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Abstract

DJ-1 is a Parkinson’s disease-associated gene whose protein product has a protective role in cellular homeostasis by
removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1
regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we
showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In
the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel
electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we
concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation,
DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the
flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We
took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both
confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional
defect by measuring ATP production, O2 consumption, and mitochondrial membrane potential. Finally, we showed that the
assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-
mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These
mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic
neurons in Parkinson’s disease.
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Introduction

Studies of Parkinson’s disease (PD), the second most common

neurodegenerative disease after Alzheimer’s, have focused on

mitochondrial respiratory chain complex I since the discovery in

1990 that complex I activity is reduced in the substantia nigra of

PD patients [1]. Impairment of the respiratory chain disrupts

electron transfer and generates oxidative stress, resulting in

mitochondrial dysfunction that can lead to cell death through

apoptosis. Furthermore, mitochondrial dynamics (e.g., fission,

fusion, motility, mitophagy, etc.) are important for the mainte-

nance of mitochondrial functions in neurons [2,3], and there is

growing recognition that abnormal mitochondrial dynamics may

also contribute to the pathogenesis of PD. Ensuring mitochondrial

quality and appropriate energy supplies are essential for normal

neuronal activities [4]. Consequently, maintenance of mitochon-

drial function is one of the most important targets for preventing

and treating neurodegenerative diseases, and it is therefore

important to understand the factors that regulate both the

respiratory chain and mitochondrial dynamics.

The interrelationship between complex I impairment and

mitochondrial morphologic changes in PD development has been

studied in both toxin-induced and genetic models of PD [5]. Some

of the most common environmental causative factors of PD are

known to target complex I. Before the onset of chemically induced

dopaminergic neuronal cell death, neurotoxins (e.g., 6-hydro-

xydopamine; 6-OHDA) and pesticides (e.g., rotenone) that impact

mitochondria increase the levels of mitochondrially generated

reactive oxygen species (ROS), resulting in altered mitochondrial

dynamics and subsequent fragmentation [6]. PD-related gene

mutations or gene deletions show mitochondrial respiratory chain

defects and induce fission-like morphologic changes. For example,
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Pink1 and Parkin deficiencies were shown to decrease mitochon-

drial respiratory chain activity and impair mitochondrial fusion in

flies [7] and promote mitochondrial fragmentation in mammals

[8], and DJ-1-deficient PD patients have smaller mitochondria [9].

Pink1 and Parkin may function in the regulation of mitochondrial

dynamics for mitochondrial quality control, which involves ridding

the cell of damaged mitochondria via induction of mitophagy.

However, the mitochondrial function of DJ-1 needs to be further

evaluated.

Mutation of DJ-1, which causes a rare, autosomal recessive form

of PD, is postulated to result in the breakdown of antioxidant

defenses in various cellular compartments. DJ-1 can prevent

oxidative damage in the cytosol by acting in a manner similar to

glutathione peroxidase [10]. Mitochondrial DJ-1 has a role in

balancing mitochondrial dynamics, and DJ-1 deficiency can cause

mitochondrial fragmentation [9]. It is thought that a defect in

complex I is the main cause of mitochondrial fragmentation in DJ-

1 deficiency, but the mechanism of this pathologic change is not

clear.

Formation of complex I depend on three steps: translation of

mitochondrial subunits in both the mitochondrion and cytoplasm,

importation of the cytoplasmic subunits, and subsequent assembly

of the subunits into complex I. To investigate how DJ-1 mutations

affect the integrity of mitochondrial complexes, we performed

biochemical experiments by using blue native-polyacrylamide gel

electrophoresis (BN-PAGE) and functional assays. Our goal in this

study was to determine the role of DJ-1 in complex I formation

and how it affects mitochondrial function in PD-related dopami-

nergic neuronal cells. Based on our results, we propose that DJ-1

mutation contributes to the pathogenesis of PD through

impairment of the complex I assembly pathway.

Results

Mitochondrial complex I is not properly assembled in DJ-
1 null cells

According to studies of human PD, mutation of DJ-1 results in

perturbed mitochondrial dynamics [9,11]. We hypothesized that

mitochondrial pathologic changes caused by DJ-1 mutation result

from abnormalities of respiratory complex subunits. To identify

the function of DJ-1 in mitochondria, we examined mouse DJ-1

null dopaminergic neuronal cells, which reflect human PD

pathogenesis in a murine cell system. First, we compared the

expression levels of mitochondrial complex subunits in SN4741

(‘wild-type’) and DJ-1 null cells (Figure S1). No differences were

observed in mitochondrial subunit expression between these cell

lines, with the exception of COX4, which is a subunit of

mitochondrial complex IV. The absence of a general defect in

expression of mitochondrial complex subunits indicates that DJ-1

is not involved in the translation of mitochondrial complex

subunits; however, the increased level of the mitochondrial

respiratory chain subunit COX4 in DJ-1 null cells implies an

increase in damaged mitochondria [12].

Because translation of the mitochondrial complex subunits was

not affected, we next focused on the assembly pathway for

complex I [13]. We performed BN-PAGE to detect complex I,

which has a high molecular weight, to investigate whether the

complex is able to assemble in DJ-1 null cells. We observed

decreased complex I formation in DJ-1 null cells (Figure 1A),

consistent with our previous observations of decreased complex I

activity [14] (Figure S2). In the random diffusion model of

electron transfer, mitochondrial complexes are postulated to exist

as a supercomplex in the respiratory chain [13,15]. More than

80% of complex I is bound to complex III or IV (or both) under

physiologic conditions in which respiratory chain activity is

maintained [15]. By using digitonin as a detergent and BN-

PAGE, we could detect such supercomplexes (Figure 1B) and

found that mitochondrial supercomplex formation was decreased

in DJ-1 null cells. We postulated that the aberrant formation of

mitochondrial supercomplex and native complex I was due to a

defect in assembly of complex I [16]. Mitochondrial complex I

assembly occurs in a step-by-step manner [13]. After assembly of

mitochondrion-encoded respiratory complex subunits, the nucle-

us-encoded respiratory complex subunits are then assembled via

assembly factors such as B17.2L [17] and Ind1 [18]. Because DJ-

1 localizes to both the cytosol and nucleus, we expect that DJ-1 is

associated with the nucleus-originating mitochondrial subunits,

which are mostly assembled during the last steps of the

mitochondrial assembly pathway [13]. To determine whether

the mitochondrial complex defect observed in DJ-1 null cells is

related to mitochondrial complex I formation, we performed two-

dimensional (2D) gel analysis of the mitochondrial native

complexes. We found that expression of the uppermost dot

protein is lost in DJ-1 null cells (Figure 1C-a). Furthermore,

normalization of the proteins loaded in the two gels (DJ-1 null vs.

SN4741) revealed significant reductions in expression of complex

I proteins in DJ-1 null cells (Figure 1C-b, c). Finally, we used

MS/MS analysis to identify the missing dot as NDUFS1 which is

a nucleus-encoded mitochondrial subunit of complex I

(Figure 1D-a, b).

Complex I deficiency causes mitochondrial dysfunction
Oxidative damage to complex I subunits results in increased

levels of protein carbonylation and a reduced electron transfer

rate, suggesting that defective assembly of complex I could

contribute to PD pathogenesis by altering mitochondrial function

[19]. Therefore, we next investigated functional changes in

mitochondria in DJ-1 null dopaminergic neuronal cells.

Basal oxygen consumption was significantly lower in DJ-1 null

cells compared to SN4741 cells, whereas no difference in oxygen

consumption was observed following treatment of the cells with

oligomycin (an inhibitor of ATP synthase), which serves as a

negative control (Figure 2A-a). Oxygen consumption was also

lower in DJ-1 null cells compared to SN4741 cells after treatment

with CCCP, which uncouples proton pumping from ATP

synthesis and represents a positive control for oxygen consumption

(Figure 2A-a). To normalize the level of oxygen consumption,

basal oxygen consumption was compared in cells treated with

rotenone (which disrupts electron transfer from complex I to

ubiquinone) to give a non-mitochondrial oxygen consumption

value: overall, basal respiration was about 23% lower in DJ-1 null

cells compared to SN4741 cells (Figure 2A-b).

Furthermore, DJ-1 null cells exhibited a slightly increased

accumulation of rhodamine 123 dye in the inner mitochondrial

membrane (as measured by low-intensity fluorescence), indicating

decreased mitochondrial membrane potential (Figure 2B). Thus,

the observed reductions in both oxygen consumption rate and

mitochondrial membrane potential suggest disruption of ATP

production in the mitochondrial respiratory chain. Indeed, the

rate of ATP production in DJ-1 null cells was significantly lower

than in SN4741 cells, as measured by comparing with the basal

level induced by treatment with oligomycin (Figure 2C).

Structural abnormalities of mitochondria in DJ-1 null cells
Mitochondrial defects may be involved in the early stages of PD

pathogenesis [20]. In addition to mitochondrial functional defects,

disruption of the fission/fusion machinery is considered an

important factor in PD pathogenesis, leading to decreased

DJ-1 Maintatins Mitochondrial Complex I Formation
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mitochondrial energy production, increased oxidative stress, and

impaired calcium homeostasis [21]. Therefore, we examined

mitochondrial morphology in DJ-1 null cells by confocal

microscopy. We found the mitochondria to be smaller in DJ-1

null cells than in SN4741 cells (Figure 3A). Furthermore, electron

microscopy revealed that most DJ-1 null cells had smaller

mitochondrial areas than SN4741 cells (Figure 3B-a,b). However,

obvious defects of the mitochondrial matrix or mitochondrial

swelling were not observed. In addition to the smaller mitochon-

drial size, the numbers of mitochondria were reduced in DJ-1 null

cells although DJ-1 null cells were bigger than SN4741 cells

(Figure 4B-a,c). We also checked the viable mitochondrial mass by

staining cells with MitoTracker green dye and analyzing them by

FACS. The viable mitochondrial mass was lower in DJ-1 null cells

compared to SN4741 cells, indicating that both mitochondrial size

and number were reduced in the cells (Figure 3C).

Rotenone, an inhibitor of mitochondrial complex I that causes

PD symptoms by producing ROS, sequentially induces fissional

morphologic changes [19,22]. Therefore, we treated cells with

rotenone to investigate potential involvement of the complex I

assembly pathway in the mitochondrial defect of DJ-1 null cells.

We determined the concentration of rotenone that was not

Figure 1. Identification of abnormalities of respiratory complex subunits in DJ-1-deficient cells. (A-a): SN4741 represents dopaminergic
neuronal cells and DJ-1(2/2) represents dopaminergic neuronal cells homozygous for a DJ-1 gene deletion. To compare the native state of the
respiratory complexes in these cell lines, isolated mitochondria were solubilized by n-dodecyl-b-d-maltoside (DDM) and resolved by using blue
native-polyacrylamide gel electrophoresis (BN-PAGE). After transferring to a nitrocellulose membrane, the blot was incubated with monoclonal
antibodies against five mitochondrial complex subunits using MS601 antibody cocktail (MitoSciences, Eugene, OR). The molecular weight of
mitochondrial complex I was about 1000 kDa. Normalization of isolated mitochondria was achieved based on HSP60 protein expression level. The
result shown is representative of three independent experiments. (A-b): Protein expression levels were analyzed quantitatively by densitometry.
Error bars represent the mean 6 SD. Significant difference compared to SN4741 cells: ***, p,0.001. (B): Isolated mitochondria solubilized by
digitonin were analyzed by BN-PAGE for supercomplex detection. Supercomplex was detected by using MS601 monoclonal antibody cocktail as
described above. I+III2+IV: supercomplex formed of complex I, dimeric complex III, and complex IV. I+III2: supercomplex formed of complex I and
dimeric complex III. III2+IV: supercomplex formed of dimeric complex III and complex IV. III2: supercomplex formed of dimeric complex III (C-a): 2D
gel analysis. BN-PAGE was performed with mitochondria isolated from SN4741 cells or DJ-1 null cells to obtain the first dimension of resolved native
complexes. By using BN-PAGE gels strips, further separation in the second dimension was performed by SDS-PAGE. In DJ- null cells, in the complex I
lane of the 2D gel, the uppermost dot is missing; compare the circles marked by asterisks in the two panels. (C-b,c): Quantification of complex I ‘dot’
levels. Two dots present in SN4741 cells were compared to the dots of DJ-1 null cells in the same position. The upper dot levels in each cell line were
normalized to the lowest dot in the complex I lane of the respective cell lines and the value obtained for the DJ-1 null cells was compared to that of
the SN4741 cells; the results are derived from three independent experiments. (D-a, b): The spot on the gel was analyzed by mass spectroscopy and
determined to be the complex I subunit NDUFS1.
doi:10.1371/journal.pone.0032629.g001
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cytotoxic to DJ-1 null and SN4741 cells (Figure S3) and

subsequently treated these cells with10 nM rotenone for 24 h to

measure the change in mitochondrial membrane potential and

identify disruption of mitochondrial function (Figure 2B). Howev-

er, the rotenone-treated cells did not exhibit decreased mitochon-

drial mass or decreased mitochondrial complex I assembly

(Figures 3C and 3D). Unlike the mechanism of rotenone-induced

dopaminergic neuronal cell death, our results support the

hypothesis that DJ-1 dysfunction causes mitochondrial fragmen-

tation through a defect in assembly of complex I.

Overexpression of wild-type DJ-1 abrogates the complex
I assembly defect

As demonstrated above, DJ-1 deficiency results in dopaminergic

neuronal cells having smaller mitochondria (Figure 3A), consistent

with findings in DJ-1 null mouse embryonic fibroblasts [12]. To

demonstrate that the mitochondrial defects are indeed caused by

DJ-1 deficiency in DJ-1 null cells, we generated an adenovirus

encoding wild-type DJ-1 (AdDJ-1) to rescue DJ-1 function in

mitochondrial complex assembly. In contrast to transfection of the

mock virus, AdDJ-1 transfection resulted in increased DJ-1 protein

expression in DJ-1 null cells (Figure 4A). AdDJ-1 transfection

rescued the mitochondrial fragmention and fission defects of the

null cells (Figure 4B). We also observed that the native complex I

expression level was increased after AdDJ-1 transfection, based on

BN-PAGE analysis (Figures 4C-a, b). Finally, we also measured

the ATP/ADP ratio in DJ-1 null and AdDJ-1-transfected cells to

determine mitochondrial functional changes. Overexpression of

DJ-1 in DJ-1 null cells restored the ATP/ADP ratio to the level

seen in SN4741 cells (Figure 4D).

Discussion

One of the least understood mechanisms of PD pathogenesis is

how a genetic defect induces dopaminergic neuronal cell death

[20]. Ubiquitin-proteasomal system (UPS) defects and mitochon-

drial dysfunction have been implicated in neuronal cell death

resulting from genetic dysfunction in PD [23]. The UPS may play

a role in detoxification and targeting of dysfunctional proteins for

degradation. On the other hand, because mitochondria are the

Figure 2. DJ-1 gene deletion decreases mitochondrial respiratory chain function in dopaminergic neuronal cells. (A-a, b): The O2

consumption rate (OCR) was measured in SN4741 cells and DJ-1 null cells in at least three independent experiments by using an XF analyzer. For
validation of the measured O2 consumption rate, we used the 2 mg/ml oligomycin, 5 mM CCCP, and 1 mM rotenone sequentially. Each time point
represents the mean (6SD), and compensated OCR data without background levels are shown in (b) with bar graphs. ***, p,0.001 (B): Mitochondrial
membrane potential was investigated by rhodamine 123 staining and quantified by FACS analysis. ***, p,0.001 (C): The cell pellet was solubilized by
digitonin and the mitochondrial ATP production rate was measured by a luminometer. To confirm that the calculated luminescence values
represented ATP content, oligomycin was used to inhibit ATP production. *, p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0032629.g002
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primary target of PD-related toxins and supply the energy to

neuronal cells, mitochondria are likely to be the first organelle to

mediate neuronal cell death. In a previous study, we reported that

mitochondrial complex I activity of DJ-1 null cells is specifically

reduced [14]. In the present study, we determined that DJ-1 has a

role in the assembly of complex I and that DJ-1 mutation causes

both mitochondrial structural and functional defects, which may

be the basis for susceptibility to dopaminergic neuronal cell death.

Recently, a role(s) for DJ-1 in mitochondria was suggested.

Translocation of DJ-1 to mitochondria can prevent cell death by

lowering mitochondrial ROS [24]. Furthermore, DJ-1 appears to

be involved in removing damaged mitochondria by activating

mitophagy [11]. In addition, our data show that loss of DJ-1

induces mitochondrial fragmentation and fissional morphologic

changes. These findings suggest the DJ-1 mutation induces

mitochondrial defects, affecting especially the mitochondrial

respiratory chain, which is the major site of ROS production in

the cell. In addition to these phenotypic analyses of DJ-1 function

in mitochondria, Hayashi et al. reported that DJ-1 binds to the

complex I subunits ND1 and NDUFS4 in yeast two-hybrid assays

[25]. Therefore, although the possibility of a direct interaction

between mitochondria and DJ-1 has been suggested, it is not

known how DJ-1 contributes to the stability of complex I. Our

BN-PAGE analysis revealed that DJ-1 is involved in complex I

formation. We additionally used 2D analysis to show that aberrant

formation of complex I in DJ-1 null cells occurs without NDUFS1,

which is localized in the matrix arm and is the highly conserved

core subunit of the Fe-S center. Mutation of ndufs1 is associated

with genetic diseases such as leukoencephalopathy and Leigh

syndrome [23,26]. However, the relevance of ndufs1 mutation to

PD and how it affects PD pathogenesis is not clear.

A cohort study of individual mitochondrial subunits could

explain only 40% of patients with mitochondrion-related diseases

[23]. Therefore, assembly or stability factors may also be

responsible for the development of mitochondrial dysfunction-

related diseases [27]. It is very interesting that we identified DJ-1

Figure 3. Fissional/fragmental changes of mitochondrial structure in DJ-1 null cells. (A): To identify mitochondrial morphologic changes,
SN4741 cells and DJ-1 null cells were stained with MitoTracker red and co-stained with antibodies to COX4, which is a subunit of complex IV. The
nucleus was identified by DAPI staining. The cells were sequentially observed by confocal microscopy at a magnification of 6400. (B-a): Cells were
fixed, cryosectioned, and observed by transmission electron microscopy (TEM). DJ-1 null cells exhibit smaller mitochondria, which is apparent at a
higher magnification (inset, 650,000). The original magnification was 615,000. (B-b): Mitochondrial area was analyzed by Image J software. A
minimum of 20 TEM slides was evaluated to characterize mitochondrial dynamics. We divided the section equally between the largest area and the
smallest area of mitochondria and measured the number of mitochondria in that section. Compared to SN4741 cells, most of the DJ-1 null cells had
smaller mitochondria. (C-a, b): Mitochondrial mass was evaluated by MitoTracker green staining and quantified by FACS analysis. DJ-1 null cells
showed a left shift in the curve, indicating reduced mitochondrial mass. Significant differences were consistently observed in three independent
experiments. ***, p,0.001 (D): Rotenone (10 nM), an inhibitor of complex I, did not induce changes in mitochondrial complex native protein as
assessed by BN-PAGE analysis. HSP60 was used as a loading control. *** p,0.001.
doi:10.1371/journal.pone.0032629.g003
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as an assembly factor for complex I. To date, six assembly factors

are known to be involved in complex I assembly [28]. However,

none of these assembly factors has been implicated in PD

pathogenesis. In principle, assembly-factor defects could disrupt

complex I activity and subsequently induce mitochondrial

fragmentation, the same processes that are heavily implicated in

PD pathogenesis. Consistent with this model, defects in mito-

chondrial function and structure in DJ-1 null cells result from

defects in assembly of complex I and could be considered as a

potential causative factor in PD development.

There is some evidence that DJ-1 regulates dopaminergic

neuronal pacemaking [29]. In DJ-1 null cells, down-regulated

expression of uncoupling proteins (UCP4 and UCP5) decreases

the mitochondrial membrane potential and generates mitochon-

drial oxidative stress. It therefore appears that the most important

function of DJ-1 is the maintenance of mitochondrial membrane

potential. According to our results, DJ-1 null cells have a reduced

rate of O2 consumption and an abnormal mitochondrial

membrane potential. This shows that DJ-1, by means of its

assembly factor function, has an additional mechanism for

maintaining mitochondrial membrane potential.

In a previous study we found that DJ-1 null cells generate higher

levels of mitochondrial superoxide compared to SN4741 cells. In

the present study we focused on DJ-1 function in complex I

assembly as one of the factors affecting mitochondrial ROS

generation. Along with the pacemaking function of DJ-1 by

regulation of UCP channels, our results suggest that DJ-1 also

maintains mitochondrial membrane potential by sustaining

complex I formation. We propose that neuronal cell death due

to DJ-1 mutation is caused by aberrant assembly or maintenance

of complex I and the consequent failures of mitochondrial function

and structure.

Materials and Methods

Cell lines and culture conditions
Establishment of the dopaminergic neuronal cell line SN4741

and the DJ-1 null dopaminergic neuronal cell line was described

previously [30]; both cell lines were kindly provided by Dr. Son

(Ewha Womans University in Korea). Briefly, SN4741 DJ-1+ and

DJ-1 null cells were established from the substantia nigra region of

E13.5 ‘‘wild-type’’ and double DJ-1 knockout mouse embryos,

respectively. The cells were characterized for expression of the

general neuronal markers TuJ1, NeuN and tyrosine hydroxylase

by western blot analysis. Cells were grown in RF medium

containing Dulbecco’s modified Eagle’s medium (DMEM, Gibco)

Figure 4. Recovery of mitochondrial assembly by overexpression of DJ-1 reverses mitochondrial defects. (A): Forty-eight hours after
transfection of AdDJ-1, overexpression of DJ-1 protein was confirmed by western blotting. (B-a, b, c): Mitochondrial structure was evaluated by TEM
and quantified by mitochondrial area and number. (C-a): Overexpression of AdDJ-1 rescued mitochondrial complex I structure, as revealed by BN-
PAGE. (C-b): Statistical analysis of protein expression levels showed a significant recovery by AdDJ-1 compared to transfection with mock virus. (D):
The ADP/ATP ratio was measured by fluorometry using an ApoSensor kit. *, p,0.05; **, p,0.01; *** p,0.001.
doi:10.1371/journal.pone.0032629.g004
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supplemented with 10% (v/v) heat-inactivated fetal bovine serum

(Gibco), 1% glucose, penicillin (100 units/ml)–streptomycin

(100 mg/ml), and L-glutamine (2 mM) at 33uC with 5% CO2, as

described previously [30].

Reagents
Digitonin was purchased from Sigma (Sigma-Aldrich, St. Louis,

MO, USA) and dissolved in dimethyl sulfoxide (DMSO).

MitoTracker red, green, and rhodamine 123 were purchased

from Molecular Probes (USA) and dissolved in distilled water.

Oligomycin and rotenone were dissolved in ethanol. Adenosine

pentaphosphate, malate, pyruvate, succinate, and luciferin were

dissolved in distilled water. The anti-DJ-1 rabbit polyclonal

antibody was purchased from Novus Biological (Novus, Littleton,

CO, USA). The anti-COX4 mouse monoclonal antibody and

anti-ß-actin rabbit polyclonal antibody were purchased from Santa

Cruz Biotechnology (Santa Cruz, CA, USA). For detection of

mitochondrial complexes in BN-PAGE, we used the anti-MS601

antibody cocktail (MitoSciences, Eugene, OR).

Isolation of mitochondria
Isolation of mitochondria was performed as described [31].

Cells were suspended in buffer A (250 mM sucrose, 2 mM

HEPES, pH 7.4, and 0.1 mM EGTA) and centrifuged at 3206 g

for 10 min. Cell pellets were homogenized in buffer A with a glass-

teflon homogenizer. The homogenate was centrifuged at 5706 g

for 10 min and the supernatant was retained. For crude

mitochondria preparation, the supernatant was centrifuged at

14,0006 g for 10 min. The pellet was resuspended in buffer B

(25 mM potassium phosphate, pH 7.2 and 5 mM MgCl2) and

centrifuged at 15,0006g for 10 min. The mitochondrial pellet was

used or stored at 270uC for BN-PAGE. The mitochondrial

preparation was validated by using mitochondrion-specific anti-

body (anti-COX4) and western blotting. To rule out contamina-

tion by nuclear or cytosolic proteins, the isolated mitochondria

were evaluated with Lamin B antibody as a nuclear protein

marker and copper-zinc superoxide dismutase and tubulin

antibodies as cytosolic markers (Figure S4).

BN-PAGE analysis
One-dimensional and 2D BN-PAGE analyses were performed

with isolated mitochondria that were lysed with n-dodecyl-b-D-

maltoside using the Native PAGE TM NovexH Bis-Tris Gel system

(Invitrogen, USA) according to the manufacturer’s instructions.

Briefly, 30 mg of isolated mitochondria were solubilized using

sodium dodecyl maltoside. Digitonin was used in the lysis buffer

for detection of the mitochondrial supercomplex. The suspensions

were centrifuged at 20,0006 g for 10 min at 4uC. The resulting

supernatants were loaded onto a native polyacrylamide Novex 3–

12% Bis-Tris Gel, and electrophoresis (PAGE) was performed, and

the proteins were transferred to a polyvinylidene fluoride (PVDF)

membrane. After fixing with 8% acetic acid, the membrane was

blocked with 5% skim milk in TBS-T (10 mM Tris-HCl, pH 7.6,

150 mM NaCl and 0.1% Tween 20) for 1 h. Anti-OxPhos

Complex Kit (Invitrogen) antibody was used. The proteins were

detected using Western BreezeH (Invitrogen) Chromogenic

Western Blot Immunodetection Kit. For 2D analysis, sodium

dodecyl sulfate (SDS)-PAGE was performed and the gel was

stained with silver nitrate.

In-gel digestion
Stained proteins were excised from the gels and destained with a

solution containing 30 mM potassium ferricyanide and 100 mM

sodium thiosulfate. The gel slices were rinsed several times with

distilled water to stop the reaction. The gel slices were dried and

incubated in a solution containing 10 mM dithiothreitol and

100 mM ammonium bicarbonate at 56uC to reduce protein

disulfide bonds, followed by incubation in 100 mM iodoacetamide

to alkylate cysteines. The gel slices were then washed with 2–3

volumes of distilled water and dried using a speed vacuum

concentrator. After swelling the gels with 30 ml of 50 mM

ammonium bicarbonate, proteins were digested with 7–8 ml

trypsin (0.1 mg/ml) at 37uC for 12–16 h. The digested peptides

were then recovered using 2 extractions and the peptide extracts

were pooled. Pooled extracts were lyophilized in a vacuum

centrifuge and dissolved in 0.5% TFA solution before MS or MS/

MS analysis.

Protein identification by LC-MS and MS/MS
To improve the ionization efficiency of MALDI TOF/MS,

sample peptides were desalted using a Zip-Tip C18 (Millipore,

USA). Peptides were eluted onto MALDI target plates using

matrix solution (10 mg/ml a-cyano-4-hydroxycinnamic acid

dissolved in a solution consisting of 50% acetonitrile and 0.5%

TFA). All mass spectra were acquired in reflection mode using

a 4700 proteomic analyzer (Applied Biosystems, Framingham,

MA, USA). When the PMF results were not satisfactory, MS/

MS search results were used to support the PMF results.

Protein identification and quantification were performed using

Mascot version 2.2 software (Matrix Science Inc., Boston,

MA).

Measurement of mitochondrial oxygen consumption
Cellular oxygen consumption was measured using a Seahorse

Bioscience XF24 analyzer (Seahorse Bioscience Inc., USA) in

24-well plates at 37uC, with correction for positional temper-

ature variations adjusted from 4 empty wells evenly distributed

within the plate [32]. SN4741 and DJ-1 null cells were seeded at

25,000 cells per well during 18 hours prior to the analysis and

each experimental condition was performed on 7 biological

replicates. Before each measurement, the cells were washed and

590 ml of non-buffered medium (sodium bicarbonate-free

DMEM, pH 7.4) was added to each well. After a 15-min

equilibration period, three successive 2-min measurements were

performed at 3-min intervals with inter-measurement mixing to

homogenize the oxygen concentration in the medium, and each

condition was measured in independent wells. Concentrated

compounds (106) were injected into each well by using the

internal injectors of the cartridge and three successive 2-min

measurements were performed at 3-min intervals with inter-

measurement mixing.

Measurement of mitochondrial membrane potential
Mitochondrial membrane potential was evaluated using rhoda-

mine 123 dye, which is a positively molecule that is sensitive to the

proton gradient and can accumulate in energized mitochondria

[33]. DJ-1 null cells and SN4741 cells were grown in 6-well plates

for 24 h and washed with PBS 3 times. Cells were stained with

rhodamine 123 for 15 min at 37uC in an incubator. Cells were

trypsinized, centrifuged at 8006 g at room temperature (RT), and

resuspended in PBS (pH 7.4). Samples were analyzed on a

FACScan (BD Biosciences, Bedford, MA, USA) and data analysis

was performed with BD FACSDiva software (BD Biosciences,

Bedford, MA, USA). To verify the membrane potential measure-

ments, we used high doses of the mitochondrial complex inhibitors

rotenone, oligomycin and CCCP (Figure S5).
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Analysis of mitochondrial ATP synthesis rate
To measure mitochondrial ATP synthesis rate, cells were

harvested by trypsinization, centrifuged at 8006 g at RT, and the

cell pellet was washed with glucose and serum-free medium [34].

Cells were incubated in buffer A [150 mM KCl, 25 mM Tris-

HCl, 2 mM EDTA, 0.1% BSA, 10 mM potassium phosphate, and

0.1 mM MgCl2 (pH 7.4)] for 1 min at RT to permeabilize the cell

membrane. The cell pellet was resuspended in buffer A and

diadenosine pentaphosphate, malate, pyruvate, and succinate were

added to the cell solution. Luminometer measurements of the cell

pellet and solution mixture were made immediately after addition

of ADP and buffer B (0.5 M Tris-acetate, pH 7.75, 0.8 mM

luciferin, and 20 mg/ml luciferase). Cells treated with oligomycin

were used as the control. Oligomycin, an ATP synthase inhibitor,

disrupts electron transfer in the mitochondrial respiratory chain,

blocking ATP production.

Adenovirus-mediated overexpression of DJ-1
DJ-1 was overexpressed in DJ-1 null cells by using Ad DJ-1,

according to our previously reported methods [14]. The protein

level of DJ-1 resulting from Ad DJ-1 transfection was evaluated by

western blotting.

ATP/ADP ratio
An ApoSensor ADP/ATP Ratio Assay Kit was used to measure

the ADP/ATP ratio (BioVision, Mountain View, CA, USA).

Briefly, cells were grown in 6-well plates at 33uC for 24 h. The

medium was removed and 100 ml of nucleotide-releasing buffer

was added for 5 min. ATP levels were assessed by the addition of

1 ml of the ATP monitoring enzyme followed by the immediate

measure of ATP content by using a luminometer. After 10 min,

1 ml of ADP converting enzyme was added to measure the ADP

content.

Electron microscopic analysis
DJ-1 null and SN4741 cells were fixed in 2.5% glutaraldehyde

in PBS, harvested, centrifuged, and dehydrated in a series of

ethanol. The 70% ethanol step was saturated with uranyl acetate

for contrast enhancement. Dehydration was completed in

propylene oxide and the specimens were produced on a FCR

Reichert Ultracut Ultramicrotome, mounted on pioloform-coated

copper grids, and contrasted with lead citrate. Specimens were

analyzed and documented with an EM 10A electron microscope.

Approximately 5–10 mitochondria per slide were examined to

obtain a characterization of mitochondrial dynamics by analyzing

mitochondrial area. Mitochondrial area was analyzed by the

Image J program with a minimum of 20 slides. The total number

of analyzed mitochondrial areas was 160. We divided the section

equally between the largest area and the smallest area of

mitochondria and measured the number of mitochondria in that

section. The number of mitochondria was counted in each cell and

a total 10 cells was counted and subjected to statistical analysis.

Immunocytochemistry
Cells were grown in 12-well plates with a cover slip for 24 h. For

MitoTracker red staining, cells were incubated under culture

conditions and the MitoTracker red dye was added. After 20 min,

cells were fixed with 3% paraformaldehyde and permeabilized

with 0.1% Triton X-100. After blocking with 1% BSA, cells were

incubated with an anti-COX4 antibody (1:250; Santa Cruz) and

FITC-conjugated anti-mouse secondary antibody according to the

manufacturer’s instructions (Santa Cruz Biotechnology, CA,

USA). Slides were cover-slipped with VECTASHIELD mounting

medium and photos were taken on an OlympusTM confocal

microscope at 6400 magnification.

Preparation of cell lysates and western blot analysis
Proteins were extracted with RIPA buffer (10 mM Tris-HCl,

pH 8.0, 150 mM NaCl, 1% Nonidet P-40) containing protease

inhibitors (Roche, Mannheim, Germany). Protein concentrations

was measured using the Bradford method [35]. Samples were

resolved by 10% SDS-PAGE and transferred to Hybond ECL

membranes (Amersham Pharmacia Biotech, Buckinghamshire,

UK). The membrane was blocked in Tris-buffered saline

containing 0.1% Tween 20 (TBS/T) with 5% nonfat skim milk

for 1 h at RT and incubated with primary antibody for 1 h at RT.

After 3 washes in TBS/T, the membrane was incubated with

horseradish peroxidase-conjugated secondary antibody for 1 h at

RT. After 3 washes in TBS/T, the membrane was visualized by

enhanced chemiluminescence (Amersham Pharmacia Biotech,

Buckinghamshire, UK).

Statistical analysis
Statistical analyses were performed as recommended by an

independent statistician. This included the unpaired Student’s t-

test. All values are expressed as mean 6 standard deviation (SD)

and p values,0.05 were considered to be statistically significant.

Supporting Information

Figure S1 Identification of mitochondrial respiratory
chain complex subunits in SN4741 and DJ-1 null cells.
SN4741 and DJ-1 null cells were lysed in RIPA buffer and protein

concentration was measured by Bradford assay. After transferring

to PVDF membrane, the blots were incubated with primary

antibodies to subunits of each mitochondrial complex. NDUFA9 is

a subunit of complex I, SDHA is a subunit of complex II, UQCR1

is a subunit of complex III, COX4 is a subunit of complex IV, and

ATP5a1 is a subunit of complex V. Beta-actin was used as a

loading control. Except for COX4, no differences in expression

levels between SN4741 and DJ-1 null cells were evident for any of

the other mitochondrial complex subunits.

(PPTX)

Figure S2 Reduced mitochondrial complex I activity in
DJ-1 null cells. Mitochondrial complex I activity was measured

as described previously [14]. Briefly, mitochondrial extracts were

disrupted by freezing and thawing 3 times in hypotonic buffer

[25 mM potassium phosphate (pH 7.2), 5 mM MgCl2]. Complex

I activity was measured by following the reduction in absorbance

due to the oxidation of NADH at 340 nm for 3–5 min. The

mitochondrial proteins (20–50 mg) were added in buffer containing

50 mM Tris-HCl, pH 8.1, 0.25% BSA, 0.3 mM KCN, 100 mM

NADH, 50 mM CoQ, 5 mM rotenone at 37uC. Complex I-specific

activity was measured with and without 5 mM rotenone for 3–

5 min. Complex I activity was decreased by about 30% in DJ-1

null cells compared to SN4741 cells. This result is based on

measurements from three independent experiments. *** p,0.001.

(PPTX)

Figure S3 Viability of SN4741 cells as a function of
rotenone concentration. The viability of rotenone-treated

SN4741 cells was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. SN4741 cells were

plated at 16104 per well in 96-well tissue culture plates and

incubated at 33uC. The cultured cells were treated with rotenone.

After 24 h the cells were incubated with MTT for 2 h and

dissolved in DMSO and read at 570 nm using a microplate reader
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(VERSAmax, Molecular Devices Corp., Sunnyvale, CA). Rote-

none concentrations .20 nM were found to have noticeable toxic

effects on SN 4741 cells.

(PPTX)

Figure S4 Identification of the mitochondrial fraction.
Validation of the mitochondrial fraction was performed by using

organelle-specific antibody. Ant-COX4 antibody was used to

detect the mitochondrial fraction, Lamin B antibody was used to

detect the nuclear fraction, and CuZnSOD and tubulin were used

to detect the cytosolic fraction. The isolated mitochondria

expressed high levels of COX4, but did not express Lamin B,

CuZnSOD or tubulin. HSP60 was used as a loading control.

(PPTX)

Figure S5 Validation of mitochondrial membrane po-
tential measurements by using respiratory chain inhib-
itors. Mitochondrial membrane potential was detected by

rhodamine 123 dye using FACS analysis. We used high doses of

rotenone (200 nM) and CCCP (5 mM) as positive controls and

oligomycin (2 mg/ml) as a negative control. As expected, treatment

with rotenone and CCCP showed a leftward shift of the median

line, which indicates that the mitochondrial membrane potential

was depolarized. In contrast, treatment with oligomycin showed a

rightward shift of the median line, which indicates hyperpolariza-

tion of mitochondrial membrane potential.

(PPTX)
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