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Abstract
Recent advances in non-invasive neuroimaging have enabled the measurement of connections
between distant regions in the living human brain, thus opening up a new field of research: Human
connectomics. Different imaging modalities allow the mapping of structural connections (axonal
fiber tracts) as well as functional connections (correlations in time series), and individual
variations in these connections may be related to individual variations in behaviour and cognition.
Connectivity analysis has already led to several important advances. Segregated brain regions may
be identified by their unique patterns of connectivity, structural and functional connectivity may
be compared to elucidate how dynamic interactions arise from the anatomical substrate, and the
architecture of large-scale networks connecting sets of brain regions may be analyzed in detail.
The combination of structural and functional connectivity has begun to reveal key patterns of
human brain organization, such as the existence of distinct modules or sub-networks that become
engaged in different cognitive tasks. Collectively, advances in human connectomics open up the
possibility of studying how brain connections mediate regional brain function and thence
behaviour.
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Introduction
The principal goal of connectomics is the comprehensive mapping and analysis of brain
connectivity, across all scales, from the micro-scale of individual synaptic connections
between neurons to the macro-scale of brain regions and interregional pathways [1]. The
nascent field of macro-connectomics, at first glance, shares little but a name with its
microscopic cousin. Instead of building maps of neural circuits that are detailed enough to
include every axonal connection, macro-connectomics attempts to map brain connections at
the largest scale. In doing so, it bridges two influential ideas in systems neuroscience [2].
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Functional specialisation considers large regions of the brain’s grey matter as individual
units that become engaged in different functional contexts; and functional integration
considers how such brain regions interact and influence one-another to produce coherent
experiences and behaviour (e.g. [3,4]). It is this systems-level understanding of neural
processing that has most to benefit from macro-connectomics, which aims to provide
systematic approaches both for identifying functional sub-units, and for mapping the
connections between them.

Invasive techniques for localising brain regions and tracing anatomical connections have
existed for many decades. Tracers are injected into a candidate brain region, taken up inside
cells and transported along the axon. Post-mortem histological staining then reveals the
distribution of the labelled axons and their connections with distant cells. Tracer techniques
are exquisitely precise and accurate. Using different tracers, experimenters may specifically
map connections travelling in different pathways or emerging from different cell types or
layers. Using viral tracers, monosynaptic or multi-synaptic connections may be selectively
labelled. Recent advances have been directed at detailed and accurate quantification of the
density of regional brain connections [5,6].

By comparison, presently available techniques for measuring brain connections non-
invasively are based on a process of inference – their estimation is indirect; they can be
difficult to interpret quantitatively; and they continue to be error-prone. However, their non-
invasive nature and ease of measurement permit us to address scientific questions that
cannot be answered by any other means. In particular, brain connections can be measured in
living human subjects, and measurements can be made simultaneously across the entire
brain, thus permitting the creation of a comprehensive whole-brain connection map, the
connectome. Hence, areal connections may be compared in humans across individuals and
across many cortical and sub-cortical sites, allowing detailed studies of connectional
organisation and individual differences. Furthermore, these techniques enable direct
investigation of the common rationale that underlies the study of brain circuitry at any scale
– the assumed importance of connectional architecture for functional processing and thence
behaviour. Using in vivo techniques, this dependence may be tested directly, by comparing
structural connectivity to measurements of regional activations and interregional correlations
(functional connectivity). Furthermore, variations in anatomical or functional connectivity
across the population may be related to variations in behavioural abilities[7].

In this review, we survey the current state-of-the-art in human connectomics, including a
comparison of techniques for mapping brain connectivity, the use of connectivity data to
discern functionally specialized regions, the relation of structural to functional connections,
and the use of network analysis measures to quantitatively characterize the architecture of
the human connectome.

Measuring regional brain connections in the living human brain
There are two common approaches for mapping inter-regional connections in-vivo. They
both use Magnetic Resonance Imaging (MRI), but rely on very different principles.
Diffusion tractography aims to infer the tracks of axon bundles millimetre-by-millimetre as
they traverse the brain’s white matter. By contrast, resting state functional MRI measures
spontaneous fluctuations in the blood-oxygenation-level-dependent (BOLD) signal in grey
matter regions and estimates statistical dependencies between these BOLD time series,
usually expressed as cross-correlations.
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Diffusion tractography
Central to all diffusion tractography studies is the anisotropic diffusion of water in and
around axons. Whilst freely diffusing molecules will diffuse equally in all directions, the
presence of semi-permeable boundaries in tissue may hinder diffusion along some
orientations but not others. In brain white matter, axonal membranes and myelin sheaths
hinder diffusion perpendicular to the axon [8], leaving diffusion fastest along the axon. This
orientational dependence of diffusion is termed anisotropy. Using diffusion-weighted MRI,
we can measure this anisotropy and the peak diffusion orientations in each imaging voxel
[9] [10] [11] [12] (Fig. 1). However, such voxels cover cubes of tissue around
1.5×1.5×1.5mm3, each potentially containing tens of thousands of axons. The diffusion
orientations we measure therefore relate to the orientations of bundles of coherently oriented
axons passing through the voxel. By tracing these orientations voxel-to voxel through the
white matter, diffusion tractography reconstructs these bundles and thence interregional
connections [13] (Fig. 1).

It is easy to imagine that such a process is prone to error. Fiber bundles may cross, split or
merge as they pass through the voxel. Even in parts of white matter where such complexities
do not exist, successive measurement errors are compounded along the pathway. In
combination, these biological and methodological factors cause spread and uncertainty in
the reconstructed fiber trajectories. This spread cannot be captured by deterministic
tractography approaches that associate each seed with a single connection. By contrast
distributed or probabilistic tractography approaches use sophisticated algorithms to estimate
this spread [14] or uncertainty [15,16]. In these techniques each seed is associated not with a
single connection, but rather a distribution of connection probabilities to all other brain
regions (e.g. [17], Fig. 1).

Nevertheless, direct comparison with invasive studies in non-human primates reveal that,
whilst current tractography approaches successfully map many existing connections, they
also suffer from both false positive and false negative results [18]. Minimising such errors is
a major focus of methodological research in the field. Higher quality data is being acquired
using new and more powerful scanners [19], and ingenious scanning strategies that
maximise hardware potential (e.g. [20]). Novel algorithms are being developed for
reconstructing complex white matter features from the diffusion-weighted signal [21,22] that
can be used to inform and constrain tractography solutions [23].

Functional connectivity
Unlike tractography, fMRI connectivity approaches do not attempt to measure brain
connections directly. Instead they express connectivity as statistical dependencies between
patterns of grey matter activity [24]. At rest, regional brain activity exhibits low frequency
oscillations that are correlated across distant brain regions (Fig. 1). Despite the fact that the
neural origin of these slow signal fluctuations is still only partially understood [25], resting-
state functional connectivity has proven to be extraordinarily informative about brain
organization. Regions engaging in coherent oscillations are organised into distinct networks
[26,27] that are highly consistent across individuals [28-30]. Nevertheless, inter-individual
variability in these functional connections is predictive of genetic variability[31],
neurodegeneration [32], and behavioural differences [33]. Notably, the exact same networks
can be reconstructed by considering which regions co-activate across thousands of task-
related fMRI experiments [34], suggesting that the underlying functional anatomy measured
by resting fMRI plays a central role in the task-engaged brain.

Functional connectivity estimates statistical dependencies and thus does not necessarily
reflect direct neural interactions along synaptic paths. Correlations can be the result of direct
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neural interactions mediated by synaptic links or they can be induced between brain regions
that do not share a monosynaptic connection, but, for example, are either connected
indirectly or receive common input via a third region. Ongoing research provides hope that
such ambiguities may be resolved either by examining the covariance structure of many
regions simultaneously [35], or by explicit modelling of interregional stochastic dynamics
[36].

Connectional anatomy and functional specialisation
Despite these limitations, it is clear that both anatomical and functional connectivity,
measured either invasively or by MRI, place strong constraints on regional brain function.
When the results of many invasive tracer studies are considered simultaneously [37], it is
possible to build “connectional fingerprints” for brain regions that differ in their cellular
cytoarchitecture which is assumed to reflect functional divisions. These fingerprints show
the pattern of afferent and efferent connections between the candidate and all other brain
regions (Fig. 2). Notably, each cytoarchitectonic region has a unique connectional
fingerprint [38], suggesting that constraints on regional functional processing derive not
only from the cellular, but also the connectional architecture of the local tissue.

Non-invasive techniques can harness these connectional differences to parcellate grey matter
into regions of homogeneous connectivity[39]. For example when thalamic voxels are
partitioned with tractography into regions connected to different cortical zones, the resulting
maps bear striking resemblance to histological maps of thalamic nuclear clusters [40]. These
connectivity-defined regions predict the locations within thalamus of fMRI activations for
different tasks [41]. For example, across many studies thalamic activations during motor
tasks lie within the region of thalamus primarily connected to sensori-motor cortex, whereas
executive tasks activate regions of thalamus connected to the prefrontal cortex.

Similar approaches can be taken to subdividing cortical regions [42] but here, in part due to
inter-species differences, it may be less clear what target regions will lead to accurate
parcellations. Instead, connectivity fingerprints can be calculated from each seed voxel to
every other voxel in the brain, and submitted to automated clustering routines [43,44] (Fig.
2). These early studies showed that when small patches of cortex (such as the supplementary
and pre-supplementary motor areas) were divided according to their connections, boundaries
aligned almost perfectly with those measured using relevant tasks in fMRI [43], with
functional meta-analyses [45] or with post-mortem cyto-architecture [44]. Similar
techniques have more recently been applied to sub-divide much larger patches of cortex
[46,47]. Despite their increased complexity, in each case these cortical parcellations survive
careful scrutiny with respect to known functional and cytoarchitectonic subdivisions (Fig 2).

Using similar logic, cortical and subcortical grey matter can also be parcellated according to
their patterns of functional connectivity. Indeed, the delineation of SMA and preSMA that
provided the first example of parcellation according to anatomical connections [43], can be
replicated essentially identically if functional connections are considered instead [48] and
again, similar ideas can be used to delineate multiple regional boundaries [49,50]. However,
despite their clear similarities functional and structural connectivities have different
sensitivities and biases. It is therefore likely that substantial advances in the power and
robustness of connectivity-based parcellations will be achieved by algorithms that consider
both types of data simultaneously. Using such strategies, researchers hope to be able to
provide automated systematic approaches for delineating connectional architecture across
the entire brain.
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Relating structural to functional connections
The central rationale for human connectomics builds on the premise that structural brain
connectivity can serve as a basis for understanding brain dynamics and behaviour. As
discussed earlier the two main techniques for measuring regional brain connections are
strikingly different both in what they attempt to measure (structural vs functional
connections) and in how they measure it. Can the two ways of mapping brain connectivity
be interrelated?

A series of convergent studies have reported that patterns of functional connectivity
observed during the brain’s resting-state have a structural basis [51-53] (Fig. 3). In non-
human primates, where anatomical data from tracer studies is available, the direct
comparison between maps of functional correlations and anatomical connections has
revealed striking similarities [53,54]. In humans, whole-brain maps of structural and
functional connectivity have been compiled from the same cohort of participants, allowing
their direct comparison [55-57]. While the strength of structural connectivity was found to
be partially predictive of the strength of functional connectivity, the assessment of functional
connectivity as simple cross-correlation generally does not allow the inference of underlying
structural connections. This asymmetric relationship reinforces the need for the independent
assessment of structural connections, for example with the tools of diffusion imaging and
tractography.

At the level of individual regions and pathways, strong evidence supports the idea that the
strengths of functional influences are dependent on the density or efficacy of anatomical
connections. For example, individual differences in the anatomical microstructure of the
cingulum were found to exhibit a significant correlation with functional connectivity
between midline brain regions [58]. Complete sectioning of the corpus callosum, a major
tract connecting the two cerebral hemispheres, resulted in an acute and strong reduction of
inter-hemispheric functional connectivity [59]. In some cases, measurements of structural
connectivity could be directly related to differences in individual performance, as in a recent
study of perceptual rivalry [60]. Several indices of gray and white matter structure in the
superior parietal lobes predicted individual variability in the rate at which perceptual
alternations occurred. Jointly, these studies document a crucial role of brain structure for
dynamics and behaviour. The relationship is made even more salient by recent observations
indicating that sensory and motor experience can result in structural changes in specific
brain circuits [61]. Hence, the connectome is both shaping and shaped by behaviour.

An emerging focus in the analysis of functional connectivity concerns its change across
time. Functional couplings between neural elements are increasingly viewed as highly time-
dependent – indeed they are known to be powerfully reconfigured by changes in both
internal and environmental state. Even patterns of resting-state fMRI cross-correlations
estimated from a slow physiological signal over long periods of time can exhibit significant
fluctuations [62]. At a faster time scale, electromagnetic recordings reveal rich temporal
structure in correlations and coherences across brain regions on time scales of hundreds of
milliseconds [63]. Time-varying functional connectivity implies that the set of potential
functional connections is far greater and more variable than that of direct structural linkages.
Relating specific patterns of structural connectivity to variable and dynamic functional
interactions will remain a key challenge for human connectomics, a challenge that can be
addressed with the tools and concepts offered by modern network science.

Network analysis and modeling
Brain networks generated by human connectomics studies can be described and modeled
with a broad range of network analysis tools [64,65] (Fig. 4), many of which have also been
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profitably applied in other biological systems. In general, all networks, including those
generated from brain data, consist of collections of nodes and edges, usually aggregated in
matrix form. In structural brain networks, nodes correspond to neural elements (typically
brain regions), and edges define their interconnections (typically interregional pathways). A
number of connectome studies have derived such networks from MRI data acquired over
large portions of the human brain [18,66,67]. In parallel, significant efforts have been
devoted to the development and validation of new analysis tools for brain networks,
including some for detecting network hubs [68,69], communities or modules [70], and
statistical methods for network comparison [71,72].

When extracting networks from brain data, key processing steps involve the anatomical
definition of nodes and the estimation of edges that capture their mutual structural or
functional relationship. Whilst studies that look at patches of cortex may define nodes using
the parcellation approaches described above [43] [49], these methods are not yet mature
enough to be applied across the entire brain. Node definition therefore remains a significant
challenge in whole-brain connectomics. Strategies have varied from looking at the level of
single voxels [51], through random parcellations at various levels of granularity[66] , to
coarser definitions on the basis of known landmarks or population-based templates[18,67].
The choice of approach is important since comparative analyses have demonstrated that
most networks analysis measures are sensitive to different parcellation strategies. For
example, network metrics vary significantly across random parcellations that differ in the
number of nodes and edges [71], although qualitative features of network architecture
generally remain stable [73]. The intrinsic dependence of network measures on network size
and density requires that all comparative studies be carried out on a common parcellation,
and that network metrics be normalized relative to suitable random models.

While there are as yet no consistent or agreed-upon methods for deriving nodes and edges to
assemble human brain networks, numerous studies using a variety of imaging techniques,
modalities, parcellation strategies and analysis tools are beginning to converge on some key
features of human brain architecture. While early studies focused on demonstrating robust
small-world attributes, particularly high local clustering and a short path length [18,66,67],
more recent analyses have emphasized local and global efficiency {Achard, 2007 #140}, the
detection and hierarchical arrangement of distinct network modules [74,75], and finding
highly connected and central hub regions[68]. Clusters or modules are arranged in a nested
hierarchy [75] and show significant overlap with known functional subdivisions and
neurocognitive networks previously identified in functional studies [29]. Hubs are
aggregated in parietal and frontal cortex, with a pronounced tendency for hubs to be
interconnected into a structural core [66]. Intriguingly, the human connectome combines
high efficiency with low wiring cost, and the cost-efficiency trade-off has recently been
shown to constitute a heritable trait [76].

Conclusion
Comprehensive maps of the structural and functional connectivity of the human brain have
provided important insights into how anatomical connections shape and constrain brain
dynamics, and how this relation varies across individuals. New approaches from network
analysis and modelling have begun to reveal some fundamental motifs of human brain
architecture and their relation to brain function is a focus of ongoing research. The
commencement of several concerted efforts to map the human connectome [77] will likely
lead to significant advances in our understanding of human brain connectivity in the near
future.
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Highlights

• Structural and functional connectivity can be non-invasively measured across
the whole human brain

• Connectivity patterns of brain regions can aid parcellation and are related to
their functional specialization

• Structural connectivity partially predicts functional interactions among brain
regions

• Network analysis of connectome maps reveals high clustering, modules and
hubs as major features of brain organization
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Figure 1.
Measuring connections in the living human brain

a. Measuring anatomical connections with diffusion imaging. (i) A map of diffusion
anisotropy (left) reveals the orientational dependence on diffusion in white matter.
Insets: The peak orientations of diffusion lie along coherent fibre bundles (middle).
Complex fiber crossings can be resolved (right). For example here the corona
radiata(blue/purple), callosal projections(red) and the superior longitudinal
fasciculus (green) cross in the same voxels. (ii) Determinsitic tractography follows
these peak diffusion orientations to reconstruct paths between distant brain regions.
Image courtesy of Alexander Leemans. (iii) Probabilistic tractography reveals a
distribution of probable connections from a single seed. Here, brighter and more
opaque pixels display higher connection probability to ventral parietal region OP4.
Image adapted from [17]

b. Functional connectivity can be measured using resting fMRI. Here we show two
networks whose regions reproducibly exhibit correlated resting activity – the
default mode network (red) and the dorsal attention network (blue). Three example
timeseries are shown. Medial prefrontal fluctuations (orange) exhibit high
correlation with posterior cingulate fluctuations (yellow), but not with intraparietal
fluctuations (blue). Image taken from [78].
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Figure 2.
Functional specialisation and connectional architecture.

a. Invasive tracer studies in macaque monkey reveal that regions defined by their
cyto-architecture also differ in their connectivity to other areas. Here we show
afferent “connectivity fingerprints” for Walker’s area 9 and 14 in the prefrontal
cortex. The two regions receive inputs from a markedly different set of other
prefrontal regions. Figure adapted from [38].

b. (b) These connectional differences can be used to delineate cortical regions. (i)For
example, a sharp change in connectivity exists between dorsal (PMd) and ventral
(PMv) regions in lateral premotor cortex. Mathematical clustering techniques can
detect these connectional differences (inset), which can be easily seen (ii) in their
respective connectivity fingerprints to other cortical regions. (iii) As in similar
studies, these connectivity-defined regions (solid regions) align well with
delineations made solely on the basis of regional functional properties (contours).
Images adapted from[45].

c. Connectivity-based parcellation can be applied to large patches of cortex. For
example, 10 connectionally distinct regions can be identified in the parietal cortex
[47]. Here we show (i) the 5 regions that lie in the inferior parietal lobule alongside
(ii) a map of the same region, delineated by post-mortem cyto-architecture [83]. For
ease of comparison, centres of gravity of the cytoarchiarchitectonic regions in (ii)
are overlaid on the connectionally defined regions in (i). Images adapted from [46]
and [79].
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Figure 3.
Relating structural and functional connectivity.

a. Anatomical connectivity, determined from tracer injections, and BOLD cross-
correlations, recorded during spontaneous brain activity under anaesthesia, in
macaque parietal and frontal cortex. Left panel shows map of retrogradely labelled
brain regions after injection into area LIP (lateral intraparietal area). Right panel
shows a map of voxels exhibiting BOLD correlations amongst at least 3 out of 4
regions of the monkey oculomotor system (FEF, frontal eye fields; LIP; MT,
middle temporal area; MST, middle superior temporal area). AS, arcuate sulcus;
CeS, central sulcus; IPS, intraparietal sulcus; SF; sylvian sulcus; STS, superior
temporal sulcus. Image adapted from [53].

b. Average structural connectivity (SC) and resting-state functional connectivity
(rsFC) matrices for 998 randomly partitioned regions of cerebral cortex obtained
from diffusion tractography and fMRI recordings of the same cohort of participants
[55]. Regions are arranged in a fronto-parietal-temporal gradient (indicated on the
left) and connections are displayed for right hemisphere (RH), left hemisphere (LH)
and interhemispheric pathways. The scatter plot on the right shows the relation
between connection weights in SC and rsFC matrices.

c. Upper panels show resting-state functional connectivity in the default mode
network, with regions in the posterior cingulate cortex/precuneus (PCC), medial
prefrontal cortex (MPFC) and medial temporal lobe (MTL) exhibiting strong
functional correlations. Lower panels show two views of diffusion imaging
tractography of structural connections linking PCC and MPFC as well as PCC and
MPFC in a single subject. Note the absence of direct MPFC/MTL connectivity.
Images adapted from [52].
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Figure 4.
Network analysis of the human connectome.

a. Schematic example of a weighted undirected connection matrix and the
corresponding graph structure for a small network of 14 nodes. Nodes with high/
low degree, high clustering and high centrality are indicated.

b. Anatomical distribution of a regionally measured graph metric, the betweenness
centrality. Regions that exhibit consistently high centrality across a cohort of
participants are labelled, and they are found to be aggregated along the cortical
midline, and in parietal and prefrontal cortex. Image adapted from [66].

c. Hierarchical modularity in the structural connectivity of human cerebral cortex
[55], as revealed by recursive application of a network-based partitioning
algorithm. Modules at the largest scale can be further subdivided into nested
communities, thus demonstrating that cortical modules extend across multiple
scales. Image adapted from [75].
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