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Abstract
A new tetracenomycin analogue, 8-demethyl-8-(4′-keto)-α-L-olivosyl-tetracenomycin C, was
generated through combinatorial biosynthesis. Streptomyces lividans TK 24 (cos16F4) was used
as a host for expression of a “sugar plasmid” (pKOL) directing the biosynthesis of NDP-4-keto-L-
olivose. This strain harbors all of the genes necessary for production of 8-demethylt-
etracenomycin C and the sugar flexible glycosyltransferase ElmGT. To the best of our knowledge,
this report represents the first characterization of a tetracenomycin derivative decorated with a
ketosugar moiety. Also, as far as we know, 4-keto-L-olivose has only been described as an
intermediate of oleandomycin biosynthesis, but has not been described before as an appendage for
a polyketide compound. Furthermore, this report gives further insight into the substrate flexibility
of ElmGT to include an NDP-ketosugar, which is unusual and is rarely observed among
glycosyltransferases from antibiotic biosynthetic pathways.
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Streptomycetes produce a variety of glycosylated polyketide compounds with antibiotic and
antitumor properties. The appended sugar moiety/moieties contribute tremendously to the
biological activity of parent compounds. The alteration of these appended sugar(s) can
improve or diversify the biological activities of these compounds. As such, combinatorial
biosynthesis is one promising strategy for altering deoxysugar moieties. This can be
achieved through either gene deletion or heterologous expression of deoxysugar gene
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clusters from other pathways. Provided that the endogenous glycosyltransferase is flexible
enough to accommodate the altered NDP-deoxysugar donor substrates, novel derivatives can
be generated.1

Elloramycin (1) and the structurally-related tetracenomycins are anthracycline-like
polyketide compounds with mild antitumor activity.2,3 Elloramycin is produced by
Streptomyces olivaceus Tü2353, and it features 12a-O-methyl moiety and 2′, 3′, 4′-tri-O-
methyl-α-L-rhamnose O-glycosidically linked at 8-position (Figure 1). In previous studies,
the entire gene cluster responsible for production of 8-demethyl-tetracenomycin C (2) (8-
DMTC) was cloned into cosmid 16F4, and by expressing the cosmid in various
Streptomyces sp., tetracenomycins with novel deoxysugar moieties were produced.4–6 It was
then discovered that the elloramycin glycosyltransferase, ElmGT, was responsible for
appending these foreign NDP-deoxysugars to 8-DMTC. Recent studies by Salas and co-
workers have involved cloning several “deoxysugar plasmids,” which combine deoxysugar
genes from different pathways into a single operon for expression in Streptomyces species.
By expression of these sugar plasmids in a Streptomyces host harboring cos16F4, it was
discovered that ElmGT demonstrated remarkable flexibility towards accepting L- and D-
neutral and branched sugar substrates in generating a library of tetracenomycin
derivatives.7–12 Recently, mutation of active site residues of ElmGT has been shown to
modulate transfer of specific deoxysugars.13 Here we report the isolation and
characterization of a new tetracenomycin decorated with a 4′-keto-L-olivose moiety.

In order to generate a plasmid for expression of a ketosugar, the 4-ketoreductase gene (oleU)
was removed from plasmid pLN2 (Rodriguez, et al., 2002). NheI and SpeI were used to
digest pLN2, thereby releasing the oleU fragment. DNA gel electrophoresis was carried out
to remove the oleU gene and the resulting fragment (~14kb) was rescued and re-ligated to
generate pKOL. In this construct, all of the sugar genes are under strong ermE* promotion.
The plasmid map for this construct is depicted in Figure S1 (see Supplementary
Information). This plasmid was introduced into the S. lividans (cos16F4) strain through
protoplast transformation as described previously.14–20

The activities of OleS (NDP-glucose-synthase), OleE (NDP-glucose-4, 6-dehydratase),
OleV (2, 3-dehydratase), OleL (3, 5-epimerase), and OleW (3-ketoreductase) catalyze the
conversion of NDP-D-glucose to NDP-4-keto-2, 6-dideoxy-D-glucose during the biosynthesis
of NDP-L-olivose (Figure 2). The 4-ketoreduction step catalyzed by OleU represents the last
step of the NDP-L-olivose biosynthetic pathway. Thus, the deletion of oleU from pLN2 in
pKOL would lead to the accumulation of NDP-4-keto-L-olivose, which could be utilized by
ElmGT as an alternative donor substrate when the natural substrate (TDP-L-rhamnose) is not
available. To test this hypothesis, the pKOL. plasmid was expressed in the S. lividans
(cos16F4) strain.

Interestingly, expression of pKOL in S. lividans (cos16F4) resulted in the accumulation of
two major peaks with Rt (10.76 and 11.26 min., respectively), in addition to 8-DMTC, when
ethyl acetate extracts were analyzed by HPLC/MS (Figure 3). Both peaks showed UV
absorption typical for a tetracenomycin-type compound. Low resolution ESI/MS revealed a
peak of 585 amu (−ve mode) pertaining to the molecular ion of the compound and another
pseudomolecular ion of a hydrated species at 603 amu (−ve mode) indicating the addition of
water to the molecule. Under aqueous conditions, ketosugars can easily interconvert from
the keto form to a hydrate form. The second peak possessed an m/z value of 587 in (−ve)
ESI mode. This mass data suggested the presence of a glycosylated tetracenomycin in which
the sugar was fully reduced. Both peaks possessed a fragmentation ion corresponding to the
8-DMTC aglycone (m/z 457, M-H−).
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This strain was fermented in a large scale fermentation (7.2 L) for isolation and
spectroscopic characterization of the metabolites. The structure of 8-demethyl-8-(4′-keto)-
α-L-olivosyl-tetracenomycin C (3) was solved through NMR and mass spectral analyses.
The (−) HR-ESI MS of 3 showed two peaks at 585.1267 amu and 603.1363 amu, which
corresponded to the molecular formula of its keto form (C28H26O14, calcd. molecular weight
585.1317 [M-H−]) and its hydrate form (C28H28O15, calcd. molecular weight 603.1423 amu
[M-H−]), respectively. 1H NMR data of 3 revealed 2 singlets for two aromatic protons (δ
7.94 and δ 7.66) and two methoxy signals corresponding to the 3-OCH3 (δ 3.81) and 9-
OCH3 (δ 3.97) of 8-DMTC, respectively (Table 1). The anomeric proton of the sugar
appeared as a broad singlet (δ 6.16), which suggested its α configuration. A pair of protons
at δ 2.13 and δ 2.24 corresponded to the C-2′ methylene protons. A 4′-H signal was not
observed, indicating the presence of keto or a hydrated-keto group. The splitting of the 3′-H
(dd, J= 12.0, 6.5 Hz) at δ 4.68 indicated a large diaxial coupling with 2′-Ha and an axial-
equatorial coupling with 2′-He. The 5′-H appeared as a quartet (J= 6.5 Hz) at δ 4.39, which
indicated coupling with 6′-CH3. The 1H, 1H-COSY exhibited two spin systems for the sugar
moiety, one stretching from 1′-H to 3′-H, and the other stretching from 5′-H to 6′-CH3,
which strongly indicates the presence of a carbonyl at C-4′ (Figure 4). The 13C showed a
carbonyl signal at δ 207.4, which indicates that 3 is present predominantly in the ketosugar
form when measured in Methanol-d4. The 2D-HMBC demonstrated a correlation between
the 6’-CH3 protons (δ 1.12) and the 4’-C carbonyl moiety (δ 207.4), which unambiguously
assigned it to this position (Figure 4). These data suggested the structure of 3 as 8-
demethyl-8-(4′-keto)-α-L-olivosyl-tetracenomycin C. Compound 4 was eluted at the
identical retention time when co-injected with standard 8-demethyl-8-α-L-olivosyl-
tetracenomycin. The identity of 4 as 8-demethyl-8-α-L-olivosyl-tetracenomycin was further
confirmed through the comparison of 1H NMR data with published 1H NMR data.9

To evaluate the microbiological activity of 3, 1 mg mL−1 methanolic solutions of 1 and 3
were prepared for disc diffusion assays against E. coli XL1-blue, Streptomyces prasinus, and
Mucor meihei strains. Streptomyces prasinus NRRL B-2712 was chosen because it was
previously shown to be the most susceptible gram positive organism to 1.2 3 demonstrated
no detectable activity against E. coli or Mucor meihei, but demonstrated a diameter halo
against Streptomyces prasinus of 12±2 mm as compared to the 25±2 mm of 1. This finding
indicates that the 4’-ketosugar modification of 3 diminishes some of the antimicrobial effect
observed with 1. This is consistent with similar modifications of the sugar moiety of 8-
demethyl tetracenomycin C, as many derivatives have resulted in poorer antimicrobial
activity.10 Very possibly, the O-methyl groups of the L-rhamnose moiety of 1 are essential
for its cytotoxicity. The possible anticancer activity of 3 is currently being evaluated against
several cancer cell lines in our lab for a future report.

ElmGT represents one of the most flexible glycosyltransferases with respect to its ability to
accommodate a large number of sugar donor substrates as compared to glycosyltransferases
in other secondary metabolite biosynthetic pathways. ElmGT reportedly utilizes various
NDP-D-sugars: D-olivose, D-mycarose, D-diolivose, D-amicetose, D-boivinose, D-digitoxose, and
D-glucose. ElmGT also accepts a number of NDP-L-sugars: L-rhamnose, L-rhodinose, L-
digitoxose, L-olivose, L-amicetose, L-mycarose and 4-deacetyl-L-chromose B. However,
ElmGT has not been previously shown to accommodate NDP-ketosugars. In this context,
production of 3 through the expression of pKOL in S. lividans (cos16F4) was interesting,
especially, as earlier efforts to glycosylate 8-DMTC with NDP-4-keto-L-rhamnose or
NDP-4-keto-L-mycarose were unsuccessful.9,10

The observed production of 4 along with 3 by S. lividans (cos16F4)/pKOL was
unanticipated. However, we assume that a pathway-independent ketoreductase of S. lividans
TK 24 might be responsible for the partial conversion of NDP-4-keto-L-olivose to NDP-L-
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olivose, and the latter is utilized by ElmGT as an alternate substrate to yield 4. Pathway
independent reductions have been reported previously in the literature. Earlier in the
pikromycin biosynthetic pathway, in which a D-quinovosyl macrolide was accumulated
instead of the anticipated 4-keto-6-deoxy-D-glucosyl analogue when desI was inactivated in
Streptomyces venezuelae.21 To search for possible sugar ketoreductases in Streptomyces
lividans TK 24 that could be responsible for reduction of NDP-4-keto-L-olivose, thus
possibly explaining the presence of 4, the amino acid sequence for OleU was compared to
encoded proteins in the Streptomyces lividans genome using the protein BLAST public
database. One such candidate was indicated in the search, SSPG_00655 (30% sequence
identity/42% sequence similarity). This candidate has a domain that shows similarity to
RfbD, which is a 4-ketohexulose reductase responsible for equatorial 4-ketoreduction of
NDP-4’-keto-L-rhamnose in the NDP-L-rhamnose pathway (Figure S2, Supporting
Information). This enzyme may be responsible for the 4-ketoreduction witnessed in 4.
Despite the ability of SSPG_00655 or some other promiscuous reductase to reduce NDP-4-
keto-L-olivose to NDP-L-olivose in S. lividans (Figure 2), enough of the ketosugar substrate
was available to be accepted by ElmGT to flux towards 3. It is equally interesting that none
of the elm pathway sugar O-methyltransferases (ElmMI, ElmMII, and ElmMIII) recognized
the 4-keto-L-sugar moiety, even though these enzymes acted on an appended 8-O-L-olivose
previously.

Despite the many glycosyltransferases discovered and explored, those which can attach
ketosugars to their acceptor co-substrates are relatively scarce. MtmGIV (and possibly
MtmGIII) from the mithramycin pathway has/have been shown to handle NDP-4-keto-D-
olivose and NDP-4-keto-D-mycarose to generate novel premithramycin and mithramycin
analogues in Streptomyces argillaceus strains in which mtmC (3-C-methyltransferase) and
mtmTIII (4-ketoreductase) genes were disrupted.22 Like 3, the ketomithramycin derivative
demonstrated weaker biological activity as compared to the parent mithramycin compound,
possibly due to the ketosugar substitution.22 EryBV from the erythromycin pathway has
been shown to accommodate NDP-4-keto-L-mycarose.23 Similarly, BgtfA from the
balhimycin pathway is capable of utilizing NDP-4-keto-L-vancosamine as a natural sugar
donor substrate.24 The unprecedented flexibility of ElmGT towards NDP-4′-keto-L-olivose
reported in this communication is particularly encouraging for further studies towards
understanding the structural role of ElmGT in binding deoxysugar substrates.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Elloramycin and tetracenomycin analogues discussed in this communication. Elloramycin
(1); 8-demethyl-tetracenomycin C (2); 8-demethyl-8-(4'-keto)-α-L-olivosyl-tetracenomycin
C (3); 8-demethyl-8-α--olivosyl-tetracenomycin C (4).
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Figure 2.
Hypothesized deoxysugar biosynthetic pathway of pKOL.. OleU, which was encoded in the
parent plasmid pLN2 but not encoded in this construct, is indicated in brackets.
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Figure 3.
HPLC analyses of the metabolites: trace A, 8-demethyl-tetracenomycin C (2) (Rt. 12.98
min.) isolated from S. lividans (cos16F4); trace B, metabolites isolated from the S. lividans
(cos16F4)/pKOL mutant, 8-demethyl-(4’-keto)-α-L-olivosyl-tetracenomycin C (3 (Rt. 10.76
min.) and (Rt. 12.26 min.) 3* denote hydrated and keto forms, respectively) and 8-demethyl-
α-L-olivosyltetracenomycin C (4) (Rt. 11.26 min.)
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Figure 4.
1H-1H-COSY (

), and selected HMBC (→) correlations of 8-demethyl-8-(4'-keto)-α-L-olivosyl-
tetracenomycin C (3).
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Table 1

1H and 13C NMR of 8-Demethyl-8-(4’-keto)-α-L-olivosyl-tetracenomycin C (3) in comparison with the
reported data of 8-Demethyl-8-α-L-olivosyl-tetracenomycin C (4),9 δ in ppm relative to TMS, (multiplicity, J/
Hz).

Position 8-Demethyl-8-(4'-keto)-α-L-olivosyl-
tetracenomycin C (3)a

8-Demethyl-8-α-L-olivosyl-tetracenomycin C
(4)b

δC (125 MHz) δH (500 MHz) δC (100 MHz) δH (400 MHz)

1 193.0 - 190.8 -

2 100.8 5.62 (s) 100.2 5.66 (s)

3 176.1 - 175.6 -

3-OCH3 57.8 3.81 (s) 57.5* 3.87 (s)

4 70.7 4.88 (d, 1.5) 70.6 5.11 (d, 7.0)

4-OH - - - 4.96 (d, 7.0)

4a 85.9 - 85.2 -

4a-OH - - - 5.18 (s)

5 194.8 - 194.0 -

5a 141.5 - 141.2 -

6 122.1 7.91 (s) 121.6 8.10 (s)

6a 129.6 - 131.0** -

7 112.4 7.55 (s) 112.0 7.80 (s)

8 155.4 - 155.6 -

9 130.9 - 129.3 -

9-OCH3 53.4 3.97 (s) 53.0* 4.00 (s)

9-CO 169.5 - 168.0 -

10 139.5 - 138.6 -

10-CH3 21.3 2.79 (s) 21.3 2.87 (s)

10a 122.6 - 122.0** -

11 167.8 - 167.8 -

11-OH - - - 14.02 (s)

11a 110.6 - 110.2 -

12 198.2 - 198.0 -

12a 84.6 - 83.8 -

12a-OH - - - 5.81 (s)

1′ 96.4 6.16 (s) 97.0 6.07 (d, 3.0)

2′ 37.3 2.24 (ddd, 15.0, 12.0, 3.0, He), 38.2 2.32 (ddd, 16.0, 6.0, 2.0, He),

2.13 (dd, 15.0, 6.5, Ha) 1.88 (ddd, 14.0, 12.0, 3.0, Ha)

3′ 70.6 4.68 (dd, 12.0, 6.5) 69.0 3.95 (dddd, 11.0, 6.0, 6.0, 6.0)

3′-OH - - - 4.25 (s)

4′ 207.4 - 70.6 3.14 (dd, 9.0, 9.0)

4′-OH - - - 4.38 (s)

5′ 72.5 4.39 (q, 6.5) 78.4 3.67 (dq, 10.0, 6.0)
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Position 8-Demethyl-8-(4'-keto)-α-L-olivosyl-
tetracenomycin C (3)a

8-Demethyl-8-α-L-olivosyl-tetracenomycin C
(4)b

δC (125 MHz) δH (500 MHz) δC (100 MHz) δH (400 MHz)

6′ 14.3 1.12 (keto, d, 6.5) 18.3 1.22 (d, 6.0)

1.16 (hydrate, d, 6.5)

a)
Methanol-d4,

c)
Acetone-d6,

* and ** signals were mutually wrongly assigned in cited publication, however, assignments were corrected here for better comparison
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