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Abstract

The presence of insufficient bone volume remains a major clinical problem for dental implant placement to restore the oral
function. Gene-transduced stem cells provide a promising approach for inducing bone regeneration and enhancing
osseointegration in dental implants with tissue engineering technology. Our previous studies have demonstrated that the
hypoxia-inducible factor-1a (HIF-1a) promotes osteogenesis in rat bone mesenchymal stem cells (BMSCs). In this study, the
function of HIF-1a was validated for the first time in a preclinical large animal canine model in term of its ability to promote
new bone formation in defects around implants as well as the osseointegration between tissue-engineered bone and dental
implants. A lentiviral vector was constructed with the constitutively active form of HIF-1a (cHIF). The ectopic bone formation
was evaluated in nude mice. The therapeutic potential of HIF-1a-overexpressing canine BMSCs in bone repair was evaluated
in mesi-implant defects of immediate post-extraction implants in the canine mandible. HIF-1a mediated canine BMSCs
significantly promoted new bone formation both subcutaneously and in mesi-implant defects, including increased bone
volume, bone mineral density, trabecular thickness, and trabecular bone volume fraction. Furthermore, osseointegration
was significantly enhanced by HIF-1a-overexpressing canine BMSCs. This study provides an important experimental
evidence in a preclinical large animal model concerning to the potential applications of HIF-1a in promoting new bone
formation as well as the osseointegration of immediate implantation for oral function restoration.
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Introduction

The immediate dental implant possesses several advantages over

the delayed implant, including agonistic bone resorption post-

extraction, reduced time required to make dentures, and

immediate satisfaction with the aesthetics and function, especially

at locations of formerly missing teeth [1]. Therefore, immediate

post-extraction implants have high clinical value. However, the

main challenge of immediate post-extraction implants is significant

alveolar bone loss (height or width of alveoli) owing to periodontal

disease, traumatic injury, congenital abnormalities, tumors, or

physiological bone resorption. Due to autologous bone grafts

limited clinical applications [2,3], gene-enhanced tissue engineer-

ing method is attempted to promote bone repair and tissue

regeneration, especially for challenging defect sites, where

spontaneous repair is not achievable [4].

Bone mesenchymal stem cells (BMSCs) are multipotent stem

cells that have the capacity to differentiate into cartilage, bone, fat

and endothelial cells [5]; therefore, BMSCs are considered ideal

seed cells to repair damaged tissue in a tissue engineering

approach. A pivotal mechanism for BMSCs to promote tissue

regeneration is by secreting various growth factors [6]. The

combination of stem cell and gene therapies could be an optimal

clinical strategy for tissue replacement/repair, where BMSCs are

genetically modified to express higher levels of some specific

factors. Growth factor-overexpressing stem cells have the potential

to accelerate osteogenesis and angiogenesis in bone defects with

tissue engineering technology; these growth factors include bone

morphogenic protein (BMP), vascular endothelial growth factor

(VEGF), and basic fibroblast growth factor [7,8].

Compared with the above genes, the hypoxia-inducible factor-

1a (HIF-1a) has many advantages in local gene therapy methods

because of its effects as an upstream protein in the promotion of

osteogenesis and angiogenesis [9,10]. Our previous studies

demonstrated that HIF-1a can enhance osteogenic expression in

rat BMSCs both in vitro and in vivo [11]. To further investigate the

value of HIF-1a in potential clinical applications, the current study

sought to determine whether HIF-1a induces canine BMSCs to
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regenerate bone in a canine model of dental implant defects and

making oral function restoration.

Because of excellent biocompatibility and osteoconduction,

calcium phosphate biomaterials have been widely used as scaffold

materials in pre-clinical studies [12]. Calcium-magnesium phos-

phate cement (CMPC) exhibits good biocompatibility, biodegrad-

ability and mechanical properties [13].

On the basis of the above data, we sought to use a combination

of HIF-1a mediated canine BMSCs and CMPC scaffolds to repair

mesi-implant defects in the canine mandible. In this paper, we

tested the hypothesis that HIF-1a gene therapy promotes

osseointegration between tissue- engineered bone and dental

implants in a canine model.

Results

Characterization of BMSCs and gene transduction
At passage 3, BMSCs were characterized by flow cytometry.

CD90 and CD105 were highly expressed, whereas CD31 and

CD34 were rarely detected (Figure 1A). Under an optimal

multiplicity of infection (MOI = 7), BMSCs were transduced by

Lenti-GFP, Lenti-HIF, and Lenti-cHIF. Four days after transduc-

tion, BMSCs fluoresced green under inverted fluorescence

microscopy, showing efficiency of transduction of approximately

90% (Figure 1B). HIF-1a mRNA and protein expression was up-

regulated in the target gene groups compared with the control

group by qPCR and western blotting, respectively (Figure 2).

Analysis of ectopic osteogenesis in nude mice
To determine whether HIF-1a-expressing BMSCs had the

ability to promote ectopic osteogenesis in vivo, nude mice were

subcutaneously implanted with HIF-1a constructs. Eight weeks

after implantation in the subcutaneous tissue of nude mice,

samples were excised. Their histology was analyzed under light

microscopy (Figure 3A). The area of new bone formation was

17.8961.69% of the total area per 1006 field in the cHIF group,

14.2561.21% in the HIF group, 6.6361.53% in the GFP group,

and 2.8660.23% in the CMPC-only group (Figure 3B). The

percentage of remnant scaffold area was 42.75%62.62% of the

total area per 1006 field, 38.16%61.92%, 34.2163.14%, and

25.82%61.98% in the CMPC, GFP, HIF, and cHIF groups,

respectively (Figure 3C). These results demonstrate that constitu-

tively active HIF-1a in BMSCs increases bone formation when

incorporated with CMPC scaffolds.

To investigate the presence of the implanted BMSCs in the

subcutaneous tissue of nude mice, GFP immunohistochemistry

was performed. All lentivirus vehicles encoded EGFP. GFP was

apparent in the new bone matrix or fibrous tissue in the HIF-,

cHIF- and GFP-transduced BMSC groups 8 weeks post-operation,

while the CMPC group showed negative staining (Figure 4a–d).

Moreover, HIF-1a staining was found in the target gene-

transduced groups in both the bone matrix and the surrounding

fibroblast-like tissue, whereas there was no evident positive

expression for endogenous HIF-1a in the Lenti-GFP-transduced

BMSCs or the CMPC-alone group (Figure 4e–h).

Comparative bone formation and osseointegration in
bone defects of canine mandibles with simultaneous
dental implantation

To determine whether HIF-1a and CMPC scaffolds were able

to promote bone formation and osseointegration, we used the

various scaffolds constructs in a relevant canine model of dental

implant defect. X-ray images were taken after surgery to observe

the position of the filled materials in the defects. Radiography

showed that scaffold materials were implanted in the correct

position and tightly contacted the implant (Figure 5A-a). After 12

weeks, the radiographic evidence of new bone formation and

osseointegration varied among the five groups. In the HIF-1a-

expressing groups, new bone formation and osseointegration were

superior to the GFP, CMPC and blank groups as measured by

bone density and the bone contact ratio of dental implants

(Figure 5A-a). The morphology of the newly formed bone in the

defects was reconstructed using micro-CT, which showed that the

new bone formation in the HIF and cHIF groups was greater than

that in the other groups at 12 weeks post-operation (Figure 5A-b).

Morphometrical measures were used to calculate the amount of

newly formed bone in the defect sites. The calculated parameters

showed that BV/TV in the Lenti-HIF and Lenti-cHIF groups was

significantly greater than that in the GFP group or CMPC group

(Figure 5B-c). Additionally, BMD, Tb.N, and Tb.Th were

similarly increased in the target gene-transduced groups

(Figure 5B-c and d).

Using sequential fluorescent labeling, bone mineralization and

apposition were measured. At 1 week, the percentage of TE

labeling in the HIF group was 7.1160.74%, which was greater

than the CMPC group (2.9660.47%), the blank group

(0.4660.07%) or the GFP group (2.9860.89%) (P,0.01), but

less than the percentage in the cHIF group (8.8760.14%)

(Figure 6A-a1, b1, c1, d1, e1 and B). At 4 weeks, the percentage

of CA labeling was 10.1260.18%, 8.0161.02%, 5.2260.84%,

4.8260.21%, and 2.9660.11%, for cHIF, HIF, GFP, CMPC,

and blank, respectively (Figure 6A-a2, b2, c2, d2, e2, and B). The

cHIF group CA labeling was significantly different from GFP,

CMPC and blank (P,0.01), and the HIF group CA labeling was

significantly different from GFP, CMPC and blank (P,0.01), but

there no significant difference between the cHIF and HIF groups

(P.0.05) (Figure 6B). At 8 weeks, the percentage of AL labeling

was 16.0260.32%, 12.7860.11%, 5.6560.13%, 5.4260.12%,

and 1.8361.12% for cHIF, HIF, GFP, CMPC, and blank,

respectively (Figure 6A-a3, b3, c3, d3, e3, and B), with a

significant difference between cHIF and HIF (P,0.05)

(Figure 6B). Taken together, these results show that HIF-1a
over-expression effectively enhances new bone formation and

mineralization.

To further investigate the HIF-1a-mediated functional restora-

tion of tissue-engineered bones in a large animal, we evaluated

bone repair and osseointegration in canines using histologic and

histomorphometric methods (Figure 7A). Under light microscopy,

BIC was 91.24%62.12% of the total area per 406 field in the

cHIF group, 83.57%62.33% in the HIF group, 62.94%66.62%

in the GFP group, 38.96%64.87% in the CMPC group, and

40.06%61.88% in the blank group. BIC in each target gene

groups was significantly higher than the control groups (P,0.01),

and no significant difference was observed between the CMPC

group and the blank group (Figure 7B) (P.0.05). The newly

formed bone showed varying degrees of bone density. Bone

density was 46.8264.64% of the total area per 406 field in the

cHIF group, 40.0261.82% in the HIF group, 20.0665.12% in

the GFP group, 12.3762.31% in the CMPC group, and

16.7665.24% in the blank group. There were significant

differences in bone density between the cHIF or HIF group and

each control group (P,0.01), but no significant difference was

seen among the three control groups (Figure 7C). Furthermore,

the percentage of remnant scaffold area was measured.

These percentages were 22.16%65.53%, 15.95%61.87%,

12.2566.42%, and 4.97%62.26% of the total area per 1006
field in the CMPC, GFP, HIF, and cHIF groups, respectively

(Figure 7D).
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Discussion

To simulate the clinical situation as closely possible, gene

therapy or a tissue-engineered construct must be tested in a large

animal model before it can be introduced in a clinical trial [14]. In

this study, we detected the ability of HIF-1a to promote bone

formation in defects around implants and stimulate osseointegra-

tion in the canine mandible.

Gene-enhanced tissue engineering is a promising strategy for

bone regeneration. HIF-1a is a transcriptional activator that

functions as a master regulator of responses to tissue ischemia and

regulates many downstream target genes, including those involved

in angiogenesis, red blood cell maturation, energy metabolism,

and cell proliferation and viability [15,16]. However, HIF-1a is

rapidly degraded under normoxic conditions. A HIF-1a trunca-

tion/substitution mutant (deletion of amino acids 392–520 and the

substitutions Pro567Thr and Pro658Gln) and a point mutant

(proline 564 to alanine, proline 402 to alanine and aminosuccinic

acid 803 to alanine) both remain stable and active in normoxic

conditions [11,17]. The truncated form of HIF-1a shows greater

stability and activity in vitro under non-hypoxic conditions

compared with the point mutant HIF-1a and wild-type HIF-1a
(HIF). Therefore, we transduced canine BMSCs with the

truncated mutant allele of HIF-1a (cHIF) to increase osteogenesis

via a tissue engineering approach. HIF-1a can enhance rat BMSC

osteogenesis [11,17]. However, there have been no reports on

bone formation by using HIF-1a-mediated stem cell therapy in

large animal models. It was unclear whether HIF-1a also

promotes the osteogenesis of canine BMSCs.

To investigate whether HIF-1a promotes canine BMSCs

osteogenesis in vivo, subcutaneous ectopic osteogenesis was

examined in nude mice. We observed abundant new bone

formation and regenerated tissue with a greater area of new bone

and lesser remnant scaffold in the target gene groups. Histomor-

phometric parameters showed that HIF-1a significantly enhanced

canine BMSCs osteogenesis in these nude mice, and the cHIF

group induced superior effects compare to the HIF group.

Additionally, immunohistochemistry demonstrated the presence

of the implanted canine BMSCs and the expression of HIF-1a in

these new bone areas. These results provide a good basis for future

studies to detect bone repair defects in canine models.

The immediate implant possesses advantages over delayed

implants, such as preventing bone resorption, saving the time of

making dentures, and obtaining immediate aesthetic results [1].

However, the presence of insufficient bone volume is a challenge

for the correct implantation of dental implants in the jaw. In this

study, 12 weeks post-operation, X-ray images and micro-CT

revealed that HIF- and cHIF-transduced cells repaired nearly the

whole defect area. Additionally, good osseointegration was

obtained between tissue-engineered bone and dental implants in

the target gene groups. More intensive bone formation was seen in

the cHIF group than in the HIF group, whereas only minor

repairs were observed in the GFP and CMPC groups. Further-

more, the quantitative analysis by micro-CT showed more newly

formed bone in the cHIF group than in the HIF, GFP, and GS

groups according to BMD, BV/TV, Tb.N, and Tb.Th. The bone

mineralization and apposition in bone defects, as indicated by

fluorescent labeling, were consistent with the morphometric

findings. Histological examination demonstrated that BIC and

bone density in the cHIF group were superior to the other groups.

BIC is an evaluation of expected and actual bone contact on

machined and osseotite implant surfaces [18]. BIC exerts an

important effect on the success of dental implants, such as in terms

of implant loss, the weight-bearing ability of dentures, and the

duration of implant survival in the oral cavity. The above data

provided reliable base that cHIF can promote osseointegration in

the bone defects. Of course, a long-term follow-up for the new

bone formation in vivo must be considered if we use HIF-1a as a

means of clinical treatment in the future.

Many groups have investigated potential therapies of ischemic

disease with HIF-1a in rat models [19–21]. HIF-1a gene-based

therapy can repair critical-sized calvarial defects in rats [11,17].

However, to our knowledge, there have been no reports about the

use of HIF-1a in repairing bone defects for oral function

restoration in large animal models. This study provides a basis

for future investigations of HIF-1a-transduced BMSCs in

repairing bone defects. However, a major concern in gene-

mediated stem cell therapy is safety. In our study, we found no

evidence that the HIF-1a-overexpressing canine BMSCs formed

tumors 12 weeks in vivo. Furthermore, Rajagopalan et al. have used

HIF-1a to treat the lower extremity of patients with critical limb

ischemia [22]. But a prolonged observation in vivo will still be

required to confirm the safety of HIF-1a-transduced BMSCs in

humans.

In summary, this study confirms that HIF-1a-transduced canine

BMSCs significantly promoted new bone formation both subcu-

Figure 1. Characterization of F344 canine BMSCs and target gene transduction. Flow cytometry analysis of cell surface markers CD90,
CD105, CD31, and CD34 (A); A multiplicity of infection of 7 pfu/cell achieved high transfer efficiency, around 90%, 4 days after Lenti-GFP, Lenti-HIF,
and cHIF transduction of canine BMSCs (1006) (B).
doi:10.1371/journal.pone.0032355.g001

Figure 2. HIF-1a expression in canine BMSCs after target gene
transduction. mRNA and protein expression levels in the canine
BMSCs transduced by Lenti-HIF, Lenti-cHIF and Lenti-GFP On days 0, 1,
4, 7, 14, and 21 (A and B).
doi:10.1371/journal.pone.0032355.g002
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taneously (ectopically) and in defects around implants in canine

mandibles in vivo. Furthermore, osseointegration between tissue-

engineered bone and dental implants was enhanced by HIF-1a.

This work may contribute to potential clinical applications of

BMSCs transduced with HIF-1a for augmenting the bone mass of

the jaw and oral function restoration.

Materials and Methods

Ethics Statement
The Ethics Committee for Animal Research at the Ninth

People’s Hospital affiliated to Shanghai Jiao Tong University

approved all the experimental protocols involving the use of dogs

and nude mice.

Animals
Five adult male Labrador retrievers approximately 1.5 years

old, each weighing 25.0–35.0 kg, were used in the immediate

dental implant experiment. Six male nude mice approximately 6–

8 weeks old were used in the subcutaneous ectopic osteogenesis

experiment. The dogs were all given the same soft diet under the

standard laboratory conditions, and the nude mice were fed a daily

pellet diet in specific pathogen-free surroundings.

BMSCs culture and gene transduction
After each dog was anesthetized by ketamine (10 mg/kg) and

xylazine (4 mg/kg), 5 mL of autologous bone marrow was drawn

by needle aspiration from the iliac crests. The BMSCs were

cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco

BRL, Grand Island, NY, USA) supplemented with 10% fetal

bovine serum (FBS, HyClone, Logan, UT, USA) and 1%

penicillin/streptomycin at 37uC in 5% CO2. After 5–7 days, the

culture solution was removed, and fresh medium was added.

When the BMSCs reached 80–90% confluence, the cells were

detached with trypsin/EDTA (0.25% w/v trypsin, 0.02% EDTA)

and then transferred to 10 cm dishes at a concentration of

Figure 3. Observation of subcutaneous ectopic osteogenesis in the nude mice. (A) The undecalcified specimens were stained with van
Gieson’s picrofuchsin. From top to bottom: CMPC construct, Lenti-GFP- transduced BMSC/CMPC construct, Lenti-HIF-transduced BMSC/CMPC
construct, and Lenti-cHIF-transduced BMSC/CMPC construct (F = fibroblastic-like tissue, C = CMPC, B = new bone; 1.256, 406, and 1006). (B). New
bone formation area per 1006 field in histological sections. (C) The percentage of remnant scaffold area per 1006 field in histological sections.
(**, P,0.01, the target gene groups compared to the GFP group or the CMPC group).
doi:10.1371/journal.pone.0032355.g003

Figure 4. Immunohistochemical analysis of new bone formation in each group in the subcutaneous nude mice. Immunostaining for
GFP of (a) CMPC group, (b) Lenti-GFP group, (c) Lenti-HIF group, and (d) Lenti-cHIF group. The GFP, HIF, and cHIF groups show positive brown
staining in fibroblastic-like tissue and bone matrix (red arrow). The strong HIF-1a expression was stained in both the bone and the surrounding
fibroblastic-like tissue (red arrows) in (g) Lenti-HIF group and (h) Lenti-cHIF group. There was no obvious positive staining in (e) the CMPC group or (f)
the Lenti-GFP group (a–h, 4006).
doi:10.1371/journal.pone.0032355.g004
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Figure 5. Radiography and micro-CT evaluation of bone repair and osseointegration at 12 weeks after implantation. X-ray images
were taken immediately after surgery and at 12 weeks (A-a). The morphology of the newly formed bone in the defects was reconstructed using
micro-CT (A-b). Morphometric analysis of the BV/TV (B-a), BMD (B-b), Tb.N (B-c), and Tb.Th (B-d). (**, P,0.01, the target gene groups compared to the
blank group, the GFP group or the CMPC group).
doi:10.1371/journal.pone.0032355.g005
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Figure 6. New bone formation and mineralization determined histomorphometrically by TE, CA, and AL fluorescent quantification,
which represent the mineralization level at 12 weeks after the operation (A). Parts a, b, c, d, and e are confocal laser scanning microscopy
images for each group. Parts a4, b4, c4, d4, and e4 represent merged images of the three fluorochromes for the same group. Parts a5, b5, c5, d5, and
e5 represent the merged images of the three fluorochromes together with the plain confocal laser microscopy image for the same group. (B) The
graph shows the percentage of each fluorochrome area in each group. (** P,0.01, target gene groups compared with the GFP group, Blank group or
CMPC group; #, P,0.05, the cHIF group compared to the HIF group).
doi:10.1371/journal.pone.0032355.g006
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1.06105 cells/mL in 10 mL of medium. The culture medium was

then changed every 3 days, and the cells were used for all

experiments at passage 2–4. The BMSCs were characterized by

flow cytometry for CD90, CD105, CD31, and CD34 expression

(Invitrogen, Carlsbad, CA, USA).

A replication-defective lentivirus that encoded enhanced green

fluorescent protein (EGFP) was used as the vector for this study.

Lenti-GFP (the control group, only GFP protein), Lenti-HIF (wild-

type HIF-1a, target gene group), and Lenti-cHIF (a constitutively

active form of HIF-1a, target gene group) were constructed as

previously described [11]. The optimum efficiency of lentiviral

gene transfer in BMSCs was a multiplicity of infection (MOI) of 7.

The transduction efficiency was assessed by counting the number

of GFP-positive cells after 4 d of culture under the inverted

microscope. After BMSCs was transduced with Lenti-cHIF, Lenti-

HIF, or Lenti-GFP, target gene was detected on days 0, 1, 4, 7, 14,

and 21 with RT-qPCR and western blotting analysis, as previously

described [11] (Table S1).

Preparation of BMSCs/CMPC constructs
CMPC scaffolds (cylinders, W 5 mm62 mm3) were supplied by

East China University of Science and Technology, Shanghai,

China. The scaffolds were sterilized using 60Co irradiation. The

CMPC had an open porosity of 75% and an average pore

diameter of 400 mm650 mm. After cells were detached from

culture dishes, BMSCs (2.06105 cells/mL) in suspension were

gently added to the scaffolds until saturation. The BMSCs/CMPC

constructs were incubated for an additional 4 h to allow for cell

attachment before use. The constructs were used as described

below. BMSCs/CMPC constructs were obtained after 24 h

incubation and then characterized by scanning electron micros-

copy (Philips SEM XL-30, Amsterdam, Netherlands) (Figure S1 a

and b).

Subcutaneous ectopic osteogenesis in nude mice
Six nude mice were anesthetized by intraperitoneal injection of

pentobarbital (Nembutal 3.5 mg/100 g). The groups of Lenti-

Figure 7. Histological analysis of newly formed bone and remnant scaffold area in calvarial defects. The specimens were sliced, and
sections were stained with van Gieson’s picrofuchsin. From top to bottom: Blank, CMPC construct, Lenti-GFP-transduced BMSCs/CMPC construct,
Lenti-HIF-transduced BMSCs/CMPC construct, and Lenti-cHIF- transduced BMSCs/CMPC construct (F = fibroblastic-like tissue, C = CMPC, B = new bone,
DI = dental implant; original magnification, 406, 1006) (A). BIC per 406 field in histological sections (B). Bone density per 406 field in histological
sections (C). The percentage of remnant scaffold area per 1006 field in histological sections (D). (** P,0.01, target gene groups compared with the
GFP group, Blank group or CMPC group).
doi:10.1371/journal.pone.0032355.g007
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cHIF/BMSCs/CMPC, Lenti-HIF/BMSCs/CMPC, Lenti-GFP/

BMSCs/CMPC, and CMPC constructs were bilaterally implanted

subcutaneously into the backs of nude mice. The 12 sides of 6

nude mice were randomly divided into four groups, with 3 sides

per group. After 8 weeks of growth, specimens were harvested.

Dental implantation in the canine mandible
The surgical procedures were performed on Labrador retriev-

ers. During immediate implantation, the dogs were anesthetized

by intramuscular injection of ketamine (10 mg/kg) and xylazine

(4 mg/kg). Under sterile conditions, the premolars (from the first

to the fourth) of the mandible were extracted with a tungsten-

carbide bur forceps. The model of dental implant defect was

completed as previously reported [23]. Briefly, after detachment

from the gum, the alveolar bone was completely exposed. Six

mesial bone defects (both sides of the mandible) adjacent to the

mesial socket at a 6 mm height, 5 mm in the mesio-distal

direction, and 4 mm in the bucco-lingual direction were created

(Figure S1 c). Then, the Ø3.5612 mm implants (Cowellmedi Atlas

Implant Inc., Korea) were installed into the bone defects. After the

primary stability of the implant was obtained, the cover screw was

added. Five dogs with 30 defects were generated and randomly

allocated into the following graft study groups: (1) blank (n = 6), (2)

CMPC (n = 6), (3) CMPC/BMSCs/Lenti-GFP (n = 6), (4) CMPC/

BMSCs/Lenti-HIF (n = 6), and (5) CMPC/BMSCs/Lenti- cHIF

(n = 6). The mesial bone defects were filled with the constructs

from the bottom to the top in direct contact with the implant,

except in the blank group (unfilled). When the sulcular flaps were

adapted to eliminate tension, the incision was closed with

interrupted and horizontal mattress sutures (Figure S1 d-k). The

first week after surgery, the animals received amoxicillin (500 mg,

twice daily) and ibuprofen (600 mg three times daily) via the

systemic route. The dogs were checked daily and fed soft food. To

detect the degree and quantity of new bone, the dogs were

intraperitoneally administered by hydrochloride tetracycline (TE,

Sigma, 25 mg/kg), calcein (CA, Sigma, 20 mg/kg), and ARS (AL,

Sigma, 30 mg/kg) at 1, 4, and 8 weeks post- operation,

respectively [24]. All animals were sacrificed 12 weeks after dental

implant insertion.

Radiography and micro-CT measurement
Under general anesthesia, X-ray images were taken to detect

the scaffold-filled bone defects as well as the new bone formation

and mineralization at after-operation and 12 weeks post-

operation. Radiographs were taken by a dental X-ray machine

(Trophy, France). The morphology of the reconstructed mandible

was assessed using an animal micro-CT scanner (eXplore Locus

SP, GE Healthcare, Milwaukee, UK). Briefly, the specimens were

scanned with the following parameters: 14 mm resolution, 210u
rotation angle, 0.4u incremental rotation angle incremental, 80 kV

voltage, 80 mA current, 2960 ms exposure time, frame average of

4 pixel combinations for 161, 80 kV X-ray tube potential, 80 mA

tube current, and 14-mm voxel resolution. After the micro-CT

scan, the visualization of bone was processed with the following

image parameters: 16.897 mm613.44266.474 mm original im-

age size, 29 mm image resolution, and 16 image digits. Micro-CT

measurements in the bone defect included the bone volume to

total bone volume ratio (BV/TV), bone mineral density (BMD),

the trabecular number (Tb.N), and the trabecular thickness

(Tb.Th).

Histological and histomorphometric observation
The composites of nude mice were harvested 8 weeks post-

operation. The undecalcified specimens of 6 nude mice (4

specimens from each group) were processed following these steps:

(1) dehydration in a graded series of ethanol from 75% to 100%;

(2) embedding in polymethylmethacrylate (PMMA); (3) sectioning

(150 mm thick) using a microtome (Leica, Hamburg, Germany);

(4) polishing the sections to a final thickness of approximately

40 mm; and (5) staining the sections with Van Gieson’s

picrofuchsin [25]. Lastly, under an inverted microscope, sections

were observed for new bone formation and remnant scaffolds. To

detect the presence of the implanted BMSCs in subcutaneous

nude mouse sites, other specimens of 6 nude mice (5 specimens

from each group) were decalcified in 10% EDTA for 3 weeks.

Immunohistochemistry was performed as previously reported [11].

Briefly, the tissue slides were processed by dewaxing, rehydration,

and quenching endogenous peroxidase activity. The slides were

mounted, and primary antibodies against GFP and HIF-1a
(1:1000 dilution) (Abcam, Inc., Cambridge, UK) were applied to

the sections at 4uC overnight. Secondary antibody (Boster Co. Ltd,

Shanghai, China) was applied to the slides for 30 min at room

temperature. Then, the slides were developed with DAB substrate

(DAKO, Cambridge, UK) and finally counterstained with

hematoxylin.

For immediate dental implantation in the mandible in canines,

all specimens were embedded in PMMA and prepared with

undecalcified sections. To analyze mineralization in the bone

defect area, the fluorescent labeling of sections was observed using

a confocal laser scanning microscope (CLSM) (Leica TCS Sp2

AOBS, Heidelberg, Germany). After sections were stained with

Van Gieson’s picrofuchsin, bone-implant contact (BIC), bone

density (BD) and remnant scaffold were quantified using a

computer-based image analysis system (Image Pro 5.0, Media

Cybernetic, Silver Springs, MD, USA) as previously described

[26]. In each case, the BIC, which was calculated as (total length of

bone contact/total length of implant surface)6100%, of the whole

length of the implant in the bone defect area was measured, except

for the coronal part and the apical part of the dental implant. The

BD, which was calculated as (total surface of bone in the reference

area/total reference area)6100%, of the whole bone defect area

was measured, except for the coronal part and the apical part. The

remnant scaffold was measured as a percentage of the section per

1006 field.

Statistical analysis
Data are expressed as the mean 6 SD. Using the SAS 6.12

statistical software package (Cary, NC, USA), statistical signifi-

cance was assessed by an ANOVA with Tukey’s post-hoc test.

P,0.05 was considered statistically significant (* P,0.05 and

** P,0.01, target gene (HIF or cHIF) groups compared with the

control group; # P,0.05 and ## P,0.01, the cHIF group

compared with the HIF group).

Supporting Information

Figure S1 Scanning electron microscopic evaluation of
the CMPC microstructure and surgical procedure. 48 h

after seeding, the cells have spread well on the surface of the

scaffold (a and b). Diagram of the mesi-dental implant defects in

canine mandible: a 6 mm height, 5 mm in the mesio-distal

direction, and 4 mm in the bucco-lingual direction (c). Making

bone defects with a 4-mm-diameter trephine bur (d and e).

Installing dental implants in the tooth socket (f–h). The graft study

groups were allocated (CMPC, CMPC/BMSCs/Lenti-GFP,

CMPC/BMSCs/Lenti-HIF, and CMPC/BMSCs/Lenti-cHIF) (i

and j). Closing the incision (k).

(TIFF)
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Table S1 A series of data, including the gene names,
accession numbers, primer sequences, and amplicon
sizes, is listed.

(DOC)
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