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SUMMARY

Missing data arise in genetic association studies when genotypes are unknown or when haplotypes are of
direct interest. We provide a general likelihood-based framework for making inference on genetic effects
and gene–environment interactions with such missing data. We allow genetic and environmental vari-
ables to be correlated while leaving the distribution of environmental variables completely unspecified.
We consider 3 major study designs—cross-sectional, case–control, and cohort designs—and construct ap-
propriate likelihood functions for all common phenotypes (e.g. case–control status, quantitative traits, and
potentially censored ages at onset of disease). The likelihood functions involve both finite- and infinite-
dimensional parameters. The maximum likelihood estimators are shown to be consistent, asymptotically
normal, and asymptotically efficient. Expectation–Maximization (EM) algorithms are developed to imple-
ment the corresponding inference procedures. Extensive simulation studies demonstrate that the proposed
inferential and numerical methods perform well in practical settings. Illustration with a genome-wide as-
sociation study of lung cancer is provided.

Keywords: Association studies; EM algorithm; Genotype; Haplotype; Hardy–Weinberg equilibrium; Maximum
likelihood; Semiparametric efficiency; Single nucleotide polymorphisms; Untyped SNPs.

1. INTRODUCTION

Many diseases of utmost public health significance, including cancer, hypertension, diabetes, and
schizophrenia, are influenced by both genetic and environmental factors, as well as gene–environment in-
teractions. Identifying genetic contributions to such complex diseases requires association studies, which
explore population relationships between disease phenotypes and genetic variants, particularly single nu-
cleotide polymorphisms (SNPs). In fact, there is now a proliferation of SNP-based association studies
worldwide thanks to the availabilities of dense SNP maps across the human genome (e.g.The International
Human Genome Sequencing Consortium, 2001; The International HapMap Consortium, 2005) and pre-
cipitous drops in genotyping costs. An increasing number of these studies survey the entire genome with
high-density genotyping chips containing 0.5–1 million SNPs; such studies are referred to as genome-
wide association studies. The case–control design is popular; cross-sectional and cohort designs are also
commonly used.
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Missing data present a major challenge in genetic association studies. An important form of miss-
ing data arises in the analysis of haplotype–disease association. A haplotype is a specific sequence of
nucleotides on the same chromosome of a subject. Because haplotypes incorporate the linkage disequi-
librium information (i.e. correlation structure) of multiple SNPs, the use of haplotypes can yield more
efficient analysis of disease association than the use of individual SNPs, especially when the causal
SNPs are not directly measured or when multiple mutations occur on the same chromosome. Unfor-
tunately, current genotyping technologies do not separate a subject’s 2 homologous chromosomes, so
that we can only observe the combination of the 2 haplotypes, which is referred to as the (unphased)
genotype.

Missing data are also encountered in the analysis of the effects of individual SNPs. Even with high-
quality genotyping, some study subjects will have missing genotypes at certain SNP sites because of assay
failures. Genotype data may also be missing by design to reduce genotyping costs. An extreme form of
missing data arises when investigators are interested in untyped SNPs, that is, the SNPs that are not even
on the genotyping chip used in the study and are thus missing on all study subjects. Conducting association
analysis at untyped SNPs can facilitate the selection of SNPs to be genotyped in follow-up studies and
enable investigators to compare or combine results from multiple studies with different genotyping chips.

A number of methods have been proposed to assess haplotype–disease association based on unphased
genotype data (e.g.Schaidand others, 2002; Zhaoand others, 2003; Epstein and Satten, 2003; Stram
and others, 2003; Lakeand others, 2003; Lin and others, 2005; Spinkaand others, 2005; Lin and Zeng,
2006). In addition, several methods have been developed to analyze untyped SNPs in case–control studies
(Nicolae, 2006; Marchiniand others, 2007; Lin and others, 2008). In the presence of missing data, it is not
possible to make inference without imposing restrictions on the distribution of genetic variables. All the
aforementioned work assumes Hardy–Weinberg equilibrium (HWE) (or certain 1-parameter extensions
thereof) and independence of genetic and environmental factors (or absence of environmental factors). The
assumption of gene–environment independence fails in some applications. For example, certain genes may
influence both environmental exposure and disease occurrence. Violation of the independence assumption
can cause serious bias in the analysis (e.g.Spinkaand others, 2005).

Recently,Chenand others(2008) relaxed the assumption of gene–environment independence by pos-
tulating a polytomous logistic regression model for the distribution of the haplotypes conditional on the
environmental factors and constructed appropriate estimating equations. They were able to detect an in-
teraction between smoking and a NAT2 haplotype in the development of colorectal adenoma that was
undetected under the assumption of gene–environment independence. Their work is confined to case–
control studies and does not deal with analysis of untyped SNPs.

In this paper, we provide a unified framework for assessing the roles of individual SNPs (including
untyped SNPs) or their haplotypes in the development of disease. The effects of genetic and environmen-
tal factors on disease phenotypes are formulated through flexible regression models that incorporate ap-
propriate genetic mechanisms and gene–environment interactions. The dependence between genetic and
environmental factors is characterized by a class of odds ratio functions. The marginal distribution of en-
vironmental factors is completely unspecified, while genetic variables may be in HWE or disequilibrium.
We construct appropriate likelihoods for all commonly used study designs (including cross-sectional,
case–control, and cohort designs) and a variety of disease phenotypes/traits. Unlike the case of gene–
environment independence, the likelihoods involve the (potentially infinite dimensional) distribution of
environmental variables even under cross-sectional and cohort designs and are thus difficult to handle both
theoretically and numerically. We establish the theoretical properties of the maximum likelihood estima-
tors by appealing to modern asymptotic techniques and develop efficient and stable numerical algorithms
to implement the corresponding inference procedures. We evaluate the proposed methods through exten-
sive simulation studies and apply them to a major genome-wide association study of lung cancer (Amos
and others, 2008).
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2. METHODS

2.1 Notation and assumptions

We consider a set of SNPs that are in linkage disequilibrium (i.e. correlated). We may have a direct interest
in the haplotypes of these SNPs or wish to use the haplotype distribution to infer the unknown value of
1 SNP from the observed values of the other SNPs. LetH andG denote the diplotype (i.e. the pair of
haplotypes on the 2 homologous chromosomes) and genotype, respectively. We writeH = (h, h′) if the
diplotype consists ofh andh′, in which caseG = h + h′. We allow the values inG to be missing at
random. Note thatH cannot be determined with certainty on the basis ofG if the 2 constituent haplotypes
differ at more than one position or if any SNP genotype is missing.

Let Y andX denote, respectively, the phenotype of interest and the environmental factors or covari-
ates. We allowX to include both covariates that are potentially correlated withH and those known to be
independent ofH . For cross-sectional and case–control studies, the effects ofX andH on Y are charac-
terized by the conditional density ofY = y givenX = x andH = (h, h′), denoted byPααα,βββ,ξξξ (y|x, (h, h′)),
whereααα, βββ, andξξξ pertain to intercepts, regression parameters, and nuisance parameters (e.g. variance and
overdispersion parameters), respectively. The regression effects are specified through the design vector
Z(X, H), which is a vector function ofX andH . For example, if we are interested in the additive genetic
effect of a risk haplotypeh∗ and its interactions withX, then we may specify

Z(x, (h, h′)) =







I (h = h∗) + I (h′ = h∗)

x

{I (h = h∗) + I (h′ = h∗)}x





 , (2.1)

whereI (∙) is the indicator function. For dominant and recessive models, we replaceI (h = h∗) + I (h′ =
h∗) by I (h = h∗ or h′ = h∗) and I (h = h′ = h∗), respectively; the codominant model contains both
additive and recessive effects. If we are interested in the additive effect of a particular SNP, then we
replaceI (h = h∗) + I (h′ = h∗) by the value of(h + h′) at that SNP position; dominant, recessive, and
codominant effects are defined similarly.

Let K be the total number of haplotypes that exist in the population. Fork = 1, . . . , K , we denote
thekth haplotype byhk. Defineπkl = Pr(H = (hk, hl )) andπk = Pr(h = hk), k, l = 1, . . . , K . Under
HWE,

πkl = πkπl , k, l = 1, . . . , K . (2.2)

We also consider 2 forms of Hardy–Weinberg disequilibrium (HWD),

πkl = (1 − ρ)πkπl + δklρπk (2.3)

and

πkl =
(1 − ρ + δklρ)πkπl

1 − ρ + ρ
∑K

j =1 π2
j

, (2.4)

where 0< πk 6 1,
∑K

k=1 πk = 1, δkk = 1, andδkl = 0 (k 6= l ) (Lin and Zeng, 2006). Both (2.3)
and (2.4) reduce to (2.2) if ρ = 0. Excess homozygosity (i.e.πkk > π2

k , k = 1, . . . , K ) and excess
heterozygosity (i.e.πkk < π2

k , k = 1, . . . , K ) arise whenρ > 0 andρ < 0, respectively, although the
range of heterozygosity is restrictive. Denote the probability function ofH by Pγγγ (∙), whereγγγ consists of
πππ = (π1, . . . , πK )T under (2.2) andπππ andρ under (2.3) or (2.4).
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We formulate the dependence ofX on H through the conditional density functionP(X|H). Because
of missing genetic data,P(X|H) cannot be completely nonparametric. Mimicking Chen’s (2004) idea,
we define the general odds ratio function

η(X, x0, H, (h0, h′
0)) =

P(X|H)P(x0|h0, h′
0)

P(X|h0, h′
0)P(x0|H)

,

where(h0, h′
0) andx0 are fixed points in the sample spaces ofH andX, respectively. Then,

P(X|H) =
η(X, x0, H, (h0, h′

0))P(X|h0, h′
0)∫

x η(x, x0, H, (h0, h′
0))P(x|h0, h′

0)dx
,

so the conditional density function is represented by the odds ratio functionη and the conditional density
at a fixed pointP(X|h0, h′

0). We abbreviateP(x|h0, h′
0) as f (x) and denote the corresponding distribution

function byF(x).
Without loss of generality, set(h0, h′

0) = (hK , hK ). If X consists ofS covariates that are either
continuous or dichotomous, then we may specify that

logη(x, x0, (hk, hl ), (hK , hK )) =
S∑

s=1

ζs,k,l (xs − x0,s),

wherex = (x1, . . . , xS)
T, x0 = (x0,1, . . . , x0,S)

T, andζs,k,l (s = 1, . . . , S; k, l = 1, . . . , K ) are log-odds
ratios withζs,K ,K = 0. Any categorical covariate ofm levels can be represented by(m− 1) dichotomous
variables. Specific mode of inheritance is imposed onζs,k,l (k, l = 1, . . . , K ) to ensure identifiability.
Under the additive model,ζs,k,l = ζs,k + ζs,l with ζs,K = 0. If a certain component ofX, indexed by
s′, is known to be independent ofH , then we set the correspondingζs′,k,l (k, l = 1, . . . , K ) to 0. In
general, logη(x, x0, (hk, hl ), (hK , hK )) = ζζζTD(x, hk, hl ), whereζζζ is a set of log-odds ratio parameters
andD(x, hk, hl ) is a set of distance measures. This formulation encompasses all generalized linear models
for X with canonical links toH .

REMARK 2.1 Chenand others(2008) assumed HWE and decomposed the joint density functionP(X, H)
as P(H |X)P(X). BecauseP(H |X) generally does not follow HWE whenP(H) is in HWE, Chenand
others(2008) defined the intercepts in their polytomous logistic model forP(H |X) as implicit functions of
all other parameters so as to impose HWE onP(H). Those constraints complicate the estimation process.
By contrast, we decomposeP(X, H) as P(X|H)P(H), so that the population genetics assumption on
P(H) can be incorporated directly and there are no constraints on other parameters. The odds ratios
associated withP(X|H) andP(H |X) are the same and can be interpreted as the effects ofH onX or the
effects ofX on H .

In the sequel,S(G) denotes the set of diplotypes that are compatible with genotypeG, h† denotes a
haplotype that differs fromh at only one SNP site, and∇u f (u, v) = ∂f(u, v)/∂u. For any parameterθθθ ,
we useθθθ0 to denote its true value when the distinction is necessary. We assume that the true value of any
Euclidean parameterθθθ belongs to the interior of a known compact set within the domain ofθθθ and thatF0
is twice continuously differentiable with positive derivatives in its support.

2.2 Cross-sectional studies

In a cross-sectional study, we measure the phenotypeY, genotypeG, and covariatesX on a random sample
of n subjects, so the data consist of(Yi , Xi , Gi ) (i = 1, . . . , n). The phenotype or traitY can be any type
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(e.g. binary or continuous) and possibly multivariate. As mentioned in Section2.1, the conditional density
of Y givenX andH is given byPααα,βββ,ξξξ (Y|X, H), which can be formulated by generalized linear models
for univariate traits and by generalized linear mixed models for multivariate traits.

Write θθθ = (ααα, βββ, ξξξ, γγγ , ζζζ ). The likelihood forθθθ andF is

Ln(θθθ, F) =
n∏

i =1

∑

H∈S(Gi )

Pααα,βββ,ξξξ (Y i |Xi , H)Pζζζ ,F (Xi |H)Pγγγ (H), (2.5)

where

Pζζζ ,F (x|h, h′) =
exp{ζζζTD(x, h, h′)} f (x)

∫
x̃ exp{ζζζTD(̃x, h, h′)}dF (̃x)

.

We use the nonparametric maximum likelihood estimation (NPMLE) approach. In this approach, the
distribution functionF(∙) is treated as a right-continuous function with jumps at the observedX. The
objective function to be maximized is obtained from (2.5) by replacing f (x) with the jump size of
F at x. The maximization can be carried out by the expectation–maximization (EM) algorithm described
in Section 2.1 of the supplementary material available atBiostatisticsonline.

2.3 Case–control studies

In a case–control study, we measureX andG on n1 cases (Y = 1) andn0 controls (Y = 0). It is natural
to formulate the effects ofX andG onY through the logistic regression model

Pα,βββ(Y|X, H) =
exp{Y(α + βββTZ(X, H))}

1 + exp{α + βββTZ(X, H)}
, (2.6)

whereα is an intercept andβββ is a set of log-odds ratios.
Write θθθ = (α, βββ, γγγ , ζζζ ). To reflect case–control sampling, we employ the retrospective likelihood:

Ln(θθθ, F) =
n∏

i =1

∑
H∈S(Gi )

Pα,βββ(Yi |Xi , H)Pζζζ ,F (Xi |H)Pγγγ (H)
∫

x
∑

H Pα,βββ(Yi |x, H)Pζζζ ,F (x|H)Pγγγ (H)dx
. (2.7)

There is very little information aboutα in case–control data, so the problem is virtually nonidentifiable.
We focus on 2 tractable situations: when the disease is rare and when the disease rate is known. Under
such conditions, the haplotype distribution of the general population can be estimated reliably from case–
control data.

Rare diseaseWhen the disease is rare, model (2.6) simplifies toPα,βββ(Y|X, H)≈exp{Y(α+βββTZ(X, H))}.
Then the likelihood given in (2.7) becomes

Ln(θθθ, F) =
n∏

i =1

{∑
H∈S(Gi )

exp{βββTZ(Xi , H)}Pζζζ ,F (Xi |H)Pγγγ (H)
∫

x
∑

H exp{βββTZ(x, H)}Pζζζ ,F (x|H)Pγγγ (H)dx

}Yi

×
{ ∑

H∈S(Gi )

Pζζζ ,F (Xi |H)Pγγγ (H)

}1−Yi

, (2.8)

in whichθθθ consists ofβββ, γγγ , andζζζ only. We again adopt the NPMLE approach, which is implemented via
the EM algorithm described in Section 2.2 of the supplementary material available atBiostatisticsonline.
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Known disease rateLet p1 be the known disease rate. We maximize the likelihood given in (2.7) or
equivalently

Ln(θθθ, F) =
n∏

i =1

∑

H∈S(Gi )

Pα,βββ(Yi |Xi , H)Pζζζ ,F (Xi |H)Pγγγ (H)

subject to the constraint that
∫

x
∑

H Pα,βββ(Y = 1|x, H)Pζζζ ,F (x|H)Pγγγ (H)dx = p1. We show in Section
2.3 of the supplementary material available atBiostatisticsonline that the NPMLEs ofθθθ and F can be
obtained via an EM algorithm.

REMARK 2.2 Chenand others(2008) also focused on the situations of rare disease and known disease
rate. Because their estimating equations are not likelihood score equations and involve constraints for
the intercepts of their polytomous logistic model, the convergence properties of their EM-like algorithm
are unclear, and their estimators are not asymptotically efficient. By contrast, our objective functions are
likelihood functions, which are guaranteed to increase at each step of the EM algorithms, and the resulting
estimators are asymptotically efficient.

2.4 Cohort studies

In a cohort study, we follow a random sample ofn at-risk subjects to observe their ages at onset of
disease. The subjects who are disease-free during the follow-up contribute censored observations. LetY
andC denote the time to disease occurrence and the censoring time, respectively. It is assumed thatC
is independent ofY and H conditional onX andG. The data consist of(Ỹi ,1i , Xi , Gi ), i = 1, . . . , n,
whereỸi = min(Yi , Ci ) and1i = I (Yi 6 Ci ).

We formulate the effects ofX andH onY through a class of semiparametric transformation models

3(t |X, H) = Q(3(t)eβTZ(X,H)),

where3(∙|X, H) is the cumulative hazard function ofY givenX andH , 3(∙) is an unspecified increasing
function, andQ(∙) is a 3-time differentiable function withQ(0) = 0 and Q′(x) > 0 and satisfying
condition (e) ofZeng and Lin(2007). Here and in the sequel,g′(x) = dg(x)/dx andg′′(x) = d2g(x)/dx2.
The choices ofQ(x) = x andQ(x) = log(1 + x) yield the proportional hazards model (Cox, 1972) and
the proportional odds model (Bennett, 1983), respectively.

Write θθθ = (βββ, γγγ , ζζζ ). The likelihood concerningθθθ , 3, andF takes the form

Ln(θθθ,3, F) =
n∏

i =1

∑

H∈S(Gi )

{
3′(Ỹi )e

βββTZ(Xi ,H)Q′(3(Ỹi )e
βββTZ(Xi ,H))

}1i

× exp
{
−Q(3(Ỹi )e

βββTZ(Xi ,H))
}

Pζζζ ,F (Xi |H)Pγγγ (H). (2.9)

Adopting the NPMLE approach, we regard3 andF as right-continuous functions and replace3′(Ỹi ) and
f (x) in (2.9) with the jump size of3 at Ỹi and the jump size ofF at x. The estimation can be carried out
through EM algorithms; see Section 2.4 of the supplementary material available atBiostatisticsonline.

2.5 Asymptotic properties

The NPMLEs in Sections2.2–2.4, denoted bŷθθθ , F̂ , and3̂, are consistent, asymptotically normal, and
asymptotically efficient; rigorous statements and proofs are provided in Section 1 of the supplementary
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material available atBiostatisticsonline. The limiting covariance matrix of̂θθθ can be consistently estimated
by inverting the information matrix for all parameters (including the jump sizes of nuisance functions) or
by using the profile likelihood function (Murphy and van der Vaart, 2000).

2.6 Untyped SNPs

When one of the SNPs inG is untyped, that is, missing on all study subjects, the haplotype distributionπππ
cannot be estimated from the study data alone. Fortunately, external databases, such as the HapMap, can
be used to estimateπππ provided that the external sample and the study sample are generated from the same
underlying population.

Let LE(πππ) denote the likelihood forπππ based on the external sample. If the external sample consists
of ñ unrelated subjects, thenL E(πππ) =

∏ñ
j =1

∑
(hk,hl )∈S(G j )

πkπl , whereG j is the genotype of thej th
subject. The HapMap database provides genotype information for trios. For an external sample ofñ trios,
the genotype data for thej th trio consist ofG j ≡ (GFj , GM j , GCj ) ( j = 1, . . . , ñ), where GFj , GM j ,
and GCj denote the genotypes for the father, mother, and child, respectively. Then,

LE(πππ) =
ñ∏

j =1

∑

(hk,hl ,hk′ ,hl ′ )∈S(G j )

πkπl πk′πl ′ ,

where(hk, hl , hk′ , hl ′) ∈ S(G j ) means that(hk, hl ) is compatible with GFj , (hk′ , hl ′) is compatible with
GM j , and(hk, hk′), (hk, hl ′), (hl , hk′) or (hl , hl ′) is compatible with GCj .

Denote the likelihood for the study data byLS(θθθ), in which θθθ consists ofπππ , as well as all other
finite- and infinite-dimensional parameters in the likelihood. The likelihood forθθθ that combines the study
data and the external data isLC(θθθ) ≡ LS(θθθ)LE(πππ). We maximizeLC(θθθ) in the same manner as in the
maximization ofLS(θθθ); the score function and information matrix forLE(πππ) are provided in Appendix
B of Lin and others(2008). The resulting estimators ofθθθ are consistent, asymptotically normal, and
asymptotically efficient.

3. SIMULATION STUDIES

We conducted extensive simulation studies to assess the operating characteristics of the proposed meth-
ods in realistic scenarios. We considered 5 SNPs (rs10519198, rs13180, rs3743079, rs8034191, and
rs3885951) in a gene on chromosome 15 that is known to affect both smoking behavior and lung can-
cer (Amos and others, 2008). Table1 displays the haplotype frequencies of the 5 SNPs. We simulated
genotype data from those haplotype frequencies under HWE.

Our first set of studies was concerned with the inference on haplotype effects and haplotype–
environment interactions in case–control studies. We simulated disease status from the logistic
regression model with an additive effect ofh2:

logitPr{Y = 1|X, H = (h, h′)} = α+β1{I (h = h2)+ I (h′ = h2)}+β2X+β3{I (h = h2)+ I (h′ = h2)}X,

whereX is Bernoulli with Pr(X = 1|(hK , hK )) = 0.2. We let logη(X, 0, (hk, hl ), (hK , hK )) = (ζ1,k +
ζ1,l )X, whereζ1,2 = 0.2,ζ1,4 = −0.2,ζ1,9 = 0.1, andζ1,k = 0 (k 6= 2, 4, 9).

For making inference onβ1, we setβ2 = 0.25 andβ3 = 0.0 and variedβ1 from −0.5 to 0.5; for
making inference onβ3, we setβ1 = β2 = 0.25 and variedβ3 from −0.5 to 0.5. We choseα = −3
and−2.1 to yield disease rates between 5% and 15%. We letn1 = n0 = 500 and adopted the rare
disease assumption in the analysis. We also included the method ofLin and Zeng(2006), which assumes
haplotype–environment independence. The results are summarized in Table2.
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Table 1. Observed haplotype frequencies from a lung cancerstudy

Index Haplotype Frequency

h1 00000 0.0278
h2 00010 0.2101
h3 00011 0.0923
h4 01000 0.2080
h5 01001 0.0005
h6 01010 0.0026
h7 10010 0.0078
h8 10011 0.0083
h9 11100 0.1465
h10 11110 0.0158
h11 10000 0.2803

Table 2. Simulation results for estimating and testing haplotype effects and haplotype–environment
interactions in case–controlstudies

Proposed Lin–Zeng
α β1 Bias SE SEE CP Power Bias SE SEE CP Power

−2.1 −0.5 0.001 0.138 0.137 0.989 0.861 −0.051 0.131 0.131 0.985 0.955
−0.25 0.000 0.132 0.132 0.989 0.250 −0.049 0.125 0.125 0.987 0.433

0 0.003 0.129 0.127 0.990 0.010 −0.047 0.121 0.120 0.985 0.015
0.25 0.002 0.123 0.125 0.993 0.287 −0.047 0.114 0.117 0.988 0.198
0.5 0.002 0.122 0.123 0.992 0.940 −0.046 0.114 0.114 0.982 0.918

−3 −0.5 −0.001 0.138 0.139 0.992 0.863 −0.052 0.131 0.132 0.988 0.951
−0.25 0.002 0.133 0.133 0.988 0.239 −0.048 0.126 0.126 0.985 0.416

0 0.003 0.127 0.128 0.993 0.007 −0.048 0.119 0.120 0.985 0.015
0.25 0.003 0.123 0.124 0.991 0.290 −0.047 0.116 0.116 0.982 0.203
0.5 0.000 0.124 0.122 0.991 0.941 −0.050 0.114 0.113 0.984 0.916

α β3
−2.1 −0.5 −0.003 0.270 0.270 0.992 0.243 0.284 0.190 0.193 0.842 0.052

−0.25 −0.010 0.261 0.260 0.989 0.052 0.255 0.178 0.178 0.857 0.011
0 −0.004 0.259 0.254 0.990 0.010 0.217 0.167 0.167 0.891 0.109
0.25 −0.004 0.253 0.251 0.991 0.051 0.161 0.158 0.158 0.937 0.519
0.5 −0.017 0.257 0.252 0.989 0.250 0.082 0.149 0.151 0.981 0.899

−3 −0.5 −0.001 0.273 0.270 0.989 0.227 0.248 0.194 0.193 0.883 0.079
−0.25 −0.002 0.256 0.259 0.988 0.051 0.238 0.176 0.178 0.880 0.009

0 −0.002 0.255 0.251 0.988 0.012 0.221 0.164 0.165 0.882 0.118
0.25 −0.003 0.245 0.246 0.991 0.052 0.195 0.155 0.155 0.901 0.612
0.5 −0.010 0.249 0.243 0.989 0.282 0.154 0.148 0.148 0.9360.967

NOTE: Bias and SE are the bias and standard error of the parameter estimator. SEE is the mean of the standard error estimator.
CP is the coverage probability of the 99% confidence interval. Power pertains to the 0.01-level test of zero parameter value and
corresponds to the type I error under the null hypothesis. Each entry is based on 5,000 replicates.

The proposed estimator forβ1 is virtually unbiased. The proposed estimator forβ3 seems to be slightly
biased downward when the disease rate is close to 15%. The proposed variance estimators accurately
reflect the true variabilities, the Wald tests have proper type I error, and the confidence intervals have
reasonable coverage probabilities. The rare-disease assumption is a good approximation even when the
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disease rate is as high as 15%. Under the Lin–Zeng method, the estimators are biased, the type I error is
inflated, and the confidence intervals have poor coverage probabilities, especially for interactions.

To assess the efficiency loss of modeling gene–environment dependence when the independence as-
sumption actually holds, we modified the above simulation set-up by lettingζζζ = 0. For making inference
on β1, we setα = −3, β2 = 0.25, andβ3 = 0 and varied eβ1 from 1.3 to 1.6; for making inference
on β3, we setβ1 = β2 = 0.25 and varied eβ3 from 1.5 to 2.3. As shown in Figure1, the power loss is
more substantial in testing interactions than in testing main effects. In practice, one should incorporate the
independence assumption into the analysis if it is known to be true. Indeed, our formulation allows one to
impose independence on any subset ofX and yields the Lin–Zeng method if independence is imposed on
the entireX.

The aforementioned studies pertain to a binary covariate and to risk haplotypeh2, which has a rela-
tively high frequency. Additional simulation studies revealed that the above conclusions continue to hold
for other haplotype frequencies and other covariate distributions. For example, the left panel of Table3
shows the results under the logistic regression model

logitPr{Y = 1|X1, X2, (h, h′)} = α + βh2{I (h = h2) + I (h′ = h2)} + βh1{I (h = h1) + I (h′ = h1)}

+βx1 X1 + βx2 X2 + βx1h2{I (h = h2) + I (h′ = h2)}X1

+βx1h1{I (h = h1) + I (h′ = h1)}X1,

coupled with the odds ratio function logη((X1, X2), (0, 0), (hk, hl ), (hK , hK )) = (ζ1,k + ζ1,l )X1, where
X1 andX2 are independent conditional onH, the conditional distribution ofX1 given H = (hK , hK ) is
standard normal,X2 is Bernoulli with 0.4 success probability,α = −3, βh1 = βh2 = 0.25,βx1 = βx2 =
0.3,βx1h2 = βx1h1 = 0.0,ζ1,2 = 0.2,ζ1,4 = −0.2,ζ1,9 = 0.1 andζ1,k = 0 (k 6= 2, 4, 9).

To assess the robustness of the proposed method, we modified the above setting to simulate a con-
ditional distribution ofX given H that does not fit into the odds ratio formulation. Specifically, we let
the conditional density ofX1 given H = (hk, hl ) be ζk + ζl + t , wheret follows a 3 d.f.t-distribution

Fig. 1. Power of testing (a) main effects and (b) interactions at the 1% nominal significance level for the proposed and
Lin–Zeng methods when the independence assumption holds.
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Table 3. Simulation results for estimating and testing haplotype effects and haplotype–environment
interactions in case–control studies with 2 risk haplotypes and 2 covariates

Para. True value Correctly specifiedP(X|H) MisspecifiedP(X|H)
Bias SE SEE CP Power Bias SE SEE CP Power

βh2 0.25 0.000 0.116 0.114 0.992 0.361 0.010 0.113 0.114 0.989 0.378
βh1 0.25 0.003 0.288 0.283 0.990 0.041 0.013 0.298 0.287 0.989 0.045
βx1 0.3 0.003 0.084 0.083 0.991 0.859 0.014 0.060 0.059 0.988 0.997
βx2 0.3 −0.005 0.129 0.130 0.991 0.377 0.001 0.131 0.132 0.989 0.385
βx1h2 .0 −0.002 0.109 0.105 0.987 0.013 −0.017 0.070 0.071 0.989 0.011
βx1h1 .0 0.005 0.267 0.269 0.991 0.009 −0.008 0.181 0.182 0.990 0.010

NOTE: See the note to Table2.

truncated at±5. The results are provided in the right panel of Table3. The proposed method is robust to
misspecification of the dependence structure.

We also compared the proposed method to that ofChenand others(2008). We simulated data from
the logistic regression model

logitPr{Y = 1|X, H = (h, h′)} = α+β1{I (h = h3)+ I (h′ = h3)}+β2X+β3{I (h = h3)+ I (h′ = h3)}X,

and the odds ratio function logη(X, 0, (hk, hl ), (hK , hK )) = (ζ1,k + ζ1,l )X, where the conditional distri-
bution of X given H = (hK , hK ) is standard normal,ζ1,3 = 0.2,ζ1,4 = −0.2,ζ1,9 = 0.1, andζ1,k = 0
(k 6= 3, 4, 9). We setn1 = n0 = 500 andα = −3. For making inference onβ1, we setβ2 = 0.25
andβ3 = 0 and varied eβ1 from 1.5 to 1.8; for making inference onβ3, we setβ1 = β2 = 0.25 and
varied eβ3 from 1.5 to 1.8. For each combination of simulation parameters, we generated 1,000 data sets.
Our algorithm always converged, whereas the algorithm ofChenand others(2008), as implemented in
their SAS program, failed to converge in about 3% of the data sets. Figure2 presents the power curves
of the 2 methods based on the data sets in which the algorithm of Chenand othersconverged. The pro-
posed method is uniformly more powerful than the method of Chenand others, especially in detecting
interactions.

Our final set of studies dealt with analysis of untyped SNPs in cohort studies. We simulated ages
at onset of disease from the proportional hazards model3(t |X, H) = t2eβ1g4+β2X+β3g4X, whereg4 is
the number of allele “1” at the 4th locus ofH and X is the same as in the first set of case–control
studies. We generated censoring times from the uniform(0, τ ) distribution, whereτ was chosen to yield
approximately 250, 500, or 1,000 cases undern = 5,000. We setβ1 = β2 = 0.25 and variedβ3 from
−0.5 to 0.5. We set the 4th SNP to be missing in the observed data and generated an external data set of
30 trios from the haplotype distribution of Table1. As shown in Table4, the proposed method performs
very well.

4. LUNG CANCER STUDY

Lung cancer is the most common type of cancer in terms of both incidence and mortality, with the highest
rates in Europe and North America. Although this malignancy is attributable to environmental exposures,
primarily cigarette smoking, genetic factors influencing lung cancer susceptibility have been reported in
numerous studies. Recently, a genome-wide case–control association study of histologically confirmed
non–small-cell lung cancer was conducted to identify common low-penetrance alleles influencing lung
cancer risk (Amosand others, 2008). Controls were matched to cases according to smoking behavior, age
(in 5-year groups), and sex, and former smokers were further matched by years of cessation. The study
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Fig. 2. Power of testing (a) main effects and (b) interactions at the 1% nominal significance level for the proposed
method and the method of Chenand others.

Table 4. Simulation results for the analysis of an untyped SNP in cohortstudies

β3 Cases Bias SE SEE CP Power

0 250 −0.003 0.236 0.233 0.990 0.010
500 0.004 0.164 0.163 0.992 0.008

1,000 0.001 0.120 0.120 0.990 0.010
−0.25 250 −0.003 0.262 0.256 0.991 0.049

500 0.003 0.180 0.178 0.988 0.112
1,000 0.001 0.130 0.129 0.990 0.254

−0.5 250 −0.009 0.295 0.285 0.990 0.194
500 −0.000 0.203 0.197 0.991 0.491

1,000 0.001 0.144 0.142 0.989 0.842
0.25 250 0.001 0.217 0.215 0.991 0.077

500 0.003 0.154 0.153 0.991 0.177
1,000 0.000 0.114 0.115 0.992 0.345

0.5 250 0.000 0.203 0.202 0.991 0.457
500 0.002 0.147 0.146 0.991 0.813

1,000 −0.003 0.113 0.112 0.991 0.973

NOTE: See the note to Table2.

population was restricted to individuals of self-reported European descent to minimize confounding by
ethnic variation.

In the discovery phase of the study, 1,154 ever-smoking cases and 1,137 ever-smoking controls were
genotyped for 317 498 tagging SNPs on Illumina HumanHap300 v1.1 BeadChips. Two SNPs, rs1051730
and rs8034191, mapping to a region of strong linkage disequilibrium within 15q25.1 containing PSMA4
and the nicotinic acetylcholine receptor subunit genes CHRNA3 and CHRNA5, were found to be signifi-
cantly associated with lung cancer risk. The investigators kindly provided us data on a cluster of 37 SNPs
surrounding those 2 SNPs.
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We first investigate haplotype effects and haplotype–smoking interactions with sliding windows of 5
SNPs. For each window, we fit a logistic regression model that compares all haplotypes (with observed
frequencies greater than 0.2% in the control group) to the most frequent haplotype under the additive mode
of inheritance and includes cigarettes per day as a continuous covariate. Because the SNPs in the region
are known to be associated with smoking behavior, we allow all haplotypes (with observed frequencies
greater than 0.4% in the control group) to be potentially correlated with the smoking variable in the
proposed general odds ratio function. We assume HWE and adopt the rare-disease approximation. For
comparisons, we also fit the haplotype–environment independence model ofLin and Zeng(2006).

Table5 presents the results for a window containing SNP rs1051730. Haplotype 11110 is significantly
related to smoking. Haplotype 00000 also has a large effect on smoking, although not significant at the
0.05 level. For those 2 haplotypes, the Lin–Zeng method would declare statistical significance at the 0.05
level for haplotype–smoking interactions, whereas the proposed method would not. These differences
are consistent with the simulation results shown in Table2 that the Lin–Zeng method tends to produce
false-positive results for haplotype–environment interactions when the independence assumption fails.

Next, we investigate the effects of individual SNPs and their interactions with smoking in the
development of lung cancer for the 37 typed SNPs and 259 untyped HapMap SNPs in the region. In
accordance with the study sample, we choose the HapMap sample of Utah residents with ancestry from
northern and western Europe as the reference panel in the analysis of untyped SNPs. For each untyped
SNP, we identify a set of 4 typed SNPs within 100 000 base pairs that provides the best prediction
(Lin and others, 2008). We apply the proposed method and the method ofLin and others(2008). The
former allows gene–environment dependence, whereas the latter assumes independence. For typed SNPs,
we also perform standard logistic regression analysis, which allows any form of gene–environment de-
pendence and thus serves as a benchmark. The dependence between smoking and SNPs in the region of
interest turns out to be very strong; the results are not shown here. Figure3 displays the results for testing

Table 5. Estimates of haplotype effects and haplotype–smoking interactions for a set of 5 SNPs in the lung
cancerstudy

Parameters Proposed Lin–Zeng

Logistic disease-risk model (βββ)
11110 0.249(0.069)** 0.252(0.069)**
11011 −0.097(0.084) −0.099(0.084)
00000 0.198(0.139) 0.201(0.139)
11010 −0.255(.237) −0.252(0.237)
00011 0.519(0.737) 0.536(0.748)
Smoking 0.093(0.090) 0.021(0.071)
11110×smoking −0.013(0.069) 0.094(0.047)*
11011×smoking −0.032(0.087) −0.061(0.062)
00000×smoking 0.108(0.132) 0.190(0.086)*
11010×smoking −0.044(0.236) −0.006(0.181)
00011×smoking 0.289(0.349) 0.290(0.348)

General odds ratio function (ζζζ )
11110 0.108(0.050)* —
11011 −0.030(.061) —
00000 0.083(0.100) —
11010 0.038(0.151) —

NOTE: Standard error estimates are shown in parentheses. *P < 0.05. **P < 0.001.
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Fig. 3. Results of association tests for additive effects of individual SNPs in the lung cancer study: the− log10(p-
values) for the genotyped and untyped SNPs are shown in circles and dots, respectively; (a), (b), and (c) pertain to
testing SNP effects (adjusted for smoking) under the standard logistic regression, the proposed method and the method
of Lin and others, respectively; (d), (e), and (f) pertain to testing SNP-smoking interactions under the standard logistic
regression, the proposed method and the method of Linand others, respectively.

SNP effects (adjusted for smoking) and for testing SNP-smoking interactions. For typed SNPs, the results
based on the proposed method and standard logistic regression are highly similar, suggesting that our odds
ratio formulation is reasonable; the results of the Linand othersmethod are different, especially for in-
teractions. For untyped SNPs, the method of Linand othersyields more significant results, especially for
interactions, than the proposed method. Because of the strong gene–environment dependence, the results
of the Linand othersmethod are unreliable.

5. DISCUSSION

This paper extends the work ofLin and Zeng(2006) to allow gene–environment dependence and to handle
untyped SNPs. As demonstrated in the simulation studies and real example, the results of association
analysis depend critically on the assumption about gene–environment relationship. If the genetic and
environmental factors are known to be independent, then one should impose this structure in the analysis
to improve efficiency. If the independence does not hold, then one should avoid this assumption to enhance
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the validity of inference. If the independence is not known to hold or not, then the empirical Bayes-
type shrinkage estimation (e.g.Chenand others, 2009) provides a nice trade-off between efficiency and
robustness; see Section 3 of the supplementary material available atBiostatisticsonline.

Unlike Lin and Zeng(2006), our likelihood functions involve the (potentially infinite dimensional)
distribution of covariates even for cross-sectional and cohort studies. Also,Lin and Zeng(2006) did not
consider case–control studies with known disease rates. Even for case–control studies with rare disease,
our likelihood function is more complicated than that ofLin and Zeng(2006) because the distribution of
covariates cannot be profiled out due to the modeling of gene–environment dependence. Thus, our nu-
merical algorithms are fundamentally different from those ofLin and Zeng(2006) for all study designs.
Although the basic structures of our theoretical proofs are similar to those ofLin and Zeng(2006), the
actual techniques employed are novel. Due to the presence of multiple nonparametric conditional distribu-
tion functions ofX given H , the proofs of identifiability of parameters and nonsingularity of information
matrices are very delicate.

Lin and Zeng(2006) considered the setting in whichX is independent ofH conditional onG. It
is difficult to construct realistic scenarios in whichX is independent ofH conditional onG but not
independent ofH unconditionally. Indeed,G is equivalent toH if there is only a single SNP orH consists
of (h, h) or (h, h†). It is more natural to allow direct association betweenH andX, as is done in this paper.

Our approach is scalable to genome-wide association scan. With categoricalX, the computation is
almost as fast as in the case of gene–environment independence. One may discretize continuous covariates
to speed up computation. Our software is posted at http://www.bios.unc.edu/∼lin/software.

We have assumed thatX is completely observed. In practice, the values of certain environmental
variables (e.g. smoking history and dietary information) may be unknown on some study subjects. A
major advantage of the odds ratio formulation is that it can readily handle missing covariates (Chen,
2004). Specifically, we expressP(X|H) as P(X1|H)P(X2|X1, H)P(X3|X1, X2, H) . . . and represent
each conditional density function in terms of a general odds ratio function and an arbitrary 1D distribution
function. In this way, we can accommodate arbitrary missing patterns inX and easily extend the theory
and numerical algorithms of this paper.

In the genetic and epidemiologic literature, it has become a common practice to infer the haplotypes
or the values of untyped SNPs for each subject based on the genotype data alone and then include those
imputed values in downstream association analysis. This single imputation approach can yield biased
estimates of genetic effects, inflated type I error and reduced statistical power (e.g.Lin and Huang, 2007;
Lin and others, 2008).

We infer the unknown value of an untyped SNP nonparametrically from a small set of typed SNPs
which is chosen to provide the best prediction among all flanking SNPs. An alternative approach is to use
all typed SNPs on the chromosome under a population genetics model. To incorporate the latter approach
into our framework, we letG denote all the SNPs on the chromosome and decomposeG into the observed
componentGO and the missing componentGM. The joint density of the observed data(Y, X, GO) can be
written as

P(Y, X, GO) =
∑

GM

P(Y|X, GO, GM)P(X|GO, GM)P(GO, GM).

We calculateP(GO, GM) through a hidden Markov model (e.g.Marchini and others, 2007). It is dif-
ficult to correctly specify the regression modelP(Y|X, GO, GM). For estimating the marginal effect of
an untyped SNP, we include only that SNP in the regression model. Even when we are interested in the
marginal effect of a single SNP, we need to include all the SNPs on the chromosome that are correlated
with X in P(X|GO, GM). Inclusion of a large number of SNPs is computationally infeasible and statis-
tically inefficient, whereas omission of important SNPs can bias the association analysis. We prefer the
flanking SNPs approach because it is computationally simpler and yield more robust and possibly more
efficient inference.
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SUPPLEMENTARY MATERIAL

Supplementary material is available at http://www.biostatistics.oxfordjournals.org.
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