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Analysing behavioural sequences and quantifying the likelihood of occurrences of different beha-
viours is a difficult task as motivational states are not observable. Furthermore, it is ecologically
highly relevant and yet more complicated to scale an appropriate model for one individual up to
the population level. In this manuscript (mixed) hidden Markov models (HMMs) are used to
model the feeding behaviour of 54 subadult grey mouse lemurs (Microcebus murinus), small
nocturnal primates endemic to Madagascar that forage solitarily. Our primary aim is to intro-
duce ecologists and other users to various HMM methods, many of which have been developed
only recently, and which in this form have not previously been synthesized in the ecological lit-
erature. Our specific application of mixed HMMs aims at gaining a better understanding of
mouse lemur behaviour, in particular concerning sex-specific differences. The model we consider
incorporates random effects for accommodating heterogeneity across animals, i.e. accounts for
different personalities of the animals. Additional subject- and time-specific covariates in the
model describe the influence of sex, body mass and time of night.

Keywords: behavioural analysis; maximum likelihood; motivational states;
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1. INTRODUCTION

When analysing how selection has shaped behaviours
we observe today, it is usually assumed that an animal’s
decisions approximate an optimal solution based on the
amount of information available to the individual [1].
Individuals are believed to balance trade-offs based on
profitability and availability, and behavioural decisions
of past generations are assumed to have been selected
for a maximal contribution to the phenotypic fitness
of the animals, so that current decisions can therefore
be regarded as adaptations [1–4]. But each member of
a species is distinct from its conspecifics. Some of
these differences between individuals may be temporary
and affect state variables, e.g. hunger, thirst, fear,
whereas others concern fixed, long-term or slowly chan-
ging individual parameters, e.g. size, sex, age, degree of
maturity, reproductive states and personality traits [5].
The attribution of factors into these classes might differ
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between studies since their persistence/continuation
might also depend on the time scale of a study [6].
Nevertheless, both types influence the so-called ‘moti-
vational state’. This term can be defined as the
motivation of an individual generated by physiological
and perceptual states [7]. The motivational state
influences the likelihood of an occurrence of behaviour.

Determining the motivational state of free-ranging
animals is a complex task. It is generally accepted that
individuals have mechanisms to monitor their internal
state [7]. The problem for behavioural ecologists is that
the current motivational state of an individual includes
many hidden aspects like physiological states (e.g. hor-
mone and metabolite levels or protein and lipid stores),
but also externally based motivational aspects (e.g.
perceived predation risk) [8–10]. Estimates of the moti-
vational state could be derived from physiological
measures like hormone profiles [8], or from behaviours
that are specific for a certain context, e.g. courtship be-
haviour [11]. But most often, motivational states or
state changes remain a black box. The link between the
typically unobserved motivational state and the actually
observed behaviour is often not one-to-one; e.g. a hungry
individual might have problems finding appropriate food,
or it might be distracted by a perceived high predation
This journal is q 2012 The Royal Society
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risk, and thus not feed [7]. Some early attempts to model
behavioural sequences—before the models we consider
here have been developed—used Markov chains to
explain the observed behaviour, thus not explicitly mod-
elling the motivational component [12]. Transitions
between internal states, such as moving/pausing or
hungry/satiated, can typically only be inferred post-
hoc, e.g. through gaps between feeding bouts. Thereby
information about the actual behavioural process is lost
because data are often simplified and/or converted to
proportions, and because patterns are evaluated using
statistical tests only. Moreover, the occurrence of motiva-
tional states for a single animal will not be independent
over time [5], a fact that is often implicitly accepted.

Models integrating a link between motivational
state and behaviour are relatively sparse. One of their
requirements is that the model includes a probabilistic
relationship between the action chosen and the animal’s
state [5]. Dependent mixture models such as hidden
Markov models (HMMs) incorporate the presence of
these underlying motivational states, as well as their
autocorrelation, and facilitate their inference [13–17].
The different components of the mixture can con-
veniently be interpreted as being associated with the
different motivational states of the animal. HMMs are
relatively simple stochastic models that nevertheless exhi-
bit immense flexibility; besides ecology they have proved
useful in fields such as speech recognition [18] (for which
purpose they were originally developed), finance [19,20],
economics [21], biology in general [22,23], computer
vision [24] and climatology [25]. Besides many other con-
venient features—such as the straightforward treatment
of missing data—HMMs also facilitate the inference
about underlying motivational states, enabling us to pre-
dict the most likely motivational state sequence [13], a
feature that is not exploited in the current analysis, how-
ever. Classical likelihood-based inference for HMMs is
convenient and efficient, it is thus not necessary—albeit
possible [26]—to apply Bayesian methods, which despite
growing popularity in the ecological literature [27,28] are
presumably less accessible to practitioners in the case of
HMMs. In a Bayesian approach, it is in particular diffi-
cult to estimate the number of states of an HMM, and
the issue of the so-called label switching needs to be
addressed [26].

HMMs have precisely the same dependence structure
as state-space models (SSMs); the former assume a finite
number of states, while the state space in the latter may
be infinite. In recent years, SSMs have become increas-
ingly popular tools for modelling animal behaviour, in
particular animal movement [29–33]. However, the likeli-
hood of SSMs with infinite state space involves a multiple
integral that, in general, cannot be evaluated directly. In
particular, nonlinear and non-Gaussian SSMs, to which
the Kalman filter is not directly applicable, are rather dif-
ficult to fit. The literature offers a variety of possible
methods for estimating the parameters of such models
[34–37]. Given the difficulties involved in fitting SSMs,
it sometimes may be more convenient to resort to the
less flexible special case HMMs, if appropriate [17]. In
some applications, the assumption of a finite number of
(motivational) states can be perfectly reasonable. How-
ever, observation errors, e.g. caused by measurement
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inaccuracies in animal movement paths, can more easily
be accommodated in the SSM framework [29].

Scaling individual models up to the population level is
an issue of great ecological relevance. There are several
different ways in which basic HMMs can be extended to
deal with multiple time series (see the discussion in §2.3
below). In this paper, we follow suggestions of Zucchini
et al. [13] and propose a model that incorporates
both subject-specific covariates and random effects,
combining—to some extent—the benefits of both
approaches, which in this form to the best of our knowl-
edge has not been done before in the ecological literature.
(Zucchini et al. [13] incorporate one random effect, but no
covariates in their model; ecological applications of
HMMs that involve covariates, but no random effects,
are given, for example, in Patterson et al. [17] and Mor-
ales et al. [38], although in the latter case, the model is
not explicitly referred to as an HMM.) Our model belongs
to the class of mixed HMMs [39].

The primary aim of this paper is to provide ecologists
and other practitioners with a comprehensible introduc-
tion to mixed HMMs, and to discuss their potential in
statistical ecology, particularly concerning analyses of
multiple series. The explanations of the basic ideas and
the associated methodology are given for one specific
application, rather than in a more general manner. We
chose this strategy for the presentation as the given
application provides a very convenient means of intro-
ducing and illustrating the methods, and as for HMMs
it is usually straightforward to transfer the basic ideas
to other applications. On the other hand, the application
given here is interesting in its own right, and we thus
describe it in much detail. More specifically, we use a
mixed HMM to model the feeding behaviour of a popu-
lation of subadult (less than 1 year) grey mouse lemurs.
The grey mouse lemur (Microcebus murinus) is a small
(60 g), monomorphic, nocturnal, solitary primate and
can be found from the dry deciduous forests in western
and north-western Madagascar to the evergreen littoral
rain forests and spiny forests in the south of the island
[40–42]. They feed opportunistically on insects, small
vertebrates, fruits, gum and insect secretions, and the
composition of their diet varies with season [43–45]. In
contrast to adult individuals, most of the subadult indi-
viduals do not engage in longer phases of inactivity, but
remain active during the dry season characterizing wes-
tern Madagascar [46]. Another distinctive feature of
subadults from the male perspective is that subadult
males separate from their families to disperse [47–49].
The solitary lifestyle of mouse lemurs (individual fora-
ging decisions are not dependent on conspecifics as in
group-living species), as well as general differences in
the life-history strategies between males and females,
makes them a good case for evaluating a mixed HMM
for behavioural sequences.
2. MATERIAL AND METHODS

2.1. Study site, animals and data description

Behavioural data were collected for subadult grey
mouse lemurs of a study population situated within a
12 500 ha forestry concession of the Centre National de
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Figure 1. Dependence structure of an HMM.
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Formation, d’Etude et de Recherche en Environnement
et Foresterie (CNFEREF) de Morondava in Kirindy
Forest, 60 km northeast of Morondava in western
Madagascar (448390 E, 208030 S [50]). The region is
characterized by pronounced seasonality with a single
rainy season lasting from December to March. The
study took place in a 60 ha area, locally known as
CS7 (for details see Eberle & Kappeler [47]). In this
area, we captured subadult M. murinus and equipped
them with radio collars for radio tracking (Holohil
Systems Ltd. BD-2C; 1.8 g).

We collected behavioural data for 16 subadult females
and 38 subadult males between 2008 and 2010. Sampling
periods lasted from April to May in 2008, May to October
in 2009 and May to July in 2010. Four individuals were
observed per night over 40 min periods between 18.00
and 24.00 h in randomly changing combinations and
order. Feeding data of focal animals were collected cumu-
latively for observation intervals of 1 min [51]. When the
individual was not visible, these minutes were recorded
as missing data (NA). About 500 h of focal observations
were included in the present analyses. The numbers of
available time series differ between focal animals because
of predation events, non-functioning radio collars and
differences in the length of total observation periods
per year. Therefore, the dataset was heterogeneous.
Numbers of available time series of feeding behaviour
per individual ranged between 1 to 26 (mean ¼ 9).
Body mass of individuals ranged between 33 to 59 g
(mean ¼ 48 g) with a mean body mass of 49 g for females
and 47 g for males.
2.2. Stochastic model for a single animal

For illustration purposes, we start by considering a
relatively simple HMM for a single animal before we
move on to the more challenging population models in
§2.3. Figure 1 represents the (dependence) structure of
a basic HMM. The state process fStg can not
be observed (it is hidden). In our application, it can
be interpreted as generating the motivational states of
the observed animal; St then is associated with the
motivational state of the animal at time t. We model
fStg by a Markov chain, in particular assuming that
the distribution of St is completely determined by the
motivational state the animal is in at time t 2 1:

PðSt ¼ st jSt�1 ¼ st�1; St�2 ¼ st�2; . . .Þ
¼ PðSt ¼ st jSt�1 ¼ st�1Þ: ð2:1Þ

The Markov chain thus is of first order. We fit
models that involve two different motivational states.
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In the context of feeding behaviour, it seems convenient
to label the two states by ‘satiated’ (state 1) and
‘hungry’ (state 2), respectively, though they do not
necessarily correspond to the accepted meanings of
those terms. Irrespective of how the motivational
states are defined, most importantly, their delineation
will provide us with an objective measure of the general
motivational state, allowing us to explore what factors
influence the transitions between activities (feeding/
non-feeding) of the observed individuals. If the animal
is in state i at time t, the probability of it being in
state j at time t þ 1 is:

g
ðtÞ
ij ¼ PðStþ1 ¼ jjSt ¼ iÞ:

(Example: g
ðtÞ
12 is the probability that the animal

will be hungry at time t þ 1, given that it is satiated
at time t.) As there is no a priori reason to assume
that the occurrences of motivational states are homo-
geneously distributed over the night, we model the
transition probabilities between motivational states as
a function of time:

logitðgðtÞii Þ ¼ b0;i þ b1;it; i ¼ 1; 2; t ¼ 0; 1; 2; . . .

The logit link ensures that gii
(t) is in [0,1]. It is straight-

forward to make this generalized linear model for gii
(t)

more flexible by considering quadratic or even cubic func-
tions of the covariate t. However, for simplicity, and as we
are primarily interested in whether there is any trend at
all, we used a simple linear predictor here. From state i
the process can only switch to state j or remain in state
i, and so gij

(t) ¼ 1 2 gii
(t) for j = i. Each integer time t

refers to 1 min. At time t ¼ 0—corresponding to
18.00 h in our application—the state is selected by an
initial distribution d ¼ (P(St ¼ 1), P(St ¼ 2)).

The non-observable motivational states determine
the distributions associated with the observed behav-
iour. We observe the behaviour Xt, where Xt ¼ 0 if
the animal does not feed at time t, and Xt ¼ 1 if the
animal does feed at time t. The model assumes that,
given the motivational state at time t, the distribution
of the behaviour Xt is independent of all previous
states and observations. More precisely, we assume Xt

to follow a Bernoulli distribution (i.e. a binomial distri-
bution of size n ¼ 1), where the parameter is driven by
the (motivational) state the animal is in at time t:

PðXt ¼ 1jSt ¼ kÞ ¼ pk ; k ¼ 1; 2:

As p2 is associated with the animal being in the
‘hungry’ state, it will typically be relatively large,
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while p1 (feeding probability when satiated) can be
expected to be close to 0.

There are in total seven parameters to be estimated
(one for the initial distribution, four for the transition
probabilities and two for the state-dependent process).
The model fitting exercise is usually carried out using
numerical maximization of the likelihood function,
which is given by a closed-form matrix product:

L ¼ dPpðx1ÞGð1ÞPpðx2ÞGð2Þ � . . .

�PpðxT�1ÞGðT�1ÞPpðxT Þ1t : ð2:2Þ

Here 1 [ R2 is a row vector of ones, T denotes the
number of observations, G(t) is the transition probability
matrix at time t,

GðtÞ ¼ g
ðtÞ
11 g

ðtÞ
12

g
ðtÞ
21 g

ðtÞ
22

 !
;

and PpðxtÞ ¼ diagðpxt
1 ð1� p1Þ1�xt ;pxt

2 ð1� p2Þ1�xt Þ;
for missing observations, this is replaced by the 2 � 2-
identity matrix. For more details on the derivation
and the numerical maximization of an HMM likelihood,
we refer to chapters 2 and 3 in Zucchini & MacDonald
[25]. Alternatively, one can apply the expectation-
maximization (EM) algorithm [52]. In §2.3, we extend
this basic HMM to capture the heterogeneity
of multiple time series, associated with a population
of grey mouse lemurs.
2.3. Stochastic model for a population of
individuals

The class of HMMs provides several different strategies for
dealing with populations of time series. For instance, one
might impose the very restrictive assumption that the
parameter set is common to all subjects. This strategy
neglects any possible heterogeneity across subjects: two
individuals, regardless of their sex, age, mass, personality,
etc., would be assumed to act according to the same (sto-
chastic) principles. Another extreme strategy assumes
that each of the parameters is subject-specific, i.e. that
each subject has its own set of parameters. This approach
involves a significantly larger number of parameters and
generally ad hoc comparisons between individuals. In
between these two extreme options lies the compromise
of assuming that some parameters—e.g. those determin-
ing the state-dependent process fXtg—are common to
all subjects, while the others are subject-specific. An
important special case of the latter is to assume that the
subject-specific parameters—the random effects—are
drawn from a common distribution. This approach sub-
stantially reduces the number of parameters to be
estimated. HMMs incorporating random effects were con-
sidered, for example by [13,53,54]. Random effects can be
understood as explaining the individuality (or personal-
ity) of the different animals. Unfortunately, their
implementation is very demanding in terms of compu-
tational effort [39]. A computationally less expensive
way of accounting for possible heterogeneity across sub-
jects is to incorporate subject-specific covariates in the
model [55–57]. Such a model may explain heterogeneity
across subjects, but it requires that suitable covariates
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are available. In the given application, we will consider
sex and body mass of individuals, covariates that may
help to explain individual differences, but only to a limited
extent. Wewill thus also incorporate random effects in the
model, in this way combining the benefits of both
approaches. More precisely, for animal m, m ¼ 1, . . . ,M,
we assume the motivational state-transition probabilities
at time t to be determined by:

logitðgðt;mÞii Þ ¼ b0;i þ b1;it þ b2;isex
ðmÞ

þ b3;imassðmÞ ð2:3Þ
(i ¼ 1,2, t ¼ 0,1,2, . . .), where sex(m) is 1 if the mth indi-
vidual is a male (and 0 otherwise) and where mass(m)

denotes the body mass of the mth individual in grams.
In comparison to the HMM for a single animal, we have
additionally included the subject-specific covariates
‘sex’ and ‘body mass’. The former divides the population
into two groups—females and males—while the latter
takes account of possible heterogeneity across individuals
of different body mass. If that was the only extension of
the basic HMM considered above, the model would still
have one crucial limitation: it would not allow for differ-
ent individualities or personalities of the animals. Indeed,
it would assume that animals of the same sex and the
same body mass act according to exactly the same sto-
chastic principles. As this appears to be unrealistic and
too restrictive, we further increase the flexibility of the
model by incorporating random effects. To be specific,
we assume that the parameters of the state-dependent
process, p1 and p2, are not fixed across subjects, but
that each of them is randomly distributed on the interval
[0,1], independently and identically across subjects:

pi;m �iid Bðai; biÞ; m ¼ 1; . . . ;M ; ð2:4Þ

for i¼ 1 and i¼ 2, respectively, where B(ai, bi) denotes a
beta distribution with shape parameters ai . 0 and bi .

0, and pi,m denotes the probability of feeding, given moti-
vational state i, for the mth individual. Note that we can,
in principle, also model correlation between the random
effects, e.g. by using a bivariate Gaussian distribution for
the vector of the logit–transformed parameters p1 and
p2; for the sake of simplicity and readability we did, how-
ever, not attempt this in the current work.

Our model belongs to the flexible class of the so-
called mixed HMMs [39]. The inclusion of random
effects offers an elegant and plausible way for modelling
‘personality’—in a broad sense–of individuals. On the
other hand, the presence of random effects unfortu-
nately renders the evaluation and maximization of
the likelihood very challenging: in our case with two
random effects, the likelihood function involves a
twofold integral:

L ¼
YM
m¼1

ð1

0

ð1

0
dPpðx1;mÞGð1;mÞPpðx2;mÞGð2;mÞ � . . .

. . . � GðTm�1;mÞPpðxTm ;mÞ1t f1ðp1Þf2ðp2Þdp1dp2:

ð2:5Þ
Here xt,m denotes the observation made at time t for

lemur m and fi denotes the probability density function
of the B(ai, bi)-distribution. The other ingredients are



Table 1. Estimated parameters with 95% CIs for the mixed
HMM.

parameter associated with estimate CI

d1 0.869 (0.820, 0.906)
b0,1 2.177 (1.348, 3.005)
b0,2 1.961 (1.055, 2.867)
b1,1 time 0.0041 (0.0031, 0.0051)
b1,2 time 0.0003 (20.0007, 0.0013)
b2,1 sex 20.402 (20.603, 20.202)
b2,2 sex 20.317 (20.538, 20.097)
b3,1 body mass 0.0139 (20.0023, 0.0302)
b3,2 body mass 20.0065 (20.0240, 0.0111)
m1 random effect p1 0.015 (0.013, 0.017)
s1 random effect p1 0.004 (0.001, 0.020)
m2 random effect p2 0.925 (0.892, 0.949)
s2 random effect p2 0.058 (0.030, 0.112)
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defined analogously as in equation (2.2); in particular,
G(t,m) is the matrix comprising the state-transition prob-
abilities at time t for the mth individual. For simplicity,
the likelihood here is given for the case with only one
time series associated with each lemur; indeed, we have
more than that. As the different series were recorded
on different days, they can reasonably be assumed to
be independent, and thus the corresponding extension
of the formula given in equation (2.5) is straightforward;
see also Altman [39]. Owing to the multiple integral, this
likelihood cannot be evaluated directly. We applied
numerical integration, i.e. we approximated each of the
two integrals by a sum based on partitioning the inte-
gration interval into a number of bins and then
approximating the integrand within each bin; see the
appendix for more details on the type of approximation
we applied. Maximization of the likelihood was carried
out using nlm() in R. Numerical integration is compu-
tationally expensive, and as the computational burden
increases exponentially with the number of random
effects, this method can only be applied when there are
few random effects. A more sophisticated alternative,
which is, however, less accessible to practitioners, is
given by Monte Carlo EM methods. For a comprehensive
discussion of the existing approaches for estimating
HMMs that incorporate random effects, see [39]. A com-
putationally less intensive alternative uses discrete
distributions for the random effects [58].
3. RESULTS

The parameter estimates for the mixed HMM, defined
by equations (2.3) and (2.4), and associated 95% confi-
dence intervals (CIs)1 are given in table 1. For the sake
of better interpretability, each of the (beta) random
effects’ distributions, B(ai, bi), i ¼ 1,2, has been repara-
meterized in terms of a mean (mi) and a standard
deviation (si) parameter2.

For each of the covariates—‘time’, ‘mass’ and ‘sex’—
we conducted a likelihood ratio test of the simplified
model (without the respective covariate) against the
full model as defined by equations (2.3) and (2.4). At
a 5 per cent significance level, the simplified models
were rejected in favour of the full model for the covari-
ates ‘time’ and ‘sex’, respectively, while the simplified
model without covariate ‘mass’ could not be rejected;
the p-values are ,0.001, ,0.001 and 0.127, for ‘time’,
‘sex’ and ‘mass’, respectively.

To gain some insight into the goodness-of-fit of the
model, we conducted the following simple predictive
check: first, for each of the 54 different covariate combi-
nations (corresponding to the 54 different mouse lemurs
observed), we simulated series from the fitted model
1The CIs are based on the Hessian of the log-likelihood for the estimated
parameters [25]. Using nlm() in R, the likelihood was maximized with
respect to unconstrained transformed parameters (e.g. the constrained
parameter m1 [ [0,1] was mapped to the real line using a logit link);
this method thus gives CIs for the transformed parameters.
Approximate CIs for the parameters themselves were obtained by
applying the corresponding inverse transformations to the interval
boundaries obtained for the transformed parameters.
2For given mean mi and standard deviation si, the shape parameters
of the beta distribution are obtained as ai ¼ s�2

i m2
i ð1� miÞ � mi and

bi ¼ mis
�2
i ð1� miÞ

2 � ð1� miÞ.
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with exactly the same lengths and placements in time as
the corresponding observed ones. Figure 2 displays histo-
grams of the subject-specific ratios ‘number of feeding
events/number of events in total’ (i.e. the proportion
of observations that correspond to ‘feeding’), for the
observed data and for one typical set of simulated series
(repetitions did not indicate any significant mismatch).
This check suggests that the model captures the observed
variability in these proportions reasonably adequately,
but note that this covers only one arbitrarily chosen
aspect of the data—the meaningfulness thus is limited.

The various aspects concerning the (motivational)
state process are illustrated in figure 3, which displays
the transition probabilities in dependence of the covari-
ates ‘mass’, ‘sex’ and ‘time of night’. In the following,
we list predictions for the feeding behaviour made by
the fitted model. Considering the influence of the time
of night, mouse lemurs are more likely to switch
between the ‘satiated’ and the ‘hungry’ motivational
state at the beginning of the night than towards the
end of the observation period. The behaviour of
female grey mouse lemurs is more persistent as reflected
by both (stochastically) longer feeding and non-feeding
periods, whereas male mouse lemurs change their
activity more frequently. Furthermore, mouse lemurs
with a high body mass stay (stochastically) longer satiated
and exhibit shorter hungry periods (i.e. they feed less often
than light ones). Notably, a female with the lowest body
mass of 33 g would still have a more persistent feeding
behaviour at a given observation time than a male with
the highest body mass of 59 g.

We now consider the state-dependent distributions.
The joint distribution of the random effects, p1 and p2,
is displayed in figure 4. Notice the scales: the distribution
of p2—the feeding behaviour in the ‘hungry’ motiva-
tional state—is wider, meaning that the differences
across individuals are larger for that parameter. For
most animals, p2 is around the mean, 0.925, but the den-
sity of p2 has significant mass (�0.27) even below 0.9. As
regards the probability of feeding in the ‘satiated’ state,
there is much less variability across individuals; accord-
ing to the fitted model for more than 99 per cent of the
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lemurs that probability is smaller than 0.03. Therefore,
between individuals of the same sex and same body
mass, feeding behaviour in the hungry state is much
more variable than in the satiated state. When compared
with a model with no random effects (i.e. constant p1

and p2 across subjects), the Akaike information criterion
(AIC) selects the model presented here, i.e. the one that
includes random effects (DAIC¼ 29.7).
4. DISCUSSION

Building integrative models is an important step when
studying the relationship between proximate behaviour-
al processes and the environment in free-ranging
animals [29]. We developed a statistical model with
high relevance for the study of behavioural processes
and underlying motivational aspects.
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4.1. Evaluation of the modelling approach

HMMs have proved to be very useful for dealing with
unmeasured state processes; cf. Zucchini & MacDonald
[25] for numerous examples. They are immensely
flexible and can be applied to different kinds of beha-
viours, giving them great potential in statistical
ecology. They provide increased interpretive capabili-
ties by allowing us to identify transitions in
underlying hidden states, even if these transitions are
not obvious from observations [59]. A (recently
increased) number of publications on animal movement
took advantage of the flexibility of HMMs to analyse
the processes related to individual movement
[14,17,60]. However, ecological applications of HMMs
are still relatively rare and have focused mostly on mod-
elling the behaviour of single individuals separately; an
exception is Zucchini et al. [13].
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Including subject-specific covariates in the model
enables factors that drive differences in behavioural
dynamics across individuals to be identified. HMMs,
and in particular such that incorporate covariates, can
facilitate detecting differences in behaviour which are
not directly obvious from observations; e.g. the same
absolute time devoted to actual behaviours might be
reached by quite different motivational state sequences.
Possible future directions for extending our model are
numerous, but perhaps most fruitful will be the inclusion
of covariates with more explanatory power, such as
measures of physical condition (body mass does not
reflect physical condition per se) or a combination of
spatial and behavioural data.

Another important aspect of our model is the inclusion
of random effects (individuality). Including individuality
seemed useful to us for two different reasons. First, the
included covariates ‘sex’ and ‘body mass’ are not likely
to explain all behavioural differences between individ-
uals. Second, individual reactions make the model more
realistic, since it is unlikely that individuals react in the
same manner. Animal behaviour is usually characterized
by a combination of a certain degree of flexibility in be-
havioural responses on the one hand and consistent
differences in behaviours between individuals, the so-
called animal personalities, on the other hand. The
awareness of this paradox is highlighted by the growing
interest in animal personalities [61]. By using mixed
HMMs, behavioural ecologists might be able to identify
how behavioural flexibility and personality differences
interact and lead to differences in behavioural sequences.

Important possible extensions of the model we
considered here include the relaxation of the first-order
assumption concerning the state process (which often
will be unrealistic). Technically, it is not difficult to fit
HMMs with higher order dependencies in the state
process (see [25], §8.3), or to consider more flexible distri-
butions for the state dwell times (i.e. the times spent in
the motivational states, which under the first-order
assumption are geometrically distributed, see [62]).
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4.2. Influence of covariates on feeding behaviour
of grey mouse lemurs

The results of our model offer new views and hypotheses
for future analyses of mouse lemur behaviour. According
to the present model, state-switching probability changed
with advancing time of night. At the beginning of the
night, individuals changed more often between the
states associated with either hunger or satiation. It
makes intuitive sense to assume that individuals should
be hungry at the beginning of their activity period. But
why do grey mouse lemurs switch states more often?
We know that about 85 per cent of the diet was composed
of tree exudates during the observation period (see the
electronic supplementary material). Gum has been
defined as a slowly depleting, monopolizable resource
[45,63]. Gum trees seem to be most profitable at the
beginning of the night because gum production can
accumulate bigger drops during the day, whereas gum
is regularly harvested during the night. The yield per vis-
ited tree is therefore probably higher at the beginning of
the night. Possibly, mouse lemurs adjust their behaviour
not only to their physiological needs, but also to the avail-
ability of the resource. In other words, mouse lemurs
switched more often between the ‘satiated’ and ‘hungry’
state because they switched their whereabouts more
often to patrol the gum trees in their home range.

Regarding the covariate body mass, the model indi-
cated that heavy individuals fed for shorter periods
and had longer non-feeding bouts than lighter individ-
uals (but note that this effect was not found to be
significant). Body condition has been found to play an
important part in the life of grey mouse lemurs. It influ-
ences, for example, mating success of males [64], but
also activity patterns of individuals on other temporal
scales [46]. Potentially, heavier individuals monopolized
recourses of higher quality, or they have a generally
reduced activity because of higher energetic reserves
or as an antipredator strategy.

The sex effect on the consistency of feeding patterns
might be related to dominance structures. Studies from
captivity suggest that female grey mouse lemurs are
dominant over males [65]. If females are truly dominant
over males, they might be much less often displaced
from feeding sites than males or monopolize trees of
higher productivity. Another possibility for these differ-
ences in feeding duration between sexes could be the
fact that, following natal dispersal, most males are not
living in their natal habitat anymore. Unfamiliarity
with their new habitat might force males (temporarily)
to feed on whatever resource regardless of the quality.
Including data on movements, social interactions or
number of feeding trees and food availability for a
given individual could be useful to untangle the reasons
for the observed sex effect. The application of the model
to data on adult individuals or data from subadults in
different seasons might also be worthwhile.
5. CONCLUSION

Based on the evaluation and application of our model, we
highlighted the usefulness and advantages of HMMs, in
general, and mixed HMMs in particular, for statistical
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analyses of (multiple) behavioural sequences and the gen-
eration of further testable hypotheses, in this case about
the feeding behaviour of mouse lemurs and their determi-
nants. Mixed HMMs can help us to derive general
organizational mechanisms of behavioural processes and
to understand how they influence the ecological dynamics
of populations and thus whole ecological environments.
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APPENDIX A. DETAILS ON THE
NUMERICAL INTEGRATION

The details concerning the numerical integration that
has been applied to evaluate the likelihood equation
(2.5) are as follows. After initial experiments that
aimed at identifying the ‘essential range’ of the two
random effects’ distributions (i.e. the range where
almost all mass of the distributions is in) each of
these ranges, for the two random effects’ distributions
as indexed by r, r ¼ 1,2, was split into q equally sized
intervals Wi,r ¼ (wi21,r, wi,r), i ¼ 1, . . . ,q. Let wi,r

*

denote the midpoint of Wi,r, and let h(p, m) denote
the likelihood for given p ¼ (p1, p2) and individual m:

hðp;mÞ ¼ dPpðx1;mÞGð1;mÞPpðx2;mÞGð2;mÞ � . . .

� GðTm�1;mÞPpðxTm ;mÞ1t :

The likelihood equation (2.5) can then be approxi-
mated as follows:

equation (2.5)¼
YM

m¼1

ð1

0

ð1

0
hðp;mÞf1ðp1Þf2ðp2Þdp1dp2

�
YM

m¼1

Xq

i¼1

Xq

j¼1

ðwi;1

wi�1;1

�
ðwj;2

wj�1;2

hðp;mÞf1ðp1Þf2ðp2Þdp1dp2

�
YM

m¼1

Xq

i¼1

Xq

j¼1

ðwi;1

wi�1;1

�
ðwj;2

wj�1;2

hððw�i;1;w�j;2Þ;mÞf1ðp1Þf2ðp2Þdp1dp2

¼
YM

m¼1

Xq

i¼1

Xq

j¼1
hððw�i;1;w�j;2Þ;mÞðF1ðwi;1Þ

�F1ðwi�1;1ÞÞðF2ðwj;2Þ�F2ðwj�1;2ÞÞ;
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where Fi denotes the cumulative distribution function
associated with the density fi, i ¼ 1, 2. There are
two sources of approximation: first, the replacement of
the intervals [0, 1] by the respective essential ranges
(second line above), and second, the replacement of
the function h(p, m) by the constant value of that func-
tion evaluated at the midpoints of the respective
intervals (fourth line above). The former is not necessary
in the present application (since we are dealing with the
bounded interval [0,1]), however, as long as the essential
range is chosen to be sufficiently large, it improves the
approximation since the intervals Wi,r become narrower
and the discretization thus finer (and note that this
step is necessary in applications where the integration
intervals are unbounded). Note that this is by no
means the only way in which the integrals can be
approximated: one may, for example, apply more sophis-
ticated methods such as Gauss–Legendre quadrature.
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