, due to the
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decay of marks used to uniquely identify individuals.
However, in some cases, this assumption is not valid, as
for abalone (see Catchpole et al. [64], who derive an expli-
cit observed data likelihood for the model where
individuals can be recovered at any point following
death). The model proposed by Catchpole et al. [64] can
be easily fitted within the state-space framework changing
only the observation process for recoveries such that

-1
Zit|Tit, Zi1y - - -, Zit—1 ~ Bernoulli (Mt(l — Ti) H (1- z7T)> ,

=1

for ¢=1,...,n and t=f(i)+1,...,T where
Hfrj (1 — 2j;) is included since an individual is removed
from the study once it is recovered dead and the interpret-
ation of A;; now changes to the probability an individual is
recovered given they are dead, with no restriction on the
time of their death. More generally, models that explicitly
allow for a decay of a mark over time can be fitted within
the framework, for example, by specifying the recovery
probability to be a decreasing function of time since
death.

2.2. Estimating abundance

Removing the conditioning of initial capture from the
CJS model permits the estimation of birth rates and
abundance via the JS model [3,4]. An observed data
likelihood can be obtained [58-60] by considering a
superpopulation corresponding to all possible individuals
who may be observed within the study (i.e. individuals
present and available for capture for at least one capture
event) and summing over all possible combinations of
their entry and exit times (i.e. ‘birth’ and ‘death’
times). Entry to the system could be via birth or immi-
gration and exit from the system, death or permanent
emigration. However, for simplicity, we use the terms
‘birth” and ‘death’ to include such migration. Thus, for
the JS model, there is an additional entry process to be
included within the system process. We let the number
of individuals in the superpopulation be denoted by N,
which is a parameter to be estimated. We note that
(N — n) individuals are available for capture at least
once within the study but are not observed and that =
is of dimension N x T, and hence a function of N. We
let b; denote the probability that individual ¢ enters
the study population in the interval (¢ — 1,#] and so is
available for capture for the first time at capture event
t, for t=1,...,T. This b; is interpreted as the prob-
ability individual ¢ is in the population and available
for capture at the first capture event. Since we condition
on all N individuals being available for capture at least
once within the study period, we have that S 71 b, =1
forall i=1,..., N.

Within the state-space model, the survival process
is replaced by a ‘presence’ process allowing for individ-
uals to both join and leave the study (assuming
individuals can only join and leave the study a maxi-
mum of one time), corresponding to ‘birth’ and
‘death’. In particular, we have that for t=1,..., T
and i1=1,..., N,

, biy ~ Bernoulli(vy),

xz‘t|56z'1, sy Tit—1, ‘1571717 b, ...
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where
bia t=1
Vit = =
Yit H (1 - CUZ'T) + d)it—lmitfl t= 27 ey T7
=1
(2.4)
such that
bis
Yit =

Zi;ll (1 - bir) '

The term Hf;% (1 — =;;) ensures that an individual can
only be ‘born’ once within the study and cannot be
‘reborn’ (i.e. re-enter the study once it has died). The
parameter vy; can be interpreted as the probability
individual 4 enters the population within the interval
(t — 1,1], conditional on not entering the study population
before or at time ¢t — 1. The recapture and recovery pro-
cesses essentially remain the same as for the CJS model,
given in equations (2.2) and (2.3), but are now specified
for t=1, ..., T, since the JS model removes the con-
ditioning on first capture. The posterior distribution for
the JS model, assuming no recoveries, is given by

W((l)? D, ba Na Lmis |y7 wobs)
o< f (x|, b, N)f (y|z, N, p)p(¢, p, b, N),

where f(x|¢@, b, N) and f(y|z, N, p) denote the Bernoulli
probability mass functions for the system presence process
and observation process, respectively. For further discus-
sion, see Schofield & Barker [62].

We note that when specifying the model within the
set of BUGS (and associated) computer packages, it
is not possible to specify x as a function of a stochas-
tic node (i.e. N). The solution proposed is to specify a
fixed upper bound for N, denoted by N*, and let = be
of fixed dimension (N* x T) allowing for (N* — N)
individuals not available for capture within the
study period, or, in other words, do not enter into
the study population. See earlier studies [40,42,65—68]
for further discussion of this approach, alternative
parametrizations and associated computer codes.
Finally, we note the link of the JS model to two
other common models of occupancy models and
closed population models.

Occupancy models relate to the occupancy of a
species (rather than individuals) within a given area.
Species can colonize an area (enter the population),
die out from the area (exit the population), as for cap-
ture—recapture data, but also recolonize an area (i.e. be
‘reborn’). The state-space formulation of the JS model
can be easily extended to an occupancy model, by

adding the term B;(1 — [T'23 (1 — zr)) (1 — Xy— 1) to
v in (2.4) for capture times t=3,..., T to allow re-

entry into the population (see Royle and Dorazio [40]
for further discussion and references therein in relation
to occupancy models). Finally, we note that removing
the presence process (assuming that all individuals are
present for the full duration of the study, so that z;; =
lforall i=1,...,Nand t=1,..., T) and considering
only a recapture process, leads to the special case of a
closed population where the estimation of the total popu-
lation, N, is of particular interest. See earlier research
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[39—42,67—-69] for a range of different closed population
models.

2.3. Individual heterogeneity

In many biological systems, the model parameters may
be individual specific, in that they differ between indi-
viduals despite identical environmental conditions.
For example, individuals typically differ in body con-
dition (which itself may be a function of feeding or
breeding behaviour, parasite load, etc.) which in turn
has a direct impact on their corresponding survival
(animals in better condition are more able to compete
for resources and/or survive harsh environmental con-
ditions). Similarly, animals may disperse through an
area, with individuals more/less likely to be recap-
tured/recovered in more remote or dense vegetation
areas. To incorporate such heterogeneity individual
level factors (or covariates) and/or random effects are
often used to model such differences.

For simplicity, we consider capture—recapture data
and the CJS model, extensions allowing for further
system and/or observation processes follow by including
additional separate processes. We consider the model
parameters as a function of individual level time-vary-
ing covariates. The matrix of observed encounter
histories, w, has elements given by

0 if individual ¢ is unobserved at time t;
if individual 7 is observed alive with
covariate value k£ € R at time ¢.

Wit =

The survival and recapture processes for  and y
given in equations (2.1) and (2.2) have the same
definitions as before but where we now have the sur-
vival and recapture probabilities expressed as a
function of the covariate values. However, we need
an additional system process corresponding to the
transition process for the underlying covariates. For
the transition process, we let w be an nx T
matrix, with elements

0 if individual ¢ is not in the study at time ¢;
uy = < k if individual 7 has covariate value
k € R at time ¢,

for i=1,...,n and t=1,..., T. Typically, there are
unknown observations within the transition process.
For example, for time-varying covariates, if an indi-
vidual is not observed, generally the corresponding
covariate values are also unobserved. We let u=
{UobsyUmis}, where wg,s and  w,; denote the
observed and unobserved states within the transition
process, and let i denote the parameters relating to
the transition process. The joint posterior distri-
bution can be expressed in the form

7T(¢a lp? P, Tis, Unnis ‘yv Lobs uobs)

o< f(ylz, u, p)f (z, u|b, P)p(¢b, ¥, p),

where f(x, u|¢,) denotes the joint probability function
of the survival and transition processes. Within the
MCMC algorithm, we update the model parameters
and missing states @,;; and ;s at each iteration of the

(2.5)
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Markov chain. An estimate of the posterior distribution
of the model parameters can be obtained by considering
the marginal distribution of these parameters within
the algorithm. We consider particular cases for different
types of covariate information.

2.3.1. Multi-state data

Discrete-valued time-varying covariates, such as breed-
ing state or discrete location, are most commonly
referred to as multi-state (or multi-site) data. These
models are an example of a (partially) hidden Markov
model, as the system processes have a finite number of
states. Notationally, we let the set of possible states
for the covariates be denoted by K ={1,..., K} (this
does not include the state of death). The traditional
Arnason—Schwarz (AS) model extends the CJS model
by considering a first-order Markov transition process
between the different states, with an observed data like-
lihood available [9,10,70,71], allowing parameter
estimation. Dupuis [63] proposed an alternative Baye-
sian state-space modelling approach, although did not
phrase the approach as a state-space model but using
an auxiliary variable approach (see also Kéry &
Schaub [42, ch. 9]; Marin & Robert [72, ch. 5.5]; Clark
et al. [73] and references therein and King & Brooks [54]
for an extension to allow for model uncertainty in terms
of time and covariate dependence on the model
parameters).

We let the transition parameters i;,(7,k) denote the
probability that individual ¢ is in state k at time ¢+ 1,
given they are alive and in state j at time t for ¢t=
f(@),..., T—1 and set ¢ = {Pu(4,k): jk € K}. We
initially consider a first-order Markovian structure for
the transition process, but discuss relaxations to this
assumption below. In particular, we can write

Uz‘t|$n,7 Sit = Tit Sit
where
Sit| Sit—1, Yy_q ~ multinomial (1,41 (si—1,)),

for i= 17 ) t:f(Z) + 17 A T; d’tt(ka) = {lpit(kv .7)
j=1,..., K} and s;;) = ug;). In other words, if ;=1
and wu;—; = sy—1 = Jj, the probability that individual i is
in state k at time ¢ is equal to ¥;— (4,k); if z;; =0 (indi-
vidual is dead), then wu;=0 (although s; € K). The
survival and recapture parameters can be extended to
be dependent on the additional state parameter, with
the analogous Bernoulli processes occurring for the obser-
vation and system survival processes.

The joint probability mass function of the survival
and transition processes, f(x, u|¢,) given in equation
(2.5) can be specified in conditional form

n T

[ (@, ulp, ) = H f (@it zig—1, wi—1, )
(2)

i=1 t=f(i)+1
x f (Uit|$it, Uit—lv‘l’)‘

The first term corresponds to the Bernoulli survival
process and the second to the multinomial transition
process. In the standard AS model, if an individual is
recaptured (i.e. y; = 1), the corresponding state of the
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individual, u, is also known. However, if this is not the
case and the state may not be observed when an indi-
vidual is observed then within the state-space
formulation the model specification remains the same.
It is simply that the set of wu,;; and u,, values change
to reflect the set of missing and observed states, and
that any unobserved wu; values are auxiliary variables
and updated within the MCMC algorithm.The state-
space model can be extended to include additional
system or observation processes. For example, within
the traditional AS model, we assume that there are no
recoveries within this process, but these can be easily
included by considering an additional observation pro-
cess corresponding to the recovery process [42,61,74].
Similarly, a birth process can be included (and a par-
ameter for total population size) leading to the multi-
state JS model [55,65].

Using a state-space framework, it is straightforward to
fit more complex model structures, including a second-
order transition process, such that the state of an individ-
ual at time ¢ is dependent not only on their state at time
t — 1 but also ¢ — 2. An explicit observed data likelihood
for a second-order Markov model is available [10,75] but
is computationally expensive to calculate compared with
the complete data likelihood, conditional on the unob-
served states within the transition process. In addition,
within the state-space framework the survival and obser-
vation processes remain the same, with only the
transition system process needing to be modified. Let
V,( j,k,l) denote the probability that individual ¢ is in
state [ € KC at time ¢+ 2, given that they are alive and
in states 7 € KL and k¥ € K at times ¢ and ¢+ 1, respect-
ively, for t= f(i),..., T — 2. We let W;;={W,(5,k1l):
J, k, 1€ K}. The transition process for t= f(i) + 1,...,
T can be described in the form

uit|$it7 Sit = Lit Sit
where
Sit|Sit—1, Sit—2, Wir—o ~ multinomial(1, Wy _o(Si—2, Sit—1,))

fOI‘ t= f(l) + 27 e ,T and lp;ﬁt72<sit727 si,tfla') =
{W;—5 (Sit—2, Si—1,1),l € K}; and for t= f(i) + 1, typi-
cally, a first-order process is considered, so that

Sit|sit—1, Y1 ~ multinomial(1, g _; (si—1,-))

using the notation as for the first-order Markovian
process and where sig;) = uig).

Possible error within the state observation process
can also be incorporated, leading to multi-event
models proposed by Pradel [76]. In such models, the
state of an individual is not observed directly, but an
event relating to the state is observed. For example,
states may refer to ‘breeding’ and ‘non-breeding’ and
events ‘seen near nest’ and ‘not seen near nest’. In
this case, there are no observed states (s =0). The
state-space framework extends the AS model specifica-
tion by including an additional event observation
process, conditional on the underlying states. We note
that the event process can, equivalently, be incorpor-
ated into the state process, corresponding to the event
an individual is in at each capture event (with the intro-
duction of auxiliary variables for the unobserved
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events). However, for simplicity, we retain the event
process within the observation process (but note that
if the model parameters such as the recapture probabil-
ities are dependent on the event process, rather than the
true underlying states, the event process needs to be
incorporated into the system process and the unob-
served events treated as auxiliary variables).

Let £={1,..., E} denote the set of possible observed
events, and let v; denote the event observation process
for individual ¢ at time ¢, conditional on the individual
being observed at this time (i.e. y; = 1). For statistical
convenience, we let v; =0 if y; =0 (i.e. the individual
is not observed). Thus, we have

0 if individual ¢ is not observed
at time ¢ (i.e. y;=0);
v = < e if individual 7 is observed in event
e € £ at time ¢, given they are
observed (i.e. y; = 1).

We define the additional model parameters By (k;, €;) to
be the probability individual 7 is in event e; € £ at time £,
given they are in state k;; € K and observed at this time and
let B;={Bulke): kEK,e €&} Then, for i=1,...,n
and t= f(4), ..., T, we have

Uz’t‘yihrit = YitTit,
where
Tit| wit, By ~ multinomial(1, By (wui, -)),

and Bi(us) = {Ba(ui,ri): T4 =1,..., E},suchthat ) .ce
Bit(ui, €) = 1 for all u; € K (assuming that on initial cap-
ture the observed event is independent of the fact that it is
their first encounter).

The underlying system process is the same as for the
AS model, with the event process incorporated in the
observation process. However, we note that within the
AS model, the likelihood conditions on the state an indi-
vidual is in when first observed. Within multi-event
models, this conditioning is removed (since we do not
observe the true states), and an initial state distribution
needs to be specified. Let k;(k) denote the probability
individual 7 is in state k when it is first encountered.
The initial state distribution is given by

wg (i) |k ~ multinomial(1, ),

where K= {k;(k):k=1,...,K}. More generally, the
multi-event framework allows for both observed known
state and partially observed state where an observed
event restricts the set of possible true states (see Smout
et al. [77] who consider this framework in relation to tag-
loss models and King & McCrea [78] who derive an efficient
closed form observed data likelihood).

Finally, we consider the special case of mixture
models proposed by Pledger et al. [79] to allow for unob-
servable heterogeneity within the population. Within
these models, the population is composed of K homo-
geneous sub-populations, with each individual
belonging to one sub-population and there are no tran-
sitions between sub-populations. Typically, the sub-
populations are unobservable, so that there is no
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directly observable covariate information (v = 0).
The covariate values are time-invariant, so that wu; =
u; for all, t=1,...,T, and

u;| ke ~ multinomial(1, k),

where k= {k(k):k=1,..., K} and k(k) denotes the
probability an individual belongs to sub-population k.
In general, K may be known or be a parameter to be
estimated [79].

2.3.2. Mized/random effect models

We now consider continuous individual covariates. In
these cases, the demographic parameters are typically
specified as a parametric function of covariate values
[11,12,15-20,41,42,65,80] or recently, more flexible
semi-parametric spline models have also been proposed
to model the relationship between the demographic
parameters and covariates [14,81]. For example, let
u; = {uy(j):j=1,...,J} denote the set J covariate
values for individual ¢ at time ¢. The survival prob-
ability of individual 4 at time ¢ may be
(parametrically) logistically regressed on the set of cov-
ariates, such that

J
logit ¢;; = ap + Z o ( ).

J=1

We note that if an individual is unobserved at any
capture event (or following capture for the CJS
model), their corresponding time-varying covariate(s)
are also generally unobserved. This typically leads to
an analytically intractable observed data likelihood,
specified only in integral form, where the integration
is over the unknown covariate values. Catchpole et al.
[15] proposed an alternative conditional likelihood
approach, conditioning on only the observed covariate
values while Bonner et al. [16] compared this approach
with an alternative Bayesian approach. The compara-
tive study conducted suggested that, in general, the
conditional likelihood approach suffers from poorer pre-
cision (as a result of discarding a potentially large
proportion of the data) and can have boundary value
problems for the parameter estimates, but has the
potential advantage that no underlying model needs
to be specified on the underlying covariate values, as
in the Bayesian approach. In particular, the transition
process for the covariate values are written in the
form of the probability density function associated
with the covariates (potentially allowing for depen-
dence between the values). For example, Bonner &
Schwarz [13] considered only one time-varying covari-
ate and set

wit|wi—1 ~ N(wjg—1 + 641, 02,1)7

for t= f(i) + 1, ..., T, dropping the notation on covari-
ate j and where 8, denotes an additive year effect. A
probability density function is specified for wg; if
there are unobserved values at initial capture. The miss-
ing covariate values are treated as auxiliary variables
and updated within the MCMC algorithm.

Including individual random effects to the model
allows for additional unexplained individual
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heterogeneity, such that

J
logit ¢, = ap + Z aju(j) + €,

=1
where €,~ N(0,0%). Gimenez & Choquet [20] use a
numerical integration procedure to approximate the
observed data likelihood for random effect models on
survival probabilities. Such an approach can be compu-
tationally very expensive for more than two individual
random effects. Alternatively, within the Bayesian
model-fitting approach, the additional random effect
terms € ={e;i=1,...,n} are treated as auxiliary
variables that are updated within the Markov chain.
The joint posterior distribution over the model par-
ameters, unobserved system state values and random
effect terms is given by

7T(¢7 '-l’a P, Tmisy Umis, O-za E|ya Lobs) 'u‘obs)

o< f(ylz, u, p)f(z, ulb, P, €)f (el o2)p(b, ¥, p, 72),

where f (€|o?) denotes the probability density function
for the random effects (independent Gaussian for the
above random effects model). Model selection can be
performed on the covariates present in the model as a
variable selection problem [12,19,41].

2.4. Efficiency

In general, when there are competing model-fitting
algorithms that can be used, their relative performance
will be both model and data dependent. In order to
investigate the computational efficiency of a state-
space modelling approach, we consider capture—
recapture data relating to dippers (see Lebreton et al.
[82] for further details) where there are T'=7 capture
occasions and compare different model-fitting algor-
ithms. Brooks et al. [53] compare different time-
dependent models for these data, identifying the
model with constant recapture probability, p, and two
survival probabilities, corresponding a flood effect
year (years 2 and 3) with survival probability, ¢, and
non-flood effect year (years 1, 4, 5 and 6) with survival
probability, ¢, as having largest posterior support
(assuming uniform priors on the recapture and survival
probabilities). Using this temporal model, we specify
additional individual random effects, so that the
model parameters are of the form

t=1,4,5,6,
t=23,

Op + €¢;

logit by, = { Lo

logit pir+1 = b+ €y, (2.6)

where €4 ~ N(0,07) and €, ~ N(0,07). Royle [18]
considers the same data but specifies the fully time-
dependent model with individual random effects. We
specify the analogous priors to [18], such that logit ™
a, ~ U0, 1], logit™'a;~ U[0,1], logit™"b~ U[0,1] and
0,, 04~ U0, 10]. Posterior summary statistics of the
model parameters are provided in table 1. We note
that the posterior distribution of the underlying mean
recapture and survival probabilities is similar to the
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Table 1. Posterior mean, standard deviation (s.d.) and 95%
symmetric credible intervals (CIs) for the parameters in the
model with individual random effects on the recapture and
survival probabilities. The terms logit™'a, and logitflaf
correspond to the underlying mean survival probabilities of
the individuals in the presence of individual random effects
and logit~'b the underlying mean recapture probability.

parameter posterior mean (s.d.) 95% CI

logit " a, 0.61 (0.04) (0.54, 0.69)
logit " as 0.48 (0.05) (0.39,0.58)
logit™'b 0.94 (0.04) (0.86,0.99)
oy 2.43 (1.28) (0.33,5.15)
o, 0.28 (0.19) (0.04,0.74)

posterior distribution of the recapture and survival
probabilities obtained under the analogous temporal
model without random effects [53]. For some discussion
relating to prior sensitivity analyses on these data, see
studies by Brooks et al. [53] and Royle [18], and for
further discussion of individual heterogeneity and
alternative models, see Choquet & Gimenez [83].
We consider three model-fitting algorithms:

— S8SI: the wunderlying state-space formulation
described in §2 with individual random effects on
the model parameters specified in (2.6);

— S552: a reparametrized state-space formulation repla-
cing the set of values zyyi1,..., %z where [(4)
corresponds to the final time individual ¢ is recaptured
alive, with the parameter d = {d; i=1,..., n} corre-
sponding to the time of death for individual 7 (see,
appendix B for further details); and

— L1I: explicit calculation of the joint probability of the
encounter histories given the parameters and auxiliary
variables corresponding to the random effect terms,
denoted by f(y|xys, €) (see appendix B for further
details).

Each model-fitting approach was fitted within the com-
puter package WinBUGS [84]. Method SSI uses an
adapted version of the code provided by Royle [18] allow-
ing for the different time-dependence on the model
parameters, with the code for SS2 and LI modified ver-
sions of this code. Three different models are considered
relating to individual random effects on the recapture
probabilities only, survival probabilities only or on both
recapture and survival probabilities. These models are
denoted by {p(h), ¢(f)}, {p, ¢(f+h)} and {p(h),
&(f+ h)}, respectively, where the h in brackets corre-
sponds to the presence of individual heterogeneity and
the fto the flood effect. The length of time to run each
model for 10 000 iterations is given in table 2. In general,
there is a trade-off between the number of parameters to
be updated and the complexity of the posterior distri-
bution. For L1, the probabilities of the encounter
histories (following the final time an individual is
observed) need to be calculated, whereas for SS1 and
552 this reduces to a product of Bernoulli terms and
imputing the alive/dead status of each individual
animal. In this example, the state-space approaches are
clearly computationally faster than the L1 approach.
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Table 2. Length of time (in seconds) that each model-fitting
approach took to run 10000 iterations in WinBUGS for
three different models, where h in the brackets corresponds
individual random effects and fto a flood effect.

model-fitting approach

Time for 10 000 iterations SS1 SS52 L1

p(h), d(f+ h) 126 83 180
p(h), d(f) 65 50 115
p, ¢(f+h) 83 61 97

Of the three models fitted including individual het-
erogeneity, model {p(h), ¢(f)}, corresponding to only
individual random effects on the recapture probabil-
ities, is preferred in terms of posterior model
probabilities. Bayes factors of 3.9 and 32 are obtained
for model {p(h), d(f)} wversus {p, d(f+ h)} and
{p(h), d(f+ h)}, respectively. (However, we do mnote
that the model excluding any random effects,
{p, &(f)}, is preferred with a Bayes factor of 5.2
versus model {p(h), $(f)}.) We use model {p(h),
¢(f)} to compare the performance of the different
model-fitting algorithms including some level of
individual heterogeneity. Note that for this model, we
set ¢=logit 'b, corresponding to the underlying
mean recapture probabilities of individuals in the pres-
ence of individual random effects, and ¢ = {¢,, ¢} the
survival probabilities for non-flood and flood years,
respectively (no individual random effects present).

We consider the convergence of the Markov chains to
the stationary distribution, using the Brooks—Gelman—
Rubin (BGR) statistic [85]. The BGR statistic for par-
ameters ¢, b and o, consistently tend to one within
10 000 iterations for repeated simulations starting from
different initial values, though ¢, and ¢; always tend to
one much quicker than the other parameters. This appears
to be a result of the poorer mixing of the Markov chain for
o7, (and b). We return to this issue below in relation to
autocorrelation. To be conservative, we specify a burn-in
of 20000 iterations for the MCMC simulations, to
ensure the chain has sufficiently converged.

To compare the relative performances of the MCMC
algorithm for the different model-fitting approaches,
accounting for autocorrelation present within the
Markov chain, we consider the effective sample size
(ESS) [86] of each of the parameters. The ESS is essen-
tially the number of independent samples within the
MCMC sampled values, correcting for autocorrelation
within the Markov chain and are presented in table 3.
There are clear differences in the ESS across the different
parameters with the consistent signal that all the MCMC
algorithms perform poorly in the updating of the random
effect variance term o, with very high autocorrelation.
Generally, the LI model-fitting approach appears to
have the largest ESS, suggesting a better mixing
Markov chain; however, we recall that this was also the
slowest model-fitting algorithm. Table 3 provides the cor-
responding ESS per unit time (100 s), which calculates the
effective number of independent samples per unit of com-
putational time. Using this ESS per unit time, the state-
space approaches SS1 and 552 each perform better than
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Table 3. (a) Effective sample size (ESS) of each parameter
under the different model-fitting algorithms using 100 000
iterations after 20 000 burn-in and (b) ESS per 100 seconds.

parameter SS1 552 L1
(a) ESS
b, 4014 4529 5142
by 3569 3974 3979
q 629 943 749
o, 77 104 121
(b) ESS per 100 seconds
b, 616 900 447
by 547 790 346
q 96 187 65
o, 12 21 11

p

the L1 approach, for all parameters in this example. How-
ever, the SS2 state-space parametrization (auxiliary
variables correspond to the time of death of each individ-
ual) significantly outperforms the SS1 parametrization
(auxiliary variables correspond to alive/dead state of
each individual at each capture time following final cap-
ture). However, we note the very poor performance of
the MCMC algorithm for the random effect variance
across all algorithms, and subsequently ¢ (or b), due to
the high posterior correlation between b and o,

We emphasize that, in general, the performance of
different model-fitting approaches will be both problem
and model dependent. For example, King [87] compares
a state-space approach (using the Gibbs sampler)
with the observed data likelihood approach (using a
Metropolis—Hastings random walk algorithm) for the
AS model using data analysed by Dupuis [63] consisting
of 96 lizards, six capture events and three sites. In this
case (using bespoke written code), the state-space
approach was computationally faster, exhibited lower
autocorrelation and did not require pilot-tuning
compared with the observed data likelihood approach.

3. DISCUSSION

The application of state-space models to capture—recap-
ture—recovery data is very appealing due to its simplicity
and ease with which models can be generalized. Parti-
tioning the system and observation processes into
distinct components leads to the natural identification
of each individual process operating. This allows a com-
plex model to be constructed using a sequence of simpler
models, corresponding to each individual process acting
on the study population. For example, for the capture—
recapture—recovery data, the observation process is par-
titioned into distinct recapture and recovery processes;
for the AS model, the system process is decomposed
into the distinct survival process and state transition
process. The different processes operating within a
system will be problem dependent, but the general mod-
elling approach remains the same. The full model is
constructed by considering each process in turn and
any conditional dependence between these processes
(for example, for capture—recapture data the capture
process is conditional on the individual being alive).
This type of approach is clearly applicable to integrated
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analyses, combining together different sources of data
within a single analysis. Integrated models simply specify
the different processes acting on each individual dataset
[42]. To construct and represent the state-space model, a
graph is often a useful tool. See Buckland et al. [25,88] for
further discussion and examples of different possible pro-
cesses, including an ageing process (potentially leading
to age-dependent parameters) and removals of individ-
uals upon capture. Specifying the complete system
process as a combination of simpler distinct system com-
ponents also leads to the necessary and important
consideration of the order in which the system processes
occur [88,89]. The state-space approach has the advan-
tage that if the model is modified in some way, the
impact on each separate component can be considered,
and in many cases, the different components may be
unaltered. For example, for the AS model, changing
the transition process from a first-order to second-order
process only affects the system transition process, with
the observation and recapture process being unaltered.
This is in contrast to the derivation of the observed
data likelihood which typically needs to be recalculated
for different underlying models, which itself can be a
non-trivial exercise. In addition, standard software
including variants of BUGS (such as WinBUGS/Open-
BUGS/JAGS) can be used to implement the state-
space modelling approach, specifying the underlying
distributional form for each individual process, which
in general is significantly simpler than providing the
explicit likelihood formulation.When fitting capture—
recapture—recovery data within a Bayesian state-space
approach there is a computational trade-off between
the simplicity of the complete data likelihood and the
number of parameters and auxiliary variables being
updated in the MCMC algorithm. Using the standard
state-space approach, imputing the alive/dead status of
an individual following their final capture increases the
number of parameters to be updated within the
MCMC algorithm, but significantly simplifies the form
of the posterior distribution. This can also lead to the
posterior conditional distribution of the parameters
being of standard form so that the Gibbs sampler may
be implemented within the MCMC algorithm, for
example, within the AS model for the survival/recap-
ture/recovery probabilities (assuming independent beta
priors) and transition probabilities (assuming indepen-
dent Dirichlet priors). When implementing a Bayesian
MCMC algorithm to fit such models the performance
of the Markov chain (particularly in standard packages)
should be examined. For poorly performing chains,
alternative updating schemes can be implemented, for
example, via the use of blocking of highly correlated par-
ameters, hierarchical centring, parameter expansion and
orthogonal reparametrization (see Browne et al. [90] for
an overview of such methods and references therein).
The use of alternative and efficient updating algorithms
is an area of ongoing research.
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anonymous reviewers for their insightful comments on the
initial manuscript which has led to the current improved version.
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APPENDIX A

Table 4. Glossary of auxiliary variables.

auxiliary variable value definition
(a) system processes
Tit 0 individual 7 is not in the study at time ¢
1 individual i is in the study at time t.
Uy 0 individual 7 is not in the study at time ¢
k individual ¢ has covariate value k£ at time t.
(b) observation processes
Yit 0 individual ¢ is not recaptured alive at time t;
1 individual i is recaptured alive at time t.
Zit 0 individual ¢ is not recovered dead at time t;
1 individual ¢ is recovered dead at time t.
Vi 0 individual ¢ is not observed at time ¢;
e individual ¢ has event value e at time ¢,

given individual is observed.

APPENDIX B. MODEL-FITTING
ALGORITHMS

Here, we describe in greater detail the model-fitting
approaches of SS2 and L1 described in §2.4. Method
552 uses a very similar state-space formulation as to
method SS1, but reparametrizes the model replacing
the set of values 21, ..., Z;7; where I(i) corresponds
to the final time individual ¢ is recaptured alive, with
the parameter d; corresponding to the time of death for
individual i. Clearly, the parametrizations are equival-
ent, but the updating of such parameters in generic
packages (including WinBUGS) will be different with
only a single parameter needing to be updated for each
individual using the parameters d = {d,, ..., d,}. Con-
versely, if using the x parametrization each parameter
following the last time an individual is observed alive
will be updated (though many of the probability mass
functions of these terms may correspond to a point
mass on a single value). It is straightforward to show that

Pr(dz = k"‘wup7 (b)

0 k=1,...,1(i),
k=1 _
(=) b1 (1—py) k=10 +1,..., T,
oc 7=l(9)+1
T
I1 ¢>zj—1(1—pz‘j) k=T+1,
j=l(i)+1

where d; = T + 1 corresponds to an individual surviving
to the end of the study and [} = 1 for j» < ji.

The third approach for fitting the MCMC algorithm,
denoted by L1, explicitly calculates the joint prob-
ability of the encounter histories given the parameters
and auxiliary variables corresponding to the random
effects present in the study, denoted by €. Let y;
denote the probability individual ¢ is not observed
again in the study following time ¢, given they are
alive at time ¢. The term yx,;; can be calculated using
the recursive formulae

Xit =1 = & pits1 + (1 — pies1) (1 = Xiee1)),
with ;7 = 1forall i=1,..., n[7]. The joint posterior
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distribution is given by

where o denotes the random effect variances present
in the model and f(w|p,¢,e€) is the joint probability of
the observed data, given the model and random effect
parameters. Thus, this approach does not involve any
updating of the x (or d) values, but uses an explicit
expression for the probability of not being observed
again, taking into account all possible times an
individual may have died.

The WinBUGS code for model fitting approach 51
is available in Royle [18], with the adapted codes for
approaches SS2 and LI available from the author on
request. Finally, we note that these approaches can be
extended to other models, such as multi-state models
(including extensions), but that approach L1 becomes
more complicated to code, owing to the complexity of
the observed data likelihood.
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