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Abstract
The recent advent of high-throughput microarray data has enabled the global analysis of the transcriptome, driving
the development and application of computational approaches to study transcriptional regulation on the genome
scale, by reconstructing in silico the regulatory interactions of the gene network. Although there are many in-depth
reviews of such ‘reverse-engineering’ methodologies, most have focused on the practical aspect of data mining,
and few on the biological problem and the biological relevance of the methodology. Therefore, in this review, from
a biological perspective, we used a set of yeast microarray data as a working example, to evaluate the fundamental
assumptions implicit in associating transcription factor (TF)^target gene expression levels and estimating TFs’
activity, and further explore cooperative models. Finally we confirm that the detailed transcription mechanism is
overly-complex for expression data alone to reveal, nevertheless, future network reconstruction studies could
benefit from the incorporation of context-specific information, the modeling of multiple layers of regulation
(e.g. micro-RNA), or the development of approaches for context-dependent analysis, to uncover the mechanisms
of gene regulation.
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INTRODUCTION
One of the grand challenges in systems biology is

uncovering the complex gene regulatory network

that renders the phenotype or disease state of a

biological system in response to environmental

cues. The complex interaction between genes and

environment that govern the cellular response

cannot be understood at the level of individual

components of the network, but emerges through

the intricate interplay between genes, proteins and

metabolites. The complexity of gene regulation at

the transcriptional level is one of the impetuses

for the rise in systems-level research in biology.

Although many transcription factors (TFs) and their

cis-regulatory modules have been dissected experi-

mentally, the mechanism of how these factors

control a network of genes and their overall gene

expressions remains elusive [1]. The recent advent

of high-throughput microarray data enabled the

global analysis of the transcriptome, driving the

development and application of computational

approaches to study transcriptional regulation on

the genome scale, by reconstructing in silico the

regulatory interactions of the gene network [1, 2].

A basic idea of inference or reconstruction of gene

regulatory network is to identify pair-wise relation-

ship between the genes, or more specifically, to

determine whether a gene (or its product) directly
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controls the expression of another. By learning the

dependencies contained within the expression

profiles, researchers are attempting to reconstruct a

circuit map that depicts the global regulatory net-

work of genes. The development and application

of the theory and tools for network inference, or

so-called ‘reverse-engineering’ tasks, have been pre-

dominantly based on statistical learning techniques.

There are several in-depth reviews in the literature

that introduce and compare the different modeling

schemes for statistical learning [3–5], including a

primer on regression methods [6]. In Margolin

et al. [7] they examine the theoretical underpinnings

behind current reverse-engineering algorithms that

are based on systems control theory (e.g. linear or

non-linear regression model), probabilistic graphic

learning and information theory.

However, previous reviews and literature in this

area have generally been concerned about the

practical aspect of data mining, and few have paid

attention to the relevance of the methodology to the

biological problem. The focus on the difficulties in

network reconstruction has been from the compu-

tational perspective. A major discussion point has

been the limited sample size available (in most cases

less than 100 samples) for identifying pair-wise

relationships between the genes (which could be

hundreds of thousands pairs). This results in an

under-determined system requiring methods for

dimensionality reduction, i.e. clustering or module/

pathway analysis [3, 8, 9]. Another challenge is the

large search space of possible regulatory schemes,

which requires either advanced optimization strate-

gies or a priori information to reduce the computa-

tion time [4, 10, 11]. Nevertheless, in addition to

previous improvements to the ‘predictive power’

or ‘computational efficiency’, it is important to

understand how much biological information can

be appropriately extracted from expression data to

deduce the rules of transcriptional control.

From a biological perspective, instead of studying

the physical network, many reverse-engineering

methods are actually learning the ‘influence net-

work’, which is an interwoven mixture of direct or

indirect effects [7], thereby creating a considerable

divide between the influence network that is con-

structed and the real biological regulatory mechan-

isms. This is due largely to the limitations of the data

set itself, and the presence of multiple, unobserved

levels of regulation leading to difficulties in the

biological interpretations and undermining the

biological significance of these ‘influence networks’

and their further applications.

In this review, we attempt to dissect the informa-

tion content in the expression data from a biological

perspective, and scrutinize the biological foundations

of the computational models, and critically analyze

the underlying assumptions of most in silico learning

approaches applied to expression data that confound

the interpretation of the results [7], which are:

(i) Statistical dependencies exist between the TFs

and their target genes with respect to both

their expression levels.

(ii) Measurements of the relative amount of mRNA

level in the microarray data are predictive of the

activity of the regulatory molecules. This

assumption can be further sub-divided into

three sub-types, as follows:

(a) Type-1 model assumes the expression level of

a TF correlates with the activity of the TF.

(e.g. [12, 13])

(b) Type-2 model estimates the activity of a TF

based on the behavior of its target genes. (e.g.

[9, 14, 15])

(c) Type-3 model assumes co-expression implies

co-regulation by the same TF, and estimates

the existence or activity of an uncharacterized

cis-motif by clustering analysis. (e.g. [16])

In this review, using the yeast microarray data as an

example, we combine information on the yeast tran-

scriptional regulatory network and different data-sets

and -types to examine each of these assumptions.

Sections 2 and 3 address the first assumption by

estimating the extent to which the expression of

the TFs and target genes are correlated, and further

analyze the biological factors that may contribute to

this relationship. Section 4 compares the different

types of models that apply the second assumption

in learning the transcriptional regulatory network,

and illustrates the advantages and limitations of

each model. Finally section 5 examines the combina-

torial regulation and discusses the challenges in

learning cooperativity from expression data.

THE ASSOCIATION BETWEEN TF
ANDTHEIRTARGETS
To illustrate the first assumption, we used yeast data

to characterize the information in the expression data
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that are used to infer interactions at the transcrip-

tional level. The yeast data set contains 255 condi-

tions from environmental stress [17] and cell cycle

[18] microarray experiments. These data sets have

been widely applied in previous studies to develop

novel reverse-engineering methods [16]. Actually

the yeast environmental stress response data set [17]

has been cited 2260 times thus far, and among 1000

of these citations that are related to computational

studies, there are 256 articles that discuss network

reconstruction (citation data are provide by

googleScholar, http://scholar.google.com), which

reflects the utility of the data set.

Many of the yeast TFs have been studied and their

cis-regulatory modules on gene promoters across

the genome have been identified and are now avail-

able in public databases such as YEASTRACT

[19, 20], thus enabling the attainment of a putative

transcriptional regulatory network based on known

motifs on the gene promoters collated in

YEASTRACT.

Since the fundamental assumption is that the ex-

pression level of a gene depends on its regulators, we

calculate the correlation between the expression

level of the TFs and that of their target genes,

where the target genes of a TF in the regulatory

network are identified by corresponding cis-motifs

on their promoters. As shown in Table 1, the average

absolute correlation coefficient of the expression

data, taking the absolute value since both positive

and negative correlation represents perceptible

dependencies, is �0.08 between the TFs and their

target genes. This appears to be negligible, even

smaller than the background with a correlation of

�0.19 between any gene pair, suggesting that it is

difficult to directly identify TF–gene (a TF and its

target gene) pairs based on the dependencies of their

expression.

Next, we place a ‘1-to-1’ constraint that considers

only the TF–gene pairs in which the target gene has

no other type of known effectors besides the TF

paired to it. That is in contrast to an ‘n-to-1’ rela-

tionship in which many TFs regulate the expression

of one gene. We identify 596 ‘1-to-1’ TF–gene pairs

in the yeast network. This constraint assumes that the

target genes of these 596 pairs are not regulated by

multiple TFs. We found that the average correlation

of the expression data of these pairs (0.16), albeit still

lower than background noise (0.19), is about

two times higher than the overall TF–gene pairs

(Table 1). This suggests that the combinatorial

regulation of multiple TFs on a target gene plays

an important role in the transcriptional regulation,

thereby complicating the TF–gene relationship and

the use of correlation of their expression profiles for

inferring regulatory networks. Moreover, the correl-

ation between a TF–gene pair could be increased

slightly when the samples containing lowly express-

ing TFs are removed. A rationale for doing this is

that low expression level may suggest reduced con-

trol by the regulator [21].

Overall our results demonstrate a weak correlation

in the expression exists between the TFs and their

target genes, thus making it difficult to uncover tran-

scriptional regulation due to the high background.

The high background could possibly be due to both

direct and indirect associations between the genes in

the network. The result is consistent with previous

observations [22] that only a very small proportion of

TFs’ mRNAs are significantly correlated with the

expression level of its target genes. Our results also

indicate that combinatorial regulation contributes to

the reduced correlation between the TFs and their

target genes.

Besides the combinatorial effect, there are many

complex features on the binding sites or DNA–TF

interactions that could impair the association be-

tween TFs and their target genes [23]. A TF may

not bind to all its targets with the same binding af-

finity, indeed many specifically interact with only a

few targets depending on other genomic features, i.e.

DNA modifications, or due to stochasticity of the

binding events [24]. Differences in the sequence of

and around the binding site will also affect the bind-

ing affinity [25]. Thus, to determine bindings that are

functional remains a challenge [26–28]. Moreover,

there are other levels of regulation that cannot be

Table 1: The average Spearman correlation between
the expression level of theTFs and the expression level
of their target genes, considering the conditions when
the TFs are highly expressed (higher than their own
mean level for all available conditions)

Characteristic Avg. Corr (variance)

Background (all gene pairs) 0.19 (0.02)
Overall (TF^target gene) 0.08 (0.02)
1-to-1 (gene^its only knownTF) 0.16 (0.02)
1-to-1 (gene^its only knownTF)

(TF highly expressed)
0.18 (0.02)

‘1-to-1’ considers genes with only one knownTF that can bind to their
promoters.
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obtained from the expression data and transcriptional

regulatory network. For example, the protein–DNA

interactions may depend on other protein co-factors

in order to become functional, and sometimes the

binding itself requires adaptors [23, 29] . The mRNA

level of the target genes may also be regulated at the

post-transcriptional level, through the coordination

of different rates of mRNA decay [30].

INCORPORATIONOF
INFORMATION FROMMULTIPLE
SOURCES
It is increasingly evident that the network recon-

struction by microarray data alone is imperfect, in

part due to the limited sample size use to infer a

very complex network, but more importantly

because of the limitation of the information content

of microarray, in which only the mRNA expression

level is measured. Incorporating biological know-

ledge on different levels of regulation (mRNA

decay, protein interactions and modifications) could

improve the results. Many recent studies on reverse

engineering have attempted to integrate these

information but focus on the technical utility of

multi-source information in providing priors to

limit the search space, and enable further validation

or promote more intrinsic learning models [12,

31–33]. Here we show from a biological perspective,

in an intuitive but quantitative manner, an enhance-

ment in the TF–gene correlation by incorporating

multiple sources of information with the yeast

expression data.

We consider the regulation of possible protein

co-factors on the TFs, which have been suggested

to impact the binding and activation of TFs. We

impose an experimentally confirmed yeast protein–

protein interaction (PPI) network on our transcrip-

tion regulatory network. The physical interaction

data are downloaded from SGD (http://www

.yeastgenome.org/), and we compute for each TF

the number of its potential interacting proteins—

given that the PPI is static and context independent.

We found that among all our 1-to-1 TF–target gene

pairs (correlation of 0.16), those TFs with a low

number of possible co-factors exhibits significantly

better TF–gene correlation (P< 0.05, average correl-

ation coefficient as high as 0.25), as shown in

Figure 1A.

We also consider regulation at the mRNA level.

The rate of mRNA decay for each gene [normal

growth condition with yeast extract/peptone/dex-

trose (YPD) medium at 24�C] is obtained from the

Global Yeast mRNA Decay data set [34]. Among

our 596 1-to-1 TF–gene pairs, we assessed whether

the mRNA decay of the target gene affects the

TF–gene correlation. We observed no significant

differences in the mRNA half-life among the gene

categories grouped by different TF–gene correlations

(Supplementary Figure S1). However the target

genes that have very high mRNA degradation rates

are less correlated with their TF regulators (P< 0.05),

Figure 1B. Considering the usually longer time-scale

of transcriptional regulation, the expression level of

genes with very short mRNA half-life may be

rapidly influenced by degradation, thus their

amount of mRNA is decoupled from the expression

level of the TFs.

These results show that the relationship between

the expression of TFs and their target genes are af-

fected by many factors, such as mRNA decay and

protein co-factors. Nevertheless, there is no single

factor that is sufficient to explain all the variation

in TF–gene correlation for different genes under dif-

ferent circumstances (Supplementary Figures S1 and

S2), since the regulatory mechanisms may depend on

the dynamics of the regulatory network connections.

In this sense, the static data sets (TF binding motif,

mRNA decay in YPD media, static PPI) would not

be able to capture the context information, and more

detailed conditional or context-dependent know-

ledge is required to better reveal the TF–gene

relationship.

Currently conditional-specific high-throughput

data are rarely available due to the cost and technical

difficulties in securing them. We searched the

ChIP-Chip data and found a conditional ChIP-

chip data set [35] containing 23 TFs under H2O2

(0.4 nM) treatment of yeast for which we also have

microarray expression profiles. We therefore can

define conditional TF–gene pairs using actual bind-

ing profiles (i.e. in the CHIP-chip data a significant

P-value indicates TF binding on the gene

promoters), rather than the sequence-level motif

analysis that indicates only the possibility of TF bind-

ing instead of actual binding events. We compare the

correlation coefficient of TF–gene pairs defined by

cis-motifs, or by non-conditional CHIP-chip (under

normal growth condition in YPD media), with that

of gene pairs defined by conditional binding infor-

mation (Figure 1C). The average correlation

increased significantly (coefficient >0.3) when

Learning in silico the transcriptional regulation 153



conditional binding data were available, confirming

the importance of context-specific information.

Besides correlation analysis, we applied a different

dependency measurement based on information

theory by calculating the information-gain/

reduction of entropy when incorporating biological

knowledge to expression data. The measurement

describes the increase of dependencies between TF

and their target genes observed by acquiring more

information. These conditional entropy calculations

provided similar results as the correlation analysis,

e.g. the increase of information-gain with few cofac-

tors or with conditional information, and the

decrease of information-gain with fast mRNA

decay (Supplementary Table S1).

In this section we observed stronger correlation in

the TF–target gene relationship with multi-source

data, especially when context-specific information

is incorporated into the analysis, which would bene-

fit network modeling and reconstruction by effect-

ively reducing the unobserved, different layers of

regulation. There are other sources of informa-

tion that can be incorporated. For example,
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Figure 1: Incorporation of information from multiple
sources. (A) Box plots of the average correlation
between the expression level of TFs and the expression
of their target genes. A total of 596 1-to-1 TF^target
gene pairs are considered. The data are categorized
into three groups according to the number of inter-
action partners of each TF in the yeast PPI network.
The group ‘Top 10%’ consists of TF^target pairs in
which the TF has many interactions (more than 97
possible cofactors). The group ‘Bottom 10%’ consists of

pairs where the TF has few protein interactions
(no more than two cofactors). The others (80%) are in
the ‘Middle’ group. The group ‘Bottom 10%’ exhibits sig-
nificantly better averageTF^gene correlation (P< 0.05).
(B) Box plots of the average correlation between the
expression level of TFs and the expression of the
target genes. A total of 596 1-to-1 TF^target gene
pairs are considered. The data are categorized into
three groups according to the half-life of the mRNA of
the target gene in each pair. Top 5% has the longest
half-life, >97min, and Bottom 5% has the shortest,
<9min. Genes in Bottom 5% group are less correlated
with their TF regulators (P< 0.05). (C) Box plots of the
average correlation between the expression level of
TFs and the expression of the target genes. A total of
596 1-to-1 TF^target gene pairs are considered.
CHIP-chip data are not available for every TF, so only
99 pairs have binding information and 20 of them are
(condition-specific) conditional binding. The overall
gene^TF (box on the left) describe the average correl-
ation of all 596 pairs under all conditions. Under the
H2O2 condition, the box in the middle (YDP-CHIP)
uses the non-conditional binding (CHIP-chip results
under normal condition, 99 pairs) to determine the
average correlation of the gene^TF pairs that actually
bind, and the box on the right uses conditional binding
CHIP-chip data (20 pairs). The averageTF^gene correl-
ation increased significantly when conditional binding
data were available (box on the right, P< 0.01 compared
with the box on the left).
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Hansen et al. [36] considered the effect of nucleo-

some positioning on the gene expression and

showed better prediction accuracy of gene regulators

by integrating these genomic information. However

it is unclear to what extent such information is useful

in the reconstruction of regulatory networks—

although nucleosomes affect a large region of the

genome, they may not specifically control the bind-

ing of TFs [37]. More recently, the post-translational

modifications of TFs, another level of regulation, has

attracted much attention. Hansen et al. [38] collated a

small experimentally curated Post Translational

Modifier (PTM) database and tried to incorporate

information on post-translational modifications.

Nevertheless, when we included the PTM data,

the correlation between the expression level of the

post-translational modifiers and the target gene of the

corresponding TFs did not significantly increase.

Although the data set is too small to draw any con-

clusions, we believe, based on the current know-

ledge, that the modifiers were usually kinases that

are regulated to other kinases or phosphotases at

the protein level which leaves few clues to their

expression levels. As researchers continue to incorp-

orate different combinations of data-types for reverse

engineering of gene networks, it is critical to delib-

erate whether or not, and to what extent, the data

being integrated have specific biological information

that is beneficial for identifying the relationship or

regulatory model to be investigated.

ESTIMATIONOF THETFs’
ACTIVITY
Besides the TF–target gene association, learning

transcriptional regulation from expression data relies

on a second assumption, that is, the mRNA meas-

urements in the microarray data are predictive of the

activity of the actual regulatory molecules. As in the

aforementioned correlation analysis, one simply uses

the expression level of a TF as the identifier for its

activity, which we defined as Type-1 estimation

(Figure 2). Since many TFs are largely reported as

being regulated by post-transcriptional modifica-

tions, simply equating mRNA level and protein

activity has been criticized [21]. Therefore, a differ-

ent type of estimation has been suggested to repre-

sent the activity of a TF, which is based on the

behavior of its target genes, which we call ‘Type-2’

estimation (Figure 2). Instead of the mRNA level,

Type-2 model uses the expression level of the target

genes to represent the TF activity.

We apply the Type-2 estimation on the yeast

expression data. We use the difference in expression

between a TF’s target genes and non-target genes as

its activity level for a given condition. We then com-

pare the 1-to-1 TF–gene correlations with the results

obtained using the Type-1 estimation. All of the

1-to-1 pairs used in model assessment are excluded

in the development of the Type-2 model, to ensure

that the information used to estimate TF activity and

the information for calculating the TF–gene correl-

ations are mutually independent. As shown in

Table 2 and Figure 3, there is a significant increase

in the average correlation coefficient when using the

Type-2 estimation (example of TF–gene pairs in

Supplementary Figure S3). Genes with fewer TF

binding sites on their promoters have less uncertainty

of their regulatory mechanism; these genes thereby

may contribute more to approximating the activity

of its regulators. The TF activity inferred from target

genes can then be weighted by ‘1/n’ where n is the

Figure 2: Schematic representations of different models to estimate activity of TFs. Type-1 models rely on the
expression level of the TFs. Type-2 models compare the genes with the TF binding site (target genes) and genes
without the binding site (background) and use the differences between expression of the target genes and the
background genes to represent the activity of theTF. Type-3 models assume that target genes’ expression is better
correlated if theTF is activated, and use the target gene correlation to represent the activation of theTF.
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total number of TFs that are able to control a

particular gene. Such a weighted summation version

of Type-2 model provides better correlation for

some genes (Figure 3) although the average correl-

ation does not increase significantly (correlation co-

efficient 0.24 as compared with 0.23 for the

un-weighted Type 2). The weighting reduces

the contribution of genes with many different cis-
modules on their promoters; presumably they are

subjected to combinatorial regulatory effects.

Figure 4 shows that by applying the Type-2 estima-

tion and incorporating context-specific information
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Figure 4: Box plots of the average correlation be-
tween activity of the TFs and the expression of the
target genes. A total of 596 1-to-1 TF^target gene
pairs are considered. The activity of TFs is estimated
by Type-2 model, all 1-to-1 pairs used in model assess-
ment are excluded in the development of the Type-2
model. CHIP-chip data are not available for every TF,
so only 99 pairs have binding information and 20 of
them are conditional-specific binding. The overall
gene^TF (box on the left) describes the average correl-
ation of all 596 pairs under all conditions. To estimate
the activity of the TFs, target genes of each TF are
determined by yeast transcriptional regulatory net-
work, where the TF^gene interactions are based on
motif/binding site. Under the H2O2 condition, the box
in the middle (YDP-CHIP) uses the unconditional bind-
ing (CHIP-chip results under normal condition) to de-
termine both the activity of TFs and the average
correlation of the gene^TF pairs that actually bind,
and the box on the right uses conditional binding
CHIP-chip data. The average TF^gene correlation
increased significantly when conditional binding data
were available (box on the right, P< 0.05 compared
with the box on the left).
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Figure 3: Distributions of the correlation achieved by
three different TF activity measures, only ‘1-to-1’ cases
are considered. Although the average correlation does
not improve much in the Type-2 model, there are
more genes whose expression level is better correlated
with their TFs. Type 1: The TF activity is represented
by its expression level; Type 2-TFA: The TF activity is
represented by the difference between the mean
expression value of its target genes and the mean
expression value of the (other) unrelated genes; all
1-to-1 pairs used in model assessment are excluded in
the development of theType-2 model. Type-2-weighted
TFA: Genes with fewer TF binding sites on their
promoters contribute more to approximating the TF
activity, TFA is then weighted by ‘1/n’ where n is the
total number of TFs that are able to control a particular
gene. The probability density is calculated using the
kernel smoothing density estimate function (ksdensity)
in Matlab, with a Guassian kernel. A histogram describ-
ing the frequencies of gene expression in different
categorical bins shows a less continuous but similar
distribution.

Table 2: Comparison of different measurements of
TF activity, consider those genes with only one known
TF that can bind to their promoters

1-to-1 (gene^its
only known
TF) pairs

TF^gene
expressiona

TFA:TF
activity^gene
expressionb

Weighted
TFA^gene
expressionc

Avg. Spearman
correlation
(variance)

0.16 (0.02) 0.23 (0.03) 0.24 (0.03)

aTF^gene expression: TheTF activity is represented by its expression
level (Type 1). bTFA: The TF activity is represented by the difference
between the mean expression value of its target genes and the mean
expression value of the (other) unrelated genes. All1-to-1pairs used in
model assessment are excluded in developing the Type-2 model.
cWeighted TFA: Genes with fewerTF binding sites on their promoters
contributemore to approximating theTF activity.TFA is thenweighted
by ‘1/n’ where n is the total number of TFs that are able to control a
particular gene.
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one could reach an average TF–gene correlation co-

efficient >0.4.

The Type-2 method provides better estimation of

TF activity without assuming the mRNA level rep-

resents the TF activity, however the better estima-

tion of TF activity by the Type-2 model does not

benefit the network reconstruction. To demonstrate

this, we simulate a kinetic model d[Gene]/
dt¼ (1þ[TF activity]/K)�1 (with arbitrarily defined

effective kinetic constant K) for the transcriptional

regulation of a single TF on its target gene, shown

in the first case of Figure 5 (and Supplementary

Figure S5 for the other cases). If the mRNA level

were to represent the TF activity, which is usually

not the case in many real biological systems, the

mechanism by which a gene is regulated by a

single TF would be uncovered using the Type-1

model (in the single inhibition case, as shown in

Figure 5: Simulations of the combinatorial transcription regulation (more examples are in Supplementary
Figure S5).The interactions betweenTFs and betweenTF and the initiation of the target gene transcription are mod-
eled with kinetic equations [42]. Response curves are simulated and plotted. For regulation by a single transcription
factor, the X-axis is the activity of theTF and the Y-axis is the expression level of the target gene. Both 3D plots
and 2D color maps are provided for the combinatorial regulation of two TFs, where the X- and Y-axis represent
the activity of the twoTFs and the Z-axis/color represents the expression level of the target gene. Microarray data
do not directly provide activities of TFs, so the rightmost plots for each regulatory scenario instead uses estimated
activity (Type-2 model) of the TFs, showing what profiles that could be obtained from microarray analysis.
Numerical simulation of the kinetic model is performed using the Runge Kutta method in Matlab and the plots
are generated with a customized code in Matlab.
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the responsive curve of the middle plot in Figure 5).

The Type-2 model may have better estimation of

the TF activity but it is difficult to identify the regu-

latory mechanisms even in the single TF cases (in the

single inhibition case, as shown in the response-curve

on the right in Figure 5). In our analysis of the as-

sessment of the Type-2 model, the information used

in the model and the information used in the assess-

ment of the model do not overlap. However given

that this method is used by the community, it is

important to note the Type-2 model when applied

to infer relationships other than 1-to-1 relationships

could overlap. Even though the TF activity is esti-

mated from the overall effect of its potential targets,

while a TF–gene relationship is established by testing

whether or not the change in the TF activity can

explain the change in expression of a particular gene,

care nonetheless must be taken in using the Type-2

model to ensure that the information used to esti-

mate the TF activity and to infer the TF–gene rela-

tionship are mutually independent. In addition, the

Type-2 estimation assumes the influence of a TF on

all its targets is equal, which does not account for the

variability in binding and the function of a TF on its

various targets due to adapters and co-factors [39].

Another limitation is that the Type-2 and Type-1

estimations need a priori knowledge about the tran-

scriptional regulatory network, and such information

is less often available in other model organisms.

Thus, the Type-3 estimation, which assumes

co-expression genes are co-regulated by the same

TF, has been widely implemented to predict cis-
motifs or to estimate the activity of cis-motifs by

co-expression analysis (Figure 2).

With the Type-3 model, one could use clustering

analysis first to identify the co-expressed genes,

followed by enrichment analysis on the promoters

of genes within a same cluster, to identify functional

cis elements. We applied bi-clustering analysis on the

yeast data set, and compare the results with the

known transcriptional regulatory network. The acti-

vation of many TFs could not be identified with this

analysis (Supplementary Figure S4). One reason is

that if a TF has only a few targets, such co-expression

cluster would be too small to be recognizable from

the background noise (e.g. with a 0.19 average

correlation for any given gene pair) in the data.

Thus, Type 3 is less effective in estimating the activ-

ity, but nonetheless it is the method of choice

if one wants to discover functional cis-elements.

However, the assumption that co-expression

indicates co-regulation is imperfect. Since

co-expression may occur in situations other than

TF–gene associations [7], such as in a signaling cas-

cade. Thus, one should be cognizant of the assump-

tions that lead to the results, and further experiments

are required to validate the cis-elements uncovered

in this manner.

TOWARDSA DETAILED
MECHANISMOF
TRANSCRIPTIONALREGULATION
Most of the aforementioned analysis focus on the

‘1-to-1’ pairs whereby the genes are likely regulated

by only one TF, nevertheless there are many more

genes (>80%) with multiple promoter regions that

bind different TFs, thereby complicating the regula-

tory mechanism through TF cooperation. Models of

TF binding and gene transcription have been exten-

sively studied experimentally on prokaryotes with

small-scale quantitative measurements of numerous

perturbations on a subset of the regulatory circuits

[40]. A detailed thermodynamic binding and control

model has been established [41] and successfully

applied to many, highly specific regulatory models

in Escherichia coli and Drosophila [13, 42], providing a

quantitative framework for studying the combinator-

ial regulation of TFs. Researchers are now attempt-

ing to generalize the dynamic model to automate the

procedure of learning the detailed mechanisms from

high-throughput data. Questions have arisen on

whether or not the information in large-scale expres-

sion data is adequate to support these detailed

mechanistic models. Current knowledge of com-

binatorial regulation in real eukaryotic cell systems

is very limited, thus making it difficult to assess pre-

dictions of combinatorial regulation. Rather, in our

analysis we use simulation data to show scenarios of

combinatorial control and to determine the extent of

the mechanism that can be revealed by analyzing

expression data alone. To address the combinatorial

control of two TFs we explore the mechanistic

cooperation schemes and acquire kinetic equations

from previous studies of theoretical modeling

(thermodynamic binding model) [41], then generate

putative gene expression profiles. The simulations

show different expression profiles depending

on the cooperation mechanisms (Figure 5 and

Supplementary Figure S5). These profiles demon-

strate that the differences in the different cooperation

schemes are so subtle that only a few specific
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perturbations/conditions would capture the distinct-

ive features, as depicted by the narrow transition (re-

gions with significant changes of colors representing

target gene expression in the 2D response surface

color-maps) in the response surface curves in

Figure 5. We show in the right-most column of

Figure 5 the profiles that could be obtained from

microarray data using indirect measure of the TF

activity, in which we apply the Type-2 model to

estimate the TF activity based on gene expression

profiles, assuming that there is enough number of

perturbations to cover all possible combinations of

the two TFs’ activity level. The results demonstrated

that without independent measurements of the

actual activity of the TFs, the subtle features in the

different cooperation schemes are not sufficiently

distinctive (Figure 5), which will be further exacer-

bated by the noise and limited array data measure-

ments. Therefore, the ‘top-down’ approaches have

serious limitations in their ability to learn these

detailed mechanisms. Unlike the ‘bottom-up’ quan-

titative experiments performed for small systems, the

high-throughput data involve many layers of inter-

connected regulations making it difficult to segregate

the contributions of each TF on the expression of its

target genes. As observed by Gitter et al. [43] in the

systematic knock-out experiments [44], the over-

whelming majority of its target genes would not be

affected even if a TF is knocked out.

CONCLUSIONANDPERSPECTIVE
The accumulation of high throughput expression

data and current developments of data mining tech-

niques enabled the global analysis of the transcrip-

tome, and enhanced the system-wide studies on the

transcriptional regulation on a genome scale.

Although a growing body of literature within the

community has presented and discussed the compu-

tational approaches on the inference of regulatory

networks from expression data, these rarely highlight

the limited information content in the expression

data with respect to the biological factors, as dis-

cussed in this review. From a biological perspective,

we evaluated the fundamental assumptions implicit

in associating TF–target gene expression levels and

estimating TFs’ activity, and further explored

cooperative models. We confirm ‘quantitatively’

that the detailed transcription mechanism is overly-

complex for expression data alone to reveal. A pos-

sible solution is to simplify the cooperation models to

preclude over-fitting, e.g. apply logic functions [45].

Furthermore, a proper incorporation of multi-source

biological knowledge, especially context-specific

information, is beneficial for network reconstruction.

One recent example is [46] which integrated a series

of systematic measurements of the temporal binding

profiles, and successfully reconstructed a complex

dynamic circuit that coordinates a rapid stress

response in yeast. Besides context-dependent infor-

mation, a dynamic analysis of the microarray data

could better identify regulators of a gene. For

example, in the yeast data set, we separated the

data into a ‘conditional set’ (containing microarray

experiments under H2O2 treatment), and control set

(all other microarray experiments), and calculated the

differences in correlation for the 1-to-1 TF–target

gene pairs in these two sets. A total of 99 pairs

have conditional ChIP-chip data, 20 of which

show conditional binding under H2O2 treatment.

The average differences of correlation computed

for the 99 pairs is 0.0 (variance 0.16), while the aver-

age differences of correlation for the 20 conditional

binding pairs is 0.16 (variance 0.16). Despite the

limited number of genes tested, the results suggest

that context-dependent analysis (differences of cor-

relation) of the microarray data is able to capture the

conditional regulation of the genes. A similar idea

was recently implemented in the Modulator

Inference by Network Dynamics (MINDy)

MINDy algorithm (http://wiki.c2b2.columbia.edu/

workbench/index.php/MINDy), which uses gene

expression data to determine a putative modulator

gene that regulates the activity of a given set of

TFs, by measuring changes in correlation (the algo-

rithm uses mutual information) between TFs and

their target genes.

Another important regulatory mechanism that

controls gene expression, especially in mammalian

systems, is the microRNA. Sequences analysis pre-

dicted >30% of human genes may be microRNA

targets [47]. Micro RNAs bind to complementary

sites in the 3’-UTR of target genes to control

mRNA degradation, and we have shown that the

RNA degradation rate could affect TF–gene associ-

ation (Figure 1B). Therefore in future it is imperative

to incorporate microRNA information, including

microRNA expression and microRNA regulatory

network, to improve the network reconstruction,

e.g. integrating the effects of microRNAs on tran-

scriptional processes into the learning model to better

estimate the TF activity [48].
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Overall we suggest a conscientious inspection of

both the biological assumptions underlying the

mathematical formulations of the models, and the

information contents in the data in support of the

statistical learning processes, which we believe is

needed in order to achieve learning results with

lasting biological significance. This would help

accelerate fruitful capitalization and continuation of

computation in promoting our understanding of the

biological regulatory system.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Weak correlation in gene expression exists between theTFs and
their targets, thus making it difficult to uncover transcriptional
regulation from gene expression data.

� The relationship between the expression of TFs and their target
genes is affected bymany factors, such asmRNAdecay andpro-
tein co-factors. Combinatorial regulation also contributes to
the reduced correlation between theTFs and their target genes.
There is no single factor that is sufficient to explain all the
variation in TF^target gene correlation for different genes
under different circumstances.

� Measurements of the relative amount of mRNA level in the
microarray data could be used to predict the activity of theTFs,
under different assumptions. But one should be cognizant of the
assumptions that lead to the results to be aware of the limita-
tions in estimatingTF activity from gene expression data.

� We confirm‘quantitatively’ that the detailed transcriptionmech-
anism is overly-complex for expression data alone to reveal.
A proper incorporation of multi-source biological knowledge,
especially context-specific information, is beneficial for network
reconstruction by effectively reducing theunobserved, different
layers of regulation.

� Overall we suggest a conscientious inspection of both the bio-
logical assumptions underlying the mathematical formulations
of the models, and the information contents in the data in sup-
port of the statistical learning processes, which we believe is
needed in order to achieve learningresultswith lastingbiological
significance.
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