
We propose a Bayesian statistical framework for esti-
mating the reproduction number R early in an epidemic.
This method allows for the yet-unrecorded secondary
cases if the estimate is obtained before the epidemic has
ended. We applied our approach to the severe acute respi-
ratory syndrome (SARS) epidemic that started in February
2003 in Hong Kong. Temporal patterns of R estimated after
5, 10, and 20 days were similar. Ninety-five percent credi-
ble intervals narrowed when more data were available but
stabilized after 10 days. Using simulation studies of SARS-
like outbreaks, we have shown that the method may be
used for early monitoring of the effect of control measures.

The reproduction number R of an epidemic (the mean
number of secondary cases infected by a single infec-

tious case) is a key parameter for the analysis of infectious
diseases because it summarizes the potential transmissibil-
ity of the disease and indicates whether an epidemic is
under control (R<1). Up to now, this parameter has only
been estimated retrospectively for periods from which all
secondary cases had been detected. In terms of policy
development and evaluation during the epidemic, obtaining
estimates of the temporal trends in the reproduction number
relating to as recent a time as possible would be critical.

If all incident cases could be traced to their index cases,
estimating the reproduction number would simply be a
matter of counting secondary cases. However, if tracing
information is incomplete or ambiguous, modeling or sta-
tistical approaches are required. For example, a mathemat-

ical model for disease transmission fitted to available data
can provide estimates of R (1). An approach requiring
fewer assumptions has been proposed by Wallinga and
Teunis (2), in which the distribution of the generation
interval of the disease and the epidemic curve are directly
analyzed and suffice to provide estimates. For an ongoing
epidemic, this method could be used to estimate the num-
ber of secondary cases infected by a primary case-patient,
but only for periods from which all secondary cases would
have been detected. For severe acute respiratory syndrome
(SARS), the required lag would be on the order of 15 days
(95th percentile of the distribution of the generation inter-
val described by Lipsitch et al.) (3). 

In this report, we show how to estimate the reproduc-
tion number in an ongoing epidemic, which will account
for yet unobserved secondary cases. The method is applied
to data from the 2003 SARS outbreak in Hong Kong (4).
Using simulated data, we demonstrate how the method
may be used for early detection of the effect of control
measures. 

Materials and Methods

Statistical Framework
We propose a Bayesian statistical framework for real-

time inference on the temporal pattern of the reproduction
number of an epidemic. Here, the reproduction number Rt
for day t will be defined as the mean number of secondary
cases infected by a case with symptom onset at day t.
Denoting nt as the number of cases with symptom onset at
day t and Xt as the number of secondary cases they infect-
ed, the reproduction number Rt is the ratio Xt/nt, defined for
nt>0.

Assume that we would like to compute the daily values
Rt from day 0 to present day T, before the epidemic has
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ended. Although daily incident case counts can be known
up to day T, provided no delay in reporting occurs, the cor-
responding counts of secondary cases Xt cannot.
Secondary case-patients infected before day T, whose ill-
ness had a long incubation time, may have clinical onset
only after day T. Furthermore, since the exact chain of
transmission is seldom observed in practice, attributing
secondary cases to previous cases is difficult. Focusing on
these 2 issues, we show that the daily counts of symptom
onset available until day T are sufficient to estimate Rt.

A 3-step construct is necessary. We first predict the
eventual number of late secondary cases (as yet unob-
served), for cases reported at day t, assuming the number
of early secondary cases (reported before day T) is known.
The method described by Wallinga and Teunis (2) is then
used to estimate the number of early secondary cases from
the daily counts of symptom onsets. These 2 steps are
finally combined and yield an estimate of the predictive
distribution of Rt. Technical details are given in the online
Appendix (available from http://www.cdc.gov/ncidod/
EID/vol12no01/05-0593_app.htm). The estimation proce-
dure depends on 3 assumptions: 1) ascertainment of
patients whose symptoms appear before day T is complete,
2) transmission events are independent, and 3) the genera-
tion interval, the time from symptom onset in a primary
case to symptom onset in a secondary case, has a known
frequency distribution.

Data from Hong Kong
The method was retrospectively used to analyze the

SARS outbreak in Hong Kong. The data consisted of the

dates of symptom onset of the 1,755 case-patients who
were detected in Hong Kong in 2003 (4).

Simulated Data
Using simulations, we explored the ability of the

method to quickly detect the effect of control measures.
Five hundred epidemics were simulated with the following
characteristics. During the first 20 days of the epidemics,
the theoretical reproduction number was 3. Control meas-
ures were implemented at day 20. In a first scenario, con-
trol measures were completely effective (no transmission
occurred after day 20). In a second scenario, the theoreti-
cal reproduction number after control measures were
implemented was 0.7. Details on the simulations are avail-
able from the corresponding author.

In a simulation study, the bias and precision of the real-
time estimator were investigated in situations in which the
theoretical reproduction number remained constant with
time. We also evaluated the effect of the length of the gen-
eration interval on the results. Detailed information can be
obtained from the corresponding author.

Results

Application to Hong Kong SARS Data
Figure 1A shows the dates of symptom onset of the

1,755 SARS patients detected in Hong Kong in 2003.
Figure 1B–F shows the expectation and 95% credible
intervals of the predictive distribution of Rt based on data
available at the end of the epidemic and after a lag of 2, 5,
10, and 20 days. 
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Figure 1. Application of real-time estimation to the severe acute respiratory syndrome outbreak in Hong Kong. A) Data. B–F) Expectation
(solid lines) and 95% credible intervals (dashed lines) of the real-time estimator of Rt were calculated at the end of the epidemic (B) and
after a lag of 2 (C), 5 (D), 10 (E), and 20 (F) days. The gray zones indicate that R is <1.



After a lag of 2 days, the 95% credible intervals were
wide and displayed an undesirable feature: they sharply
decreased to 0 as soon as no cases had been observed for 2
consecutive days (Figure 1C; note especially days 1–4 and
13). After a 5-day lag, this undesirable feature had van-
ished (Figure 1D).

With lags >5 days, the trends of expected values were
relatively similar, with a peak around day 20, a decreasing
trend after this date, and the expectation of Rt decreasing to
<1 around day 40. These observations suggest that after a
lag of only 5 days, the temporal trends in the expectation
of Rt are well captured. For a lag of 5 days, the credible
interval of Rt was wide when <20 cases were detected
(periods 0<t<20 and t>63), but was relatively narrow when
more cases were detected (period 21<t<62). As expected,
the width of the credible interval narrowed as the lag
increased and more complete data were available. The
expectations and credible intervals were very similar for
lags of 10 and 20 days, 67.8th and 99.7th percentiles,
respectively, of the distribution of the SARS generation
interval described by Lipsitch et al. (3). No difference was
detected between retrospective and 20-day estimates.

Detecting the Effect of Control Measures
In Figure 2, the method is used to estimate the impact

of control measures implemented on day 20 in the simulat-
ed datasets with completely effective or limited control
measures. The curves show the temporal pattern of Rt
based on an average over the 500 simulated datasets as a
function of T. Even when control measures are completely
effective, based on data available up to day 21, the average
expectation of R20 is ≈3. Based on data available up to day
25, a downward trend is apparent, whereas based on data
available up to day 29, the average expectation of Rt is <1
from t = 27 days. Based on data available up to day 40 (20
days after the implementation of the control measures), the
estimates indicate that the threshold value 1 is crossed at
day 22, which is 2 days after control measures were imple-
mented. With limited control measures, the observed
changes are qualitatively the same, although slightly more
time is required for Rt estimates to decrease to <1.

Discussion
Our statistical framework provided real-time estimates

of the reproduction number of an epidemic, and thus
quickly showed the impact of control measures. In simula-
tions of SARS-like diseases, the derived estimator detect-
ed the decrease of Rt only 5 days after control measures
were implemented. Furthermore, the average estimate had
crossed the threshold value of 1 only 9 days after control
measures were implemented. 

In theory, the method could be applied to communica-
ble diseases with the following characteristics: 1) no

asymptomatic cases; 2) no underreporting; 3) knowledge
of the generation interval. The list of communicable dis-
eases that could be monitored is therefore relatively large,
although it does not include diseases such as influenza, for
which the proportion of asymptomatic or unreported cases
may be large. In practice, the delay until estimates of the
reproduction number become reliable will depend critical-
ly on the generation interval distribution. For SARS, when
the reproduction number was constant over time, our real-
time estimates were almost unbiased after only 1 day. With
the original estimator of Wallinga and Teunis (2), which is
not intended for real-time estimation, downward bias
would be a concern for at least 2 weeks after observation.
However, real-time estimates obtained for recent days dis-
played wide 95% credible intervals and zero-width inter-
vals when no cases had been observed or reported for a
few days. Here, owing to the relatively short generation
interval of SARS (mean 8.4 days) (3), reliable estimates
were obtained after only 5 days, albeit with wide credible
intervals, and they were consolidated after 10 days. These
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Figure 2. Average expectation of the temporal pattern of Rt after
implementation of control measures according to the day T of the
last observation. A) Completely effective control measures.
B) Limited control measures. Simulation values of R are also
given: before day 20, R = 3; after day 20, R = 0 (A) and R = 0.7
(B). The gray zone indicates that R is <1. Information that the aver-
age expectation of R has passed <1 was obtained 9 (A) and 12 (B)
days after control measures were implemented.



lags corresponded to the 20th and 70th percentiles of the
SARS generation interval (3). When the generation inter-
val doubled, the time delay required to detect the effect of
control measures implementation or to consolidate esti-
mates roughly doubled.

We assumed that the distribution of the generation
interval was known and remained unchanged during the
course of the outbreak. In practice, however, this distribu-
tion is derived from a subset of traced cases. If the subset
is small, e.g., the case at the beginning of an emerging dis-
ease outbreak, uncertainty will be large. Furthermore, the
generation interval may decrease during the course of the
outbreak because of quicker interventions, leading to pos-
sible bias in the estimates of R (2). Further developments
of the method could take these issues into consideration.
For example, one could use information on traced cases as
it accrues to sequentially estimate the generation interval.
Depending on how cases are traced during the epidemic,
changes in the generation interval could also be monitored.

The approach smoothed the temporal pattern of the
reproduction number, leading to overestimation of R in the
week after control measures were implemented. We are
trying to find a correction factor for this bias in ongoing
research. 

The method has a natural real-time implementation in
which 1) a first estimate of the reproduction number is
available after a lag that depends on the generation inter-
val, and 2) while the epidemic goes on, the estimate is con-
solidated, and its credible interval narrows. Incorporation
of such a statistical estimation framework into real-time
surveillance of future infectious disease outbreaks would

enhance the ability of epidemiologists to provide timely
advice to public health policymakers.
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