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Abstract

The characteristic neurological feature of many neurogenetic diseases is intellectual disability. Although specific
neuropathological features have been described, the mechanisms by which specific gene defects lead to cognitive
impairment remain obscure. To gain insight into abnormal functions occurring secondary to a single gene defect, whole
transcriptome analysis was used to identify molecular and cellular pathways that are dysregulated in the brain in a mouse
model of a lysosomal storage disorder (LSD) (mucopolysaccharidosis [MPS] VII). We assayed multiple anatomical regions
separately, in a large cohort of normal and diseased mice, which greatly increased the number of significant changes that
could be detected compared to past studies in LSD models. We found that patterns of aberrant gene expression and
involvement of multiple molecular and cellular systems varied significantly between brain regions. A number of changes
revealed unexpected system and process alterations, such as up-regulation of the immune system with few inflammatory
changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes
even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes.
The involvement of multiple neural systems indicates that the mechanisms of neuropathology in this type of disease are
much broader than previously appreciated. In addition, the variation in gene dysregulation between brain regions indicates
that different neuropathologic mechanisms may predominate within different regions of a diseased brain caused by a single
gene mutation.
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Introduction

Intellectual disability is a prominent feature of many monogenic

diseases affecting the brain. However, the mechanisms by which

specific gene defects lead to cognitive impairment remain obscure.

Detailed understanding of the relationship of specific pathologic

changes to systems defects is lacking, especially since pathological

lesions are often present in many areas of the brain. Little data is

available on the effects of global disease on different sub-regions of

the brain. To gain insight into regional differences in abnormal

functions occurring secondary to a single gene defect, we used

whole transcriptome analysis to identify molecular and cellular

pathways that are dysregulated in the brain in a mouse model of a

lysosomal storage disorder (LSD).

The LSDs constitute a large group of neurogenetic diseases in

which un-degraded macromolecules accumulate in the lysosome.

Specific neuropathologic features occur in many LSDs, including

meganeurites, neurite sprouting, ectopic dendrites, and axonal

spheroids [1] [2]. Storage lesions are present throughout the brain,

but structural abnormalities can be concentrated in types of

neurons or specific regions; e.g. GABAergic neurons exhibit

neuroaxonal dystrophy more than other cell types [1] and

neurodegeneration can occur in selective regions involved in

cognition [3]. Like most neurodegenerative diseases, astrogliosis

and neuroinflammation are present in LSD brains [4]. Despite the

availability of many well-characterized animal models of LSDs,

understanding of the role of cellular and molecular changes in the

phenotype of the brain disease is at best incomplete [5,6].

We investigated the widely studied mouse model of mucopoly-

saccharidosis (MPS) VII, caused by deficiency of b-glucuronidase

(GUSB) [7]. Humans with MPS VII have a broad spectrum of

clinical signs including variable intellectual disability [8]. MPS VII

mice have widespread storage lesions in the CNS [9]. Gene

expression studies on the brain in this and other MPS and LSD

models have been limited, however, by using whole brain, large

pieces that included parts from multiple sub-regions, pooled

samples, small numbers of samples, single substructures, or

analysis of a limited number of genes.
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Our data show that patterns of aberrant gene expression due to

disease vary significantly between major brain sub-structures and

involve multiple neural pathways, demonstrating greater com-

plexity of abnormalities than seen previously. 1) Comparing MPS

VII to the closely related MPS IIIB (the most extensively studied

MPS model) showed a different pattern of inflammatory and

immune system activation, reflecting differences in the predom-

inant glycosaminoglycan substrate accumulated in each disease. 2)

There was substantial down-regulation of oligodendrocyte genes

even though white matter disease is not a feature by histopathol-

ogy. 3) Many developmental genes were altered even though the

brains were from adults with advanced disease. The involvement

of many important neural systems, and the variation in which

systems are dysregulated between regions, indicate that the

mechanisms of neuropathology in this type of disease are much

broader than previously appreciated.

Results

1. Variation between regions in normal mouse brain
Differences between the six regions in the normal mice were

analyzed by determining if the region with the maximum

expression was significantly above the mean of the other regions

at a p* of #0.01. The number of genes enriched relative to other

regions were: cerebral cortex (CT) 1383 genes (1668 probes);

hippocampus (HP) 2165 genes (2656 probes); olfactory bulb (OB)

1877 genes (2341 probes); brain stem (BS) 2923 genes (3718

probes); cerebellum (CB) 1178 genes (1418 probes); rest (largely

striatum and thalamus)(ST) 1613 genes (1852 probes). The most

highly expressed genes (defined as $20 fold change over the mean

of the other regions) are shown in a heat map (Figure 1). This list

was compared to 22 previously reported regional markers

[10,11,12,13,14,15]. Twenty (20) of these had the highest

expression in the same region in our cohort and the other 2 were

found in the region with the second highest level of expression.

2. General observations on MPS VII versus normal brains
The large cohort of control and diseased brains allowed analysis

of the gene expression changes at the p*#0.01 level. Since a tightly

regulated gene with a small proportional change in magnitude

may be biologically significant, a minimum fold change was not

used [16]. Overall there were 853 genes (970 probes) altered in at

least one region of the mutant mouse brain (Table 1) with the

largest number of changes in the olfactory bulb. A number of

genes showed significant changes in multiple regions (shared) but

the majority were changed only in one brain region (unshared)

(Table 2).

The significantly changed genes were analyzed using GeneTrail

(http://genetrail.bioinf.uni-sb.de) [17] for Gene Ontology (GO)

terms [18] and KEGG pathway enrichment [19], and then were

evaluated by DAVID (http://david.abcc.ncifcrf.gov/) for func-

tional clustering [20]. The GeneTrail results showed 712 GO-term

associations and enrichment of 10 KEGG pathways, with the most

significantly over-represented GO-terms shown in Table 3 (full

data at http://repository.upenn.edu/wfg_ccmg) and all of the

KEGG pathways shown in Table 4. The DAVID analysis showed

Figure 1. Regional variation of highest expressed genes in
normal mouse brain. The log 2 expression levels for genes with a
.20 fold increase in expression level over the mean of the other 5
regions were determined and grouped according to highest expressing
region. Color bar at bottom shows range of values. Specific genes are
listed in right hand column.
doi:10.1371/journal.pone.0032419.g001

Regional Transcriptome Changes in MPS VII Brain
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many related clusters (Table S1), which can be thematically

grouped into the following: apoptosis, cell cycle, cell migration,

circadian rhythm, development, extracellular matrix/adhesion,

immune and inflammatory, ion transport/channels, metabolism,

myelination, neural disease, neuron, neuropeptide/hormone,

nucleus/gene regulation, signaling, transporter, and ubiquitin.

Expression of the Gusb gene was significantly down-regulated in

all brain regions in the MPS VII mice (average p* = 1.461027).

This was expected because the mutation is at the 39 end of the gene

and results in a very low level of transcription due to instability of the

mutant mRNA [21]. Many other lysosomal genes were up-

regulated (Figure 2), which was also expected since secondary

elevation of enzymatic activities of other lysosomal enzymes is a

common feature in LSDs, including MPS VII [22,23,24]. The

reduced expression in Gusb and increased expression of Hexb were

confirmed by RT-PCR (Fig. S1). In addition to the genes that are

listed in the DAVID Lysosome cluster, 5 more recently identified

lysosomal genes were also up-regulated [25].

We also examined genes of the recently identified CLEAR

(Coordinated Lysosomal Expression and Regulation) network regu-

lated by transcription factor EB (TFEB) [26,27]. However, the changes

in the MPS VII brain were limited to several genes in the lysosomal-

hydrolases-and-accessory-proteins group and only one of the autoph-

agy target genes (HIF1A) was changed. None of the TFEB target genes

involving lysosomal membranes, acidification, or biogenesis were

changed. This suggests that the gene expression changes in a single

lysosomal enzyme deficiency state are either unrelated to the CLEAR

network or possibly involve other unknown regulatory factors.

3. Regional differences between normal and MPS VII
mouse brain

Many genes showed changes in various regional combinations.

A large number were changed in one region exclusively or lacked

change in one region exclusively (Table S2). The direction of

change was always the same across regions, with only one

exception (Enpp2), which had mixed up/down regulation. For the

changes that were found in only one region, the OB had the most

(239) followed by the BS (154), CB (96), CT (50), HP (33) and ST

(33). Examples are the 11-fold down-regulation in the OB of

olfactory marker protein (Omp), expressed specifically in olfactory

neurons, which when inactivated alters odorant perception

[14,28]; and the 8-fold down-regulation in the HP of Otx2 which

controls neuron subtype identity, the fate of GABAergic neurons,

and forebrain development [29,30,31]. There were 41 genes that

were changed in five of the six regions (unchanged in only one),

with the CB having 4 times as many of the unchanged genes as the

next closest region (BS). The CT, HP, and OB each had only a

single gene that was exclusively unchanged in each region.

There also were regional variations in the clusters of genes

related to specific pathology and functions (GO-term categories).

For example, the OB ranked highest in immune system process,

ensheathment of neurons, inflammatory response, and regulation

of action potential, while the CB was the only region with no

changes in ensheathment of neurons or action potential. The

GeneTrail analysis of each set of regionally unique gene changes

found enrichment of GO terms specific to each region. However,

most of the functional categories of the DAVID clusters were also

identified by the overall analysis, as shown below.

4. Gene expression changes underlying specific
neuropathologies

The Pathognomonic lesion in MPS VII and the other LSDs is

engorged lysosomes in cells [9]; and a number of neuronal

dysmorphologies are found in the brain [1]. A number of other

morphological, biochemical, and behavioral abnormalities have

been found in the MPS VII model and changes in gene expression

in specific pathways were found that implicate specific cellular

processes that underlie them.

4a. Neurodegeneration. The MPS VII mouse brain has

specific regional changes in neurodegeneration, which are

concentrated in the hippocampus, cerebral cortex and striatum [3].

The neurodegeneration is characterized by progressive accumulation

of ubiquitin and neurofilament and the absence of other neuro-

degeneration sub-types characterized by PHF-Tau, alpha-synuclein,

or apoptosis [3]. Abnormal levels of ubiquitin and neurofilament are

seen in some glia as well as neurons. However, the evaluation of brain

homogenates by gene array measures gene expression from a mixture

of neural cell types. To determine if alterations in the MPS VII brain

regions were associated with specific neural cell types, we compared

our results to a panel of genes that are highly expressed in specific

isolated populations of neurons, oligodendrocytes, or astrocytes in

vitro [32]. Despite the morphologic change in most neurons [9] only

3 out of 80 neuron-specific marker genes were altered: upregulation

of Asph in BS, and Cyb561 and Lpl in CB.

Among all the neuronal receptor genes represented in the array,

changes were seen in only 4 out of 121, and only in one region

each: 1) up-regulation in the BS of the gamma-aminobutyric acid

(GABA)-A receptor subunit alpha 6 (Gabra6); 2) down-regulation

in the CT of the adrenergic receptor Adra1b; 3) down-regulation

in the CT of the class III glutamate receptor, Grm8; and 4) up-

regulation in the BS of Slc1a6, the high affinity glutamate

transporter (Table S3). There could, though, be significant

changes in individual neurons or small nuclei that would not

appear against the background of the regional homogenates.

The gene expression arrays scored very high in the order of

cluster-related GO-terms for genes associated with apoptosis. In

contrast, histopathological analysis shows no evidence for

increased apoptosis in the MPS VII mouse brain [3]. Although

Table 1. Regional gene changes in MPS VII.

Region Number of genes (probes) altered

Cortex (CT) 236 (271)

Hippocampus (HP) 180 (214)

Olfactory bulb (OB) 454 (515)

Brain stem (BS) 302 (342)

Cerebellum (CB) 191 (213)

Striatum/Thalmus (ST) 191 (214)

doi:10.1371/journal.pone.0032419.t001

Table 2. Number of gene expression changes shared by
different regions.

Number of shared regions Number of genes

All 6 38

5 41

4 40

3 62

2 139

unshared (single region) 591

doi:10.1371/journal.pone.0032419.t002
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Table 3. Most significantly (p,0.000001) over-represented Gene Ontology terms.

Gene Ontology expected observed p-value(fdr)

lytic vacuole 7.46 40 6.36E-16

lysosome 7.46 40 6.36E-16

immune system process 35.00 91 1.48E-14

vacuole 8.51 40 5.97E-14

positive regulation of biological process 54.61 117 5.05E-13

extracellular region 69.92 137 1.52E-12

response to stimulus 96.89 169 1.95E-11

immune response 20.83 60 2.38E-11

positive regulation of cellular process 48.25 102 5.56E-11

cell proliferation 27.02 69 1.03E-10

positive regulation of immune system process 8.68 35 2.13E-10

protein binding 229.75 319 3.08E-10

regulation of cell proliferation 19.74 54 2.25E-09

response to external stimulus 25.05 62 4.78E-09

ensheathment of neurons 1.49 14 5.75E-09

axon ensheathment 1.49 14 5.75E-09

regulation of immune response 7.94 31 6.83E-09

positive regulation of response to stimulus 7.15 29 1.05E-08

positive regulation of immune response 5.83 26 1.08E-08

regulation of immune system process 12.90 40 1.72E-08

regulation of action potential in neuron 1.67 14 2.70E-08

myelination 1.40 13 2.70E-08

developmental process 126.76 192 4.64E-08

pattern binding 5.00 23 5.31E-08

polysaccharide binding 5.00 23 5.31E-08

response to stress 47.94 92 7.33E-08

regulation of response to stimulus 12.59 38 8.43E-08

cell adhesion 25.48 59 1.09E-07

biological adhesion 25.48 59 1.09E-07

defense response 19.83 50 1.14E-07

cell surface 10.66 34 1.33E-07

immune effector process 7.68 28 1.68E-07

inflammatory response 10.26 33 1.78E-07

lymphocyte mediated immunity 5.44 23 2.29E-07

regulation of action potential 2.02 14 3.08E-07

response to wounding 15.04 41 3.08E-07

carbohydrate binding 13.29 38 3.08E-07

leukocyte mediated immunity 6.01 24 3.14E-07

regulation of multicellular organismal process 30.09 64 4.90E-07

adaptive immune response 5.31 22 6.06E-07

adaptive immune response based on somatic recombination of immune receptors
built from immunoglobulin superfamily domains

5.31 22 6.06E-07

regulation of developmental process 39.43 77 6.06E-07

anatomical structure development 92.28 145 6.49E-07

chemical homeostasis 13.82 38 7.31E-07

external side of plasma membrane 7.37 26 9.12E-07

doi:10.1371/journal.pone.0032419.t003
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the GO-term association was high, the gene arrays showed both

increases and decreases in expression of apoptotic genes, and for

both positive and negative regulators of apoptosis (Table S4) in

contrast to a qPCR study [33]. Taken together the data indicates

that the net biological effect of the dys-regulated genes in apoptotic

pathways was neutral.

There were no significant gene changes for PHF-Tau or alpha-

synuclein, consistent with the previous negative histopathology

findings [3]. However, there also were no changes detected in

neurofilament genes and relatively minor changes in genes

associated with ubiquitination, both of which are significantly

increased in specific brain regions by immunohistochemical

analysis [3]. In the immunohistochemical analysis the numbers

of Ubq/NFL+ cells were significantly increased in MPS VII but

were a relatively small proportion of each region, thus gene

expression changes within these cells would probably not be

distinguishable from background in the array analysis since whole

region homogenates were assayed.

Changes in expression of other genes that have been associated

with neurodegeneration include: 1) cerebellar degeneration-related

2 (Cdr2) which was down-regulated in the HP (although not in the

CB); 2) reduced expression in transcription factors associated with

neurogenetic diseases (e.g. Fos, JunB) was seen in the CB; and 3)

decreased expression of glycine amidinotransferase (Gatm) in the

BS, a gene associated with mental retardation [34]. Overall, the

data are consistent with histological studies in which neuronal loss is

not a major feature of lysosomal storage diseases [1].

4b. Astrogliosis. Astrogliosis is a feature of many neuro-

degenerative diseases [35], including the MPS VII mouse [3]. Of

the top 40 astrocyte cell-specific genes identified in vitro [32], 13

were changed, all of which were up-regulated (Table S5). Genes

associated with astrocytosis were up-regulated, including: GFAP,

which was up-regulated in all regions and confirmed by RT-PCR

(Fig. S1); vimentin, a part of the astrocyte intermediate filament

and a hallmark of reactive gliosis [36], in the CT, OB and ST; and

markers associated with cell metabolism (Aldoc), cell transport and

ion binding (Aqp4, Slc14a1), and signal transduction (Mertk). The

most specific marker gene for astrocytes in vitro [32], Aldh1L1,

was not changed in any region in the MPS VII brain. Likewise, a

number of markers associated with severe astrogliosis were not

changed [35,37]. These data are consistent with the histological

findings which show moderate astrogliosis [3].

4c. Microglia, immune system and inflammatory

changes. Many of the genes involved in activation of

microglia and immunity were among the most significantly up-

regulated of all the changed genes in the MPS VII mouse brain,

including 25 of the 36 most significant genes (average p* across

regions ,0.0001) (Figure 3). Some examples were: Gpnmb, a

negative regulator of proinflammatory response; Cd68; Fcgr2b,

the low affinity Fc receptor for IgG; Clec7a, a receptor which

recognizes some glucans from fungi and plants; Mpeg1, a

macrophage expressed gene; 3 complement components, C1qc,

C1qb, and C4b; Trem2 which may have a role in chronic

inflammation; lysozyme 1 and 2; Fcrls, the Fc receptor-like S, a

scavenger receptor; and, Hpgds, which plays a role in the

production of prostanoids in the immune system. Regional

differences were seen, with the largest number altered in the OB.

The DAVID analysis found 345 gene changes in 29 functional

categories (out of 253) involving the immune system or

inflammation (Table S1). These inflammatory categories were in

the top one-eighth of the overall list ranked by the strength of the

associations. Prominent categorical changes included up-regula-

tion of the cathepsin genes, the products of which are released by

activated microglia, have been implicated in the pro-inflammatory

response, and are associated with neuronal death and apoptosis.

The cathepsins Ctsa, Ctsb, Ctsc, Ctsd, Ctsh, Ctss and Ctsz were

highly up-regulated in all brain regions, while Ctsk was only

changed in the BS and was down-regulated. The toll-like receptors

(TLRs) play a role in innate immunity and TLRs 2, 3, 4 and 7

were up-regulated in some regions (Figure 4). There were also a

number of changes in the complement pathway.

However, many other genes that associated with a pro-

inflammatory response were not changed in the MPS VII brains.

Interleukins are the primary cytokines seen in inflammation, but only

a few of these were changed (Figure 4). The biggest change was in the

interleukin-10 receptor beta, which was up-regulated in 5 regions and

is involved in an anti-inflammatory pathway, but IL10 itself was

unchanged. The major pro-inflammatory cytokine, IL1b, was also

unchanged while the IL1 receptor accessory gene (IL1rap), which is a

necessary part of the interleukin 1 receptor complex, was down-

regulated in two regions. The pleiotrophic IL6 was unchanged, but

Stat3, the anti-apoptotic effector of IL6, was up-regulated in the OB.

Chemokine changes were also largely absent with the exception of the

up-regulation of Ccl3 and the down-regulation of Ccl12 in the OB

and the down-regulation of Ccl9 in the CT. Another important set of

pathways in inflammation involves the mitogen-activated protein

kinase (MAPK) cascades [38] but none of the Mapk genes were

altered. Additionally, the genes for the GO-term ‘‘Leukocyte

transendothelial migration’’ were under-represented in the GeneTrail

analysis from our list of changed genes. Finally, several anti-

inflammatory molecules were highly up-regulated, including Ilt3/

Gp49a, FccrIIb, Tyrobp, Cd300a and Cd300lf.

4d. Circadian Rhythm. Alterations in circadian rhythm

have been documented in the MPS VII mouse [39], and 17 genes

known to be involved in circadian rhythm [40] were altered in the

MPS VII brain (Figure 5). Eight of these were found in the BS,

consistent with the biology of circadian rhythm. Urotensin II,

(Uts2), up-regulated in the BS is vasoactive and also has an effect

on cholinergic neurons involved in REM sleep [41,42,43].

Another vasoactive gene involved in circadian rhythm, arginine

vasopressin (Avp), was also up-regulated in the ST. In the

GeneTrail analysis the BS was the only one of the 6 regions that

generated GO term enrichment related to circadian rhythm and

regulation of heart rate.

5. Alterations in other neurological systems indicate the
presence of important additional pathological processes

In addition to the gene changes associated with previous

biochemical, histopathological and behavioral abnormalities,

Table 4. All KEGG pathways of significantly changed genes
(from Genetrail).

KEGG pathway expected observed p-value(fdr)

Lysosome 6.40 28 1.97E-09

Complement and coagulation cascade 3.97 13 8.67E-03

Cell adhesion molecules (CAMs) 6.40 28 3.43E-02

Huntington’s disease 3.97 13 3.43E-02

Other glycan degradation 8.78 19 3.43E-02

Adipocytokine signaling pathway 3.70 10 4.71E-02

Cytokine-cytokine receptor interaction 13.32 24 4.71E-02

Glycosaminoglycan degradation 1.06 5 4.71E-02

Pathways in cancer 18.29 31 4.71E-02

doi:10.1371/journal.pone.0032419.t004
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several prominent groupings of gene changes were found that

implicate other pathways of pathology.

5a. Gene changes associated with development. Ten

clusters of DAVID pathways were associated with nervous system

development terms and included: 1) 4 clusters related to stem cells

and other basic development terms such as regeneration,

mesenchymal cell and neural crest differentiation, pattern

formation, and homeobox genes (Figure 6); 2) 5 clusters related

to neuron development, such as neurogenesis, neuron fate

commitment, neuron projection development, axonogenesis, and

axon guidance (Figure 7); and 3) 1 cluster related to gliogenesis (see

section below on myelination).

Specific changes in the MPS VII brain included genes encoding

semiphorins, Trk receptors, BMPs, IGF-1, NGF, TGFß, and

receptors for FGF2 but not for EGF. Specific developmental genes

were increased or decreased across brain regions, but overall there

was no dominant pattern of up or down regulation (Figure 7).

Increased expression was seen in genes associated with neuronal

cell development and differentiation (e.g. Timp2, Adm, Ahnak,

Cxcr4, Igf1), growth of neurites or axons (Ntrk2), differentiation of

Figure 2. Changes in lysosome genes across regions in MPS VII brain. The key across the bottom shows the magnitude of significance
coded in shades of gray and the fold change and direction coded in shades of red for increased expression and shades of green for decreased
expression (the same key is used in figures 3–8). The values for each gene in each region are in the boxes. Gusb was down-regulated in all regions, as
expected, while other normal lysosomal genes were up-regulated consistent with enzymatic activity data.
doi:10.1371/journal.pone.0032419.g002
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progenitor cells (Stat3), and brain or CNS development (e.g.

Tgfbr2, Sepp1, B2m, Cebpa, Cebpd). Down-regulation in the

diseased brain was seen in genes associated with quantity of

neurites or axons (A2m) and with CNS development (e.g. BTG2,

Egr2, Sept4, Sema3b). The largest down-regulation was in the

Otx2 (orthodenticle homeobox 2) gene (8-fold with p* = 1023), but

only in the HP. This gene encodes a transcription factor

(homeobox 2) that controls neuron subtype identity, the fate of

GABAergic neurons, and forebrain development [29,30,31].

Many other developmental genes that were changed in the MPS

brain were associated with development of non-neuronal tissues.

For example, skeletal development clusters were seen in both the

DAVID and GeneTrail analyses of the brain tissue and skeletal

dys-genesis is a major feature of MPS diseases. MPS VII is a

disease with a distinct skeletal phenotype with thickened dense

bones similar to those seen in osteopetrosis. One of the most

significantly changed genes in the MPS VII brain was Gpnmb

(osteoactivin), which was originally cloned from an osteopetrosis

rat [44,45]. It is expressed in several areas of the normal adult

brain [15] and was very strongly up-regulated in all regions of the

MPS VII brain, yet the gene is not included in any of the DAVID

clusters for nervous system development. Osteopetrosis is also

associated with a decrease in Car2 (carbonic anhydrase 2), which

was down-regulated in 5 of 6 MPS VII brain regions. In addition

to Gpnmb and Car2, 23 other genes involved in skeleton and bone

development were altered in the diseased brain. Developmental

genes that were dys-regulated in the MPS VII brain were also

associated with development of blood vessels, the urogenital

system, endocrine pancreas, striated muscle, exocrine glands,

heart, reproductive organs, and retinal photoreceptors.

5b. Myelination. Many genes associated with oligoden-

drocytes were down-regulated even though MPS diseases as a

group are not classsified as leukodystrophies. Of the genes

identified as oligodendrocyte markers in vitro [32], 53% were

changed in the MPS VII brains and they were all down-regulated

(Figure 8). The reduced expression of Aspa, Mbp, Mobp, Plp1 and

Olig2 were confirmed by RT-PCR (Fig. S1). Interestingly, there

were changes in myelin associated genes in all regions except the

Figure 3. Genes most significantly altered in MPS VII brain. The genes are listed in order of decreasing average p* (step-up p value) across
regions. Only genes with p*,0.0001 are shown. The key is the same as in Fig. 2.
doi:10.1371/journal.pone.0032419.g003
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CB. Many additional genes known to be involved in myelination

but not in the list of top marker genes identified in vitro [32], were

also altered in the MPS VII brains and most were down-regulated.

Ten of the 60 genes from the nervous system development

category (see above) are involved in myelination, of which 8 were

down-regulated. The 2 that were up-regulated, were only altered

in the OB: Ptprz1 (protein tyrosine phosphatase, receptor-type, Z

polypeptide 1) is expressed in the remyelinating oligodendrocytes

of multiple sclerosis lesions [46]; and Pmp22 (peripheral myelin

protein 22) is a component of myelin. Three additional myelin-

associated genes (by GO-term) were also up-regulated in the OB:

Cd9 (in the CT as well as OB) is associated with late events in

myelin maturation [47]; Lgi4 promotes the proliferation and

differentiation of glial lineage cells in the peripheral nervous

system [48]; and Tgfb1 is induced by activated microglia [49].

5c. Transport and ion channels. Eight functional clusters

in the DAVID analysis containing 137 altered genes were

associated with solute carriers and ion channels. Changes were

found in voltage gated proton, potassium, and chloride channels,

but not in sodium or calcium voltage gated channels. Only one

changed gene was associated with action potential (Kcnn2) and it

was only changed in the BS, which is consistent with the dearth of

neuron-associated changes (see above).

5d. Cell adhesion and extracellular matrix. The fourth

and seventh highest ranked DAVID functional clusters of genes

involved cell adhesion and binding to carbohydrates, polysac-

charides and glycosaminoglycans. Three gene changes were seen in

all brain regions: Gpnmb (see 4c above) which was highly up-

regulated; Clec7a, a C-type lectin, a microglia marker gene that

recognizes glucans, which was highly up-regulated [50]; and Selplg,

which was down-regulated and is the ligand for P-selectin [51].

5e. Signaling, cell cycle, nucleus, and gene regulation. The

DAVID analysis found 5 functional annotation clusters containing

210 genes that thematically grouped into 4 main categories: mapkkk,

Egf-like, nucleotide binding, and kinase-related activity. The OB had

the largest number of changes, including 3 times as many with

p*,1027 as any other region. The total number of genes changed

and degree of change was second only to the immunity cluster.

Nevertheless, when we examined all the changes in the context of the

pathways in which they occurred, none of them showed a crucial

junction point or a group of changes within one pathway that would

implicate a specific pathway as deficient.

5f. Metabolism. This broad based term involves many

different systems, both anabolic and catabolic. Alterations in 3

DAVID functional annotation clusters included 54 genes, with the

largest number of changes (30) found in the OB. Most of the

changed genes were up-regulated, with only 4 being down-

regulated (including Gusb). The top changes were in lysosomal

enzyme genes, which are included in this category due to their

catabolic function. One interesting change was Aldoc, a glycolytic

enzyme that was highly up-regulated (p* = 10211) in all regions

except the CB. Aldoc is directly inducible by hypoxia inducing

factor 1a [52], which was down-regulated in the CB. Another

change limited to the CB was in klotho (Kl), which had the largest

fold change in the metabolism genes with an 8-fold over-

expression. Klotho is a novel b-glucuronidase potentially capable

Figure 4. Changes in genes associated with immune system
and inflammation. The genes are grouped by class (as used in
DiRosario et al., 2009) and then sorted by fold within class. Genes
highlighted in yellow were changed in both MPS VII and MPS IIIb
[58,60]. Genes listed at the bottom were changed in MPS IIIb but not in
MPS VII. Key as in Fig. 2.
doi:10.1371/journal.pone.0032419.g004
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of hydrolyzing steroid b-glucuronides [53]. The metabolic gene

Fa2h (fatty acid 2-hydroxylase) was down-regulated in the CT, HP

and OB. Mutations in the Fa2h gene are associated with leuko-

dystrophic dys-myelination and other brain neurodegeneration [54].

5g. Olfactory bulb neuronal changes. Changes specifically

attributable to neurons were observed in the OB. Olfactory marker

protein (OMP), a gene that is expressed almost exclusively on

mature primary olfactory sensory neurons [55], was highly down-

regulated (11-fold with p*,10213). Mice that lack OMP have

perturbed electrophysiological activity and altered spatio-

temporal activity patterns for different odorants [28,56]. No

changes in the olfactory neuronal receptor genes were found

suggesting that neuronal loss is not responsible for the OMP

decrease. Changes in human olfaction have been shown and often

precede diagnosis in a number of immune/inflammatory associated

brain diseases such as MS, Alzheimer and Parkinson’s disease [57].

Discussion

Assaying the brain in separate anatomic structures, and using a

large cohort of mice for robust power, allowed detection of a large

number of specific, highly significant changes in gene expression.

The changes shared by multiple regions were mostly attributable

to generalized cellular functions (e.g. lysosomal genes) or

widespread pathology (e.g. activated microglial genes). However,

most changes occurred in only one region, reflecting regional gene

specialization, and specific categories of genes varied in number

and direction-of-change by region. For example, the OB had the

largest number of altered genes, which included some of the most

highly changed genes in any region (e.g. OMP, important

functions in olfaction). Additionally, the OB had more changes

indicative of inflammation than other areas. For oligodendrocyte

and myelination genes, the hippocampus had the most changes,

whereas the cerebellum had only one, which parallels the

magnitude and direction of changes in storage [9].

Some systems were changed primarily in one direction, e.g.

most oligodendrocyte genes were down-regulated and most

lysosomal genes were up-regulated, while other systems were

mixed, e.g. apoptosis. Several of the changed pathways were

concordant with known alterations in lysosomal, immunological,

astroglial, neurodegenerative, and metabolic systems. Additionally,

however, the power and regional analysis were sensitive enough to

detect changes in systems involved in neurological dysfunction but

which have not been previously appreciated in MPS brains,

indicating they are contributing to the overall pathological milieu

that results in brain disease.

Immune and inflammatory system
One of the most interesting categories involved the immune/

inflammation system, a general aspect of MPS disorders and

neurodegenerative diseases [8,58,59], There were notable differ-

ences between MPS VII and the closely related MPS IIIb which is

the best-studied MPS mouse model for gene expression in the

brain [58,60,61,62]. Some of the most highly up-regulated genes

in MPS VII were associated with activation of microglia (e.g.

Cd68, Mpeg1), as in MPS IIIb, but the MPS VII brain had a

notable absence of changes in most genes associated with

inflammation, which are significantly changed in MPS IIIb. The

few changes in inflammatory genes in MPS VII occurred mostly in

the OB. Additionally, lower amounts of A-beta have been found in

MPS VII versus MPS IIIb [63]. Consistent with this, MPS IIIb

accumulates PHF-Tau in a select region of the cerebral cortex

[64], but is not altered in the MPS VII brain [3].

Dissimilar signaling from the predominant, undegraded GAG

of each disease may drive the differences in immune and

inflammatory phenotypes between MPS VII and MPS IIIb.

Substrate specificity of each mutated enzyme results in accumu-

lation of only heparan sulfate (HS) in MPS IIIb whereas MPS VII

cells primarily accumulate chondroitin sulfates (CS), with lesser

amounts of HS and dermatan sulfate (DS) [8,65]. In MPS I mice

(a model of Hurler disease caused by alpha-L-iduronidase

deficiency) both HS and DS accumulate and the mice have

similar changes in microglial activation genes as MPS IIIb;

however, genes associated with inflammation are not up-regulated

Figure 5. Changes in genes associated with circadian rhythm. The GeneTrail analysis found the GO term circadian rhythm to only be
associated with the brainstem. Key as in Fig. 2.
doi:10.1371/journal.pone.0032419.g005

Regional Transcriptome Changes in MPS VII Brain

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e32419



(e.g. Ifitm1, Ifnar2 ) [58]. This suggests that the effect of DS on

inflammatory and immune gene pathways may be similar to CS,

consistent with their closely related structures [66]. These

differences may have functional significance because human

Sanfilippo disease patients have severe intellectual impairment

whereas Sly disease patients are much more variable with some

having near normal intelligence [8].

The differences are consistent with known effects of HS and CS

on inflammation and the immune system in non-LSD brains

[67,68]. HS stimulates dendritic cells through Tlr4 in MPS IIIb

[61] whereas CS has immunomodulatory and anti-inflammatory

effects [69,70,71]. Also CS disaccharide can induce microglia to

adopt a regulatory phenotype that is anti-inflammatory, IFN-

gamma counter-regulatory, and neuroprotective [69,70].

A candidate gene for mediating the diminished inflammatory

phenotype of MPS VII is Gpnmb, which was the most significantly

up-regulated of all gene changes in MPS VII yet was not altered in

MPS I or MPS IIIb. Gpnmb is expressed on antigen presenting

cells [72] and blocks the production of inflammatory cytokines

[73]. Other anti-inflammatory genes were also highly up-regulated

in the MPS VII brain (e.g. Ilt3/Gp49a, FccrIIb, Tyrobp, Cd300a,

Cd300lf, Il10rb). Concordantly, a number of inflammatory-

associated genes such as cytokines, chemokines and Cd genes

were down-regulated.

Myelination
The strong down-regulation of oligodendrocyte genes involved

in myelination was unexpected since white matter involvement is

not seen by histopathology [9]. However, this may be explained by

the strong association between neuroinflammation and dysmyeli-

nating diseases in general [59]. Although white matter changes are

not observed histopathologically in MPS VII, we recently found

that a reduction in white matter can be detected by high-

resolution, ex vivo MRI analysis [74]. Thus, the changes in

oligodendrocyte genes appear to correlate with mild dysmyelina-

tion. This may have a functional consequence because the gene

changes that were identified by the GO term ‘‘regulation of action

potential’’ are linked to oligodendrocytes rather than neurons.

Neurodegeneration
Children with MPS VII show varying amounts of mental

retardation [8], but there were no changes in the neuronal marker

genes [32]. Moreover, of 159 probes for 8 classes of neuron

receptors, only four changes were found, all in different regions

and all with low significance. In contrast, neurodegeneration

lesions are found in the HP, ST and CT of MPS VII mice [3].

They are characterized by excess ubiquitin and neurofiliment

accumulation and up-regulation of the ubiquitin specific peptidase

53 (Usp53) gene was detected in the HP, OB, BS and ST. The

ubiquitin-proteosome system (UPS) is implicated in the pathogen-

esis of several neurodegenerative disorders [75] and is also

important in neuroprotection [76].

Developmental pathways
Many changes were seen in genes associated with neural

development and differentiation. However, no specific pathway or

subset of developmental processes was implicated, suggesting a

more diffuse effect resulting in activation of different gene sets in

different cell types. The major elements of brain anatomical

patterning are maintained in the MPS VII brain and there is no

Figure 6. Changes in genes associated with embryonic development and stem cells. Key as in Fig. 2.
doi:10.1371/journal.pone.0032419.g006
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Figure 7. Changes in genes associated with development of neurons. Key as in Fig. 2.
doi:10.1371/journal.pone.0032419.g007
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overt cell loss [9], despite the presence of a neurodegenerative

phenotype [3]. Thus the activation of developmental genes may be

triggered by the diseased microenvironment. CS affects several

aspects of nervous system development directly [77]. In addition,

the CS-rich microenvironment of the diseased brain affects

differentiation of neural stem cells in the MPS VII dog [78].

The changes in developmental genes may also be from reactive

astrocytes, which exhibit NSC characteristics [79] as MPS VII

mice have diffuse astrogliosis [3]. Two major markers of reactive

astrocytes were up-regulated: Gfap in all regions and vimentin

(Vim) in CT, OB, and ST.

A substantial number of the altered developmental and

differentiation genes are associated with non-CNS tissues, many

with the skeletal system. During embryogenesis the neural crest is

associated with development of both the nervous and skeletal

systems [80,81], suggesting that fundamental developmental

programs may be reactivated under the disease conditions.

Summary
The robust power of this study revealed a large number of gene

expression changes and variability by major brain subregion.

Some of the differences between the normal and MPS VII brains

were concordant with known histopathological, biochemical, and

behavioral abnormalities in the MPS VII mouse; but, a number of

altered systems have not been implicated previously and provide

fruitful directions for further investigation. The central role of CS

in signaling processes, cell-cell interactions, maintenance of the

extracellular space, and development [77] may account for many

of the gene alterations secondary to the primary monogenic

mutation. The differences in patterns of expression between the

immune and inflammatory system genes in MPS VII compared to

MPS IIIb appear to directly reflect the predominant GAG

accumulated in each mutation. The decrease in expression of

major oligodendrocyte genes indicates defects in myelination. The

perturbations in developmental genes, while not implicating any

Figure 8. Oligodendrocyte gene changes in the MPS VII brain. The changes were all in the down-regulation direction suggesting
dysmyelination. Note the paucity of changes in the cerebellum. Key as in Fig. 2.
doi:10.1371/journal.pone.0032419.g008
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single process, is consistent with the apparent delayed develop-

mental potential of neural progenitor cells due to the microenvi-

ronment, which would be expected to be pleiotropic. The large

number of gene changes in the OB and the availability of gene

vector and neural stem cell reagents for manipulating the OB in

the MPS VII model [82,83], indicate that olfaction may be useful

for probing the mechanisms of CS accumulation on a sensory

perception system in the brain.

These data also provide a basis to investigate the differences

between changes in gene expression and their manifestation as

protein changes and effects on cell function. Although further

understanding of the pathological effects will require specific

experiments targeted to the biochemistry and physiology of each

pathway, understanding which changes lead to specific patholog-

ical effects should result in a better understanding of the relative

contributions of the myriad altered sub-systems to overall

neuropathology. Furthermore, better understanding of the multi-

tude of effects in the diseased brain will provide more specific

parameters to evaluate the effect of therapies.

Materials and Methods

Ethics statement
All animal procedures were performed according to protocols

approved by the IACUC (Institutional Animal Care and Use

Committee) of the Children’s Hospital of Philadelphia (CHOP).

Online Data Repository
The primary microarray data for this paper is available at http://

www.ncbi.nlm.nih.gov/geo/ accession number GSE34071.

MPS VII animal model
Wild-type (gus+/gus+), carriers (gusmps/gus+) and MPS VII-

affected (gusmps/gusmps) on the C3H-HeOuJ background [84] were

maintained in our breeding colony through carrier-carrier

brother-sister mating. Identification of the MPS VII-affected mice,

which contain a single base pair deletion in exon 10 of the GUSB

gene, was verified by PCR genotyping, as described previously

[85]. Diseased and normal mice were housed together until brain

harvest at 5 months of age. Four litters were used that were born

within one week of each other and each litter contained at least

one mutant and one normal (genotypic carrier or wild-type) pup.

The group included 3 genotypic normal (Wt), 5 carrier (C) and 8

MPS VII (M) mice. To obtain a sufficient number of paired

animals for the study, it was necessary to use a mixture of genders

for both the normal control group (2 female, 6 male) and MPS VII

group (4 female, 4 male). Thus the gene expression data from

males and female were considered as one group of normal (Wt/C)

or MPS VII (M) brains.

Micro-dissection of brains
At 21–22 weeks of age mice were anesthetized with ketamine/

xylazine and the brains were removed and placed immediately on

ice. The hemispheres were separated along the medial longitudinal

fissure and each hemisphere was further dissected based on

anatomical boundaries to obtain the following brain regions:

cerebellum (CB), brainstem (BS), olfactory bulb (OB), cerebral

cortex (CT), hippocampus (HP), and the remaining mid and

forebrain portion which included the striatum and thalamus (ST).

The brain pieces were immediately frozen in liquid nitrogen and

stored at 280Cu until used for RNA isolation.

RNA isolation
Total RNA was isolated separately from each of the six regions

of the right hemisphere. Frozen regions were placed into TRIzol

(Invitrogen) at 1 ml per sample and homogenized (Pellet Pestle

Motor - Kontes, VWR) at maximum speed for 20–40 Sec. The

RNA was further purified using the RNeasy Lipid Tissue mini kit

(Qiagen) according to manufacturer’s instructions. Total RNA

quality was assessed by measuring the A260/280 ratio on a

NanoDrop ND-1000 spectrophotometer (Thermo Scientific).

RNA integrity was verified by visualization of the 28S and 18S

ribosomal rRNA bands, with no presence of smear, using a

denaturing TAE- agarose gel.

Microarrays
1 mg RNA from each brain region was used to prepare

biotinylated aRNA samples using the MessageAMP II-biotin

Enhanced Signal Round aRNA Amplification Kit (Ambion).

Reverse transcription, in vitro transcription and fragmentation

were performed according to manufacturer’s instructions (Am-

bion). Samples of 10 mg aRNA were hybridized on Affymetrix

mouse genome 430A 2.0 Gene Chips containing 22,690

oligonucleotide probe sets (www.affymetrix.com). A total of 96

samples (16 brains, 6 regions each) were hybridized. Hybridiza-

tion, staining and washing were performed on an Affymetrix

Fluidics Station 400 at the Children’s Hospital of Philadelphia

Nucleic Acid Core facility according to Affymetrix protocols.

Scanning was performed using the Affymetrix Gene Chip Scanner

3000 controlled by a GeneChip Operating software 1.4 (GCOS,

Affymetrix).

Data normalization and analysis
Raw microarray image files were processed using the Affymetrix

GCOS 1.4 software to calculate individual probe cell intensity

data and generate CEL data files. The 96 Affymetrix CEL files

were imported into Partek Genomics Suite (v6.5, Partek Inc. St.

Louis, MO) where GCRMA was applied. Clustering approaches

and principle components analysis showed two of the arrays were

outliers, which were excluded for subsequent statistical analysis.

For the remaining 94 arrays, a 3-way mixed model ANOVA

was calculated including the factors genotype (2 levels with wild-

type and carrier combined as ‘‘normal’’ as described above),

region (6 levels), and mouse ID (16 levels). An interaction term

between genotype and region was included as well. In conjunction

with the ANOVA, we calculated pairwise contrasts (each yielding

a p-value and a fold change) for genotype for each of the 6 brain

regions. For all resulting p-values, a corrected step-up p-value (p*)

(False Discovery Rate by the Benjamini Hochberg step-up method

as implemented in Partek) was calculated. A p*#0.01 without

prejudice for fold change was used to select the genes differentially

expressed in MPS VII mice.

For regional gene enrichment in the normal mouse, a two way

mixed model ANOVA was calculated using the factors region

(6 levels) and mouse ID (8 levels). p* was calculated as above.

Regional gene enrichment fold in the normal brain was calculated

by dividing the regional average by the average of all the

remaining regions.

Functional analysis of the data sets
The significantly changed (p,0.01) genes were analyzed using

GeneTrail (http://genetrail.bioinf.uni-sb.de/) [17] for Gene

Ontology (GO) term [18] and KEGG [19] pathway enrichment,
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DAVID (http://david.abcc.ncifcrf.gov) [20] for GO-term and

other database functional clustering, or from literature-search

generated gene lists as described in the results section. Hierarchical

clustering of the differentially expressed genes and heatmap

generation was carried out using the MultiExperiment Viewer

(MeV) tool in TM4 Microarray Software suite (http://www.tm4.

org/mev.html) [86].

Quantitative RT (reverse transcriptase)-PCR and data
analysis

To validate the microarray data, nine differentially expressed

genes were chosen for quantitative real time PCR analysis (Q-

PCR) using the following TaqMan gene expression assays:

beta-glucuronidase (Gusb, Mm03003537_s1); hexosaminidase B

(Hexb, Mm00599880_m1); glial fibrillary acidic protein (Gfap,

Mm00546086_m1); lysozyme (Lyz2, Mm00727183_s1), myelin-

associated oligodendrocytic basic protein (Mobp, Mm0048-

5088_m1), myelin basic protein (Mbp, Mm01262035_m1),

proteolipid protein (myelin) 1 (Plp, Mm00456892_m1), oligoden-

drocyte transcription factor 2 (Olig2, Mm01210556_m1), and

aspartoacylase (aminoacylase) 2 (Aspa, Mm00480867_m1). The

18 s ribosomal subunit (18 s rRNA, Hs 99999901_s1) was used as

a reference gene.

The same RNA samples used in the microarray analysis were

also used for Q-PCR. The total RNA samples treated with DNase

(turbo DNA free, Ambion) and then reverse transcribed using a

high capacity cDNA reverse transcription kit (Applied Biosystems)

and then amplified. The changes in reporter fluorescence were

monitored using the ABI SDS 7500 system (Applied Biosystems)

run with the standard program. The data is expressed as mean fold

changes in the MPS VII compared to the normals. Similar results

in both the direction and the magnitude of change were achieved

by both assay methods (Fig. S1).

Rationale for grouping wild-type and carriers together
The disease requires inheritance of homozygous mutant alleles

and there is no evidence of disease in heterozygous carriers in mice

or humans. An initial analysis on HP samples using hierarchical

clustering of the expression values of the 50 top and bottom

significantly altered genes by fold change (p,0.01) between Wt, C

and M mice, clustered the wild-type and carrier mice together and

distinct from the mutants (Fig. S2). Also, the larger microarray

dataset was compared using a principal component analysis (PCA)

derived from an ANOVA, which compared genotype, region, and

the interaction between the them for the most significant 500

probes, which showed that the wild-type and carrier samples

segregated together and the mutants segregated separately

(Fig. S3). This genotypic analysis is consistent with the known

phenotype in which carriers and normals are indistinguishable

[21,84]. Thus for analysis, we grouped the genotypically

homozygous wild-type (Wt) and heterozygous carrier (C) samples

together in a group that has a normal phenotype (N).

Data presentation for figures
When multiple probes are present for the same gene, the probe

data with less significance has been eliminated for brevity. If the

eliminated probe showed statistically significant regional informa-

tion not found in the non-eliminated probe data, the data was

consolidated for the purpose of presentation.

Supporting Information

Figure S1 Comparison of fold change by RT-PCR and
microarray for selected genes.
(TIF)

Figure S2 Heatmap showing that the normal and
carrier groups are similar to each other and distinct
from the mutants. The top and bottom 50 hippocampal genes

are displayed; the values are the difference from the mean.

(TIF)

Figure S3 Plot of Primary Component Analysis (PCA) by
genotype and region showing that carriers and wild-type
samples segregate from mutants.
(TIF)

Table S1 Thematic consolidation of DAVID annotation
clusters.
(XLS)

Table S2 Gene expression altered or unaltered exclu-
sively in one region (orange = upregulated/green =
downregulated).
(XLS)

Table S3 Neuronal receptor changes.
(XLS)

Table S4 Gene expression changes associated with the
GO terms Positive regulation of apoptosis and Negative
regulation of apoptosis (orange = upregulated/green =
downregulated).
(XLS)

Table S5 Changes in astrocyte marker genes.
(XLS)
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