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Abstract
We present a point-and-click intracortical neural interface system (NIS) that enables humans with
tetraplegia to volitionally move a 2-D computer cursor in any desired direction on a computer
screen, hold it still, and click on the area of interest. This direct brain–computer interface extracts
both discrete (click) and continuous (cursor velocity) signals from a single small population of
neurons in human motor cortex. A key component of this system is a multi-state probabilistic
decoding algorithm that simultaneously decodes neural spiking activity of a small population of
neurons and outputs either a click signal or the velocity of the cursor. The algorithm combines a
linear classifier, which determines whether the user is intending to click or move the cursor, with a
Kalman filter that translates the neural population activity into cursor velocity. We present a
paradigm for training the multi-state decoding algorithm using neural activity observed during
imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed
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a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions.
We quantified point-and-click performance using various human-computer interaction
measurements for pointing devices. We found that participants could control the cursor motion
and click on specified targets with a small error rate (<3% in one participant). This study suggests
that signals from a small ensemble of motor cortical neurons (~40) can be used for natural point-
and-click 2-D cursor control of a personal computer.

Index Terms
Amyotrophic lateral sclerosis; human motor cortex; intracortical neural interface system; multi-
state decoding; point-and-click control; quadriplegia; stroke

I. Introduction
Recent advances in neurotechnology have established the potential for creating direct
connections between the human brain and external devices to restore communication or
environmental control to people with paralysis. The development of these neural interface
systems (NISs) has been facilitated by an understanding of the cortical control of movement,
the emergence of new sensors in the form of implantable microelectrode arrays, and
progress in mathematical modeling for decoding of neural population signals. An
intracortical NIS is a form of brain-computer interface (BCI) that can provide new,
neurotechnology-based, connections between the central nervous system and external
devices such as computers, robotic actuators, and functional electrical stimulation systems.
In the last decade, several research groups have demonstrated the feasibility of NIS in able-
bodied nonhuman primates through experiments involving the closed-loop neural control of
arm muscles, computer cursors, and robotic manipulators [1]–[7]. The majority of human
BCIs have relied on the sensing of field potential signals recorded on the scalp using
electroencephalography (EEG) [8]–[10] or electrocorticography (ECoG) signals directly
from the cortical surface [11], [12].

Here our goal is to enable continuous point-and-click operation of a computer using the NIS
equivalent of an ordinary computer mouse. In able-bodied humans, such control is achieved
through the movement of the arm and hand. Arm actions such as these are generated by
spiking potentials within the arm area of motor cortex (MIarm). We have used a chronically
implanted floating microelectrode array, developed for human applications, from which we
record action potentials of multiple MIarm neurons. The initial report of pilot clinical trial
results with this device in two study participants demonstrated the feasibility of a human
NIS for controlling prosthetic devices [13]. In particular, the data from these participants
demonstrated that movement-related spiking activity of a neuronal ensemble could be
detected in human motor cortex years after paralysis, modulated by imagined movements,
and decoded for volitional control of prosthetic devices such as a simple robotic hand and a
computer cursor.

The computer cursor control from the earlier study [13], however, did not reach the
smoothness, movement accuracy, or selection precision that is readily achieved by able-
bodied people using a standard computer mouse. A more recent study from our group
addressed the problems of smoothness and movement accuracy, using a velocity-based
Bayesian decoding method (Kalman filter) [14]. This work leveraged findings in previous
nonhuman studies of 2-D directional tuning in MIarm neurons [15]–[19] to decode neural
signals by probabilistically integrating the likelihood of neural spike observations with a
temporal prior over cursor movement [20]–[22]. It was shown that decoding cursor velocity
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using the Kalman filter produced straighter and more accurate cursor movements than those
obtained in the initial study.

The problem of full point-and-click control with an NIS, however, has remained unsolved.
In the previous human NIS studies [13], [14], target selection was implemented by placing
the cursor on top of a target for more than a fixed time period (e.g., 500 ms). The limitations
of such an interface are obvious for practical computer applications where multiple other
“targets” may be present at once and slow cursor motions may result in the inadvertent
selection of targets. All practical pointing device interfaces (e.g., mouse, trackball, touch
pad) employ an explicit and distinct action to effect selection or “clicking.”

A number of nonhuman primate studies have focused on decoding discrete states
corresponding to a set of targets presented on the screen [4], [5]. Yu et al. [22] extended this
discrete decoding approach using a Bayesian mixture model to decode both an intended
reach direction and the continuous hand movement to that direction. Srinivasan et al. [23]
also derived a state-space algorithm that modeled the relationship between target location
and the path of the arm to reconstruct arm trajectory. In non-human closed-loop BCI studies,
monkeys used their motor cortical signals to move a 2-D computer cursor and select a target
[3] or to control a 3D robotic arm and a gripper to reach and grasp food [6].

To enable point-and-click control using human motor cortical signals, we built on the
approach developed by Wood et al. [24] in which both continuous and discrete states were
decoded simultaneously from MI activity of monkeys. They used a nonlinear particle
filtering method [25] to infer discrete (performing/not-performing) and continuous (2-D
cursor kinematics) states from a single neuronal population. In related work, Darmanjian et
al. [26] discriminated movement versus nonmovement states from a monkey’s motor cortex
and predicted the hand position of the monkey using linear filters. For real-time
implementation, we modified the multi-state decoding model of Wood et al. [24] to avoid
modeling the nonlinear joint probability of continuous and discrete state variables. As in
Wood et al., we used a linear classifier based on Fisher discriminant (FD) analysis [27] to
classify the neural population activity into distinct states (click versus movement). A key
difference, however, is that our model discriminated the neuronal firing patterns related to
two actively imagined motions while the previous models only detected whether or not a
firing pattern for a specific movement was elicited. Hence, the click signal decoded from our
model was not simply a result of decreased movement intention but, rather, a result of
voluntary click intention.

II. Methods
A. Participants and Recordings

The two participants studied here were enrolled in clinical trials of the BrainGate NIS
(Cyberkinetics Neurotechnology Systems, Inc. (CYKN), Foxborough, MA)1. One
participant (S3) was a 55-year-old female with tetraplegia caused by brain-stem stroke that
occurred nine years prior to enrollment. The other participant (A1) was a 37-year-old male
with paralysis resulting from amyotrophic lateral sclerosis (ALS, Lou Gehrig’s Disease). A
96-channel microelectrode array (BlackRock Microsystems, Salt Lake City, UT) was
chronically implanted in a cortical arm area of participant S3 in November 2005 and A1 in
February 2006. During the trial sessions, electrical neural signals were recorded using the
microelectrode array. Recorded signals were digitized at 30 kHz and processed by
commercially-available amplitude-thresholding and spike-sorting software [Cerebus Central,

1Caution: Investigational Device. Limited by Federal Law to Investigational Use. Cyberkinetics ceased operations in 2009. The
BrainGate pilot clinical trials are now directed by Massachusetts General Hospital (NCT00912041).
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Blackrock Microsystems, Salt Lake City, UT] to discriminate individual waveforms. Then
the spiking activity of these putative single or multiple neurons (referred to as “units”
hereafter) were examined online by visual inspection by a technician who determined their
inclusion in the session. We did not analyze the signals further to determine whether or not
each unit contained single or multiple neurons. This process was performed at the beginning
of every session to isolate the units used to build the decoder and control the computer
cursor. More detailed information about the chronic neural signal recording and processing
can be found in Hochberg et al. [13].

There is a possibility that the same units were recorded across multiple sessions. However,
in this study, we did not examine the consistency of spike waveforms and other statistical
properties of the recorded units across sessions. The spacing of the recording electrodes
made it unlikely that multiple electrodes recorded the same neuron. The units were spatially
distributed across the electrode array over multiple sessions with the exception of a few
electrodes that did not show any spike waveforms. A few of these exhibited high impedance
compared to other electrodes, suggesting some form of failure of those electrodes.

For this paper, we studied four point-and-click neural control recording sessions in
participant S3 which were recorded on trial days 292 (N = 37 units), 301 (38), 303 (57), and
464 (28) after implantation of the array, and one recording session in participant A1, on trial
day 231 (86). Here, the numbers in parentheses indicate the number of units used for
training and testing the NIS on each day. Note that A1 participated in two other point-and-
click study sessions on different trial days (day 232 with 99 units and day 239 with 90 units)
but could not perform the full radial target acquisition task due to failure to obtain
reasonable cursor control within the time limit of the session (1.5–2 h). A1 achieved good 2-
D cursor control in our previous study [14], but the instructed tasks were different than those
studied and compared here. All sessions with S3 that met our criteria (same tasks,
algorithms, training paradigm, and imagined click action) were included in this study.

B. Training and Cursor Control Tasks
1) Decoder Training Procedure—The purpose of the decoder training procedure was to
generate data used to estimate the parameters of the decoding algorithms. Decoder training
involved mathematically modeling the relationship between desired cursor movement and
the corresponding neural activity. Since physical arm/hand movement was precluded (A1),
or minimal and of no functional relevance (S3), in these participants with tetraplegia, we
generated desired cursor movements using a training cursor (TC) and instructed the
participants to imagine controlling the TC [13], [28]. Both the TC movement signals and the
neural signals were recorded and defined the training data. The overall training procedure
was composed of two phases: continuous state and discrete state.

The training procedure began with the continuous-state training phase. This phase included
multiple training “blocks,” where a block was a short training period (1.5 min). These blocks
were categorized as open-loop (OL) blocks or closed-loop (CL) blocks. In an OL block, the
participant was shown the TC on a computer monitor and instructed to imagine moving their
arm or hand as if they were controlling the TC. After OL blocks, the synchronously recorded
neural signals and the TC movement signals were used to build a continuous-state decoder.
Then, a series of CL blocks followed in which a separate feedback cursor (FC) was shown
together with the TC. The FC was moved by the participant’s neural activity using the
current decoder. The FC provided visual feedback of controllability to the participants [14].

The TC was moved by a computer program to perform a center-out-and-back task [14].
Eight targets were radially distributed on the screen with angles, {0°, 45°, 90°, 135°, 180°,
225°, 270°, 315°} (where 0° refers to movement to the right and increases
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counterclockwise). There was also a target at the center to represent a “home” position. The
TC moved from the center target to one of eight radial targets and then traced its trajectory
back to the center. The TC visited every radial target in a randomized order. The duration of
the TC movement from target to target varied across blocks and sessions (1.5–4.5 s).

The second training phase was designed to train the discrete-state decoding algorithm. This
phase was composed of multiple discrete state (DS) blocks. Each 1.5-min DS block began
with an epoch (~ 20 s) of continuous CL cursor control. After this epoch, the screen became
blank for 0.5 s. Then, an instructive word for a “click action” was displayed at the center of
the monitor for 1.5 s. The click action was defined by an imagined arm/hand movement that
could substitute for clicking. From these experiments, we chose the imagined motion of
squeezing the right hand as the click action for S3; A1 preferred to imagine opening the
right hand. Such an imagined click action appeared to modulate neural firing patterns that
were well separated from those modulated during continuous cursor control. The on-screen
text (“squeeze” for S3 or “hand open” for A1) provided a visual cue to the participant to
imagine the click action. Then, a blank screen appeared again for 1 s followed by the
continuous CL control epoch. This sequence of continuous and discrete state presentations
was repeated four to five times in each DS block. Afterwards, we collected the neural data
samples not only from two DS blocks but also from the previous two to four CL blocks and
labeled each data sample as either the movement state or the click state. The neural signals
recorded during the blank screen periods were not used for training any decoding algorithm.
The total duration of the filter training data was approximately 11.6 min, which took
approximately 20 min to acquire, including breaks between blocks and filter building time.
See Fig. 1 for the overall flow of the multi-state training sequence.

2) Closed-Loop Cursor Control Task—After training was completed, the parameters
of the decoding algorithms were fixed and the point-and-click cursor control performance
was evaluated using a similar eight-target center-out-back task without the TC. On the
screen, there were eight circular targets arranged radially around a circular center target as
well as a circular neural cursor (NC) whose kinematics were decoded from the participant’s
neural activity. As the 10-min evaluation period began, the NC appeared on top of the center
target and all the targets appeared in gray. Then, one of the peripheral targets changed its
color to pink to provide a visual cue indicating the target. To acquire the target, the
participant moved the NC towards the target and clicked when the NC and target
overlapped. The period of moving the NC from the center and clicking on a designated
target was termed a “run” in this study.

A run could end with three different conditions: 1) the designated target was successfully
acquired, turning its color to red; 2) one of the other seven radial targets (excluding the
center target) was accidentally acquired, turning its color to blue; 3) no target was acquired
before a time limit expired. The time limit varied across the sessions from 9 to 30 s. Clicks
that were decoded on the background (i.e., not over any target) were recorded but did not
otherwise affect the run.

After a run ended, the center target turned to pink and the participant moved the NC back to
acquire the center target. The center target was acquired either by holding the NC on top of
the target for more than 500 ms (three sessions of S3 and one session of A1) or by clicking
on the target (one session of S3). There was no time limit for the center target acquisition.
Once the participant acquired the center target, the next run began with a new target. This
task continued for 10 min without interruption. There were a total of 212 runs from five
recording sessions across both participants presented in this study (see Table I).
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The distance from the participant to the center of the monitor was approximately 59 cm. The
visual angle of the workspace on the screen was approximately 34.1°. The diameter of the
target was 48 pixels (visual angle = 2.0°) where the screen resolution was 800 × 600 pixels
(17-in monitor). The diameter of the TC, the FC and the NC were all 30 pixels (= 1.3°). The
distance to target was 300 pixels (12.7°) from center to the horizontally located targets, 255
pixels (10.8°) to vertically located targets and 278 pixels (11.8°) to diagonally located
targets; these were all center-to-center distances between targets.

C. Decoding Model
Let zk be an N × 1 vector of the firing rates of N units measured at discrete time index k, xk
be a 2-D cursor velocity vector at k, and γk be a binary random variable representing whether
the cursor was in a click or movement state (i.e., γk ∈ {γ(0), γ(1)} ≡ {click, movement}). The
firing rate of each unit was represented by the number of spikes within a non-overlapping
time window (100 ms). From the firing rates of N units over L time windows, we created a

vector  that was a (N · L) × 1 short-time history vector of the firing
rates. We empirically selected L = 5 (i.e., 0.5 s) which we found provided reasonable
discrete-state classification performance.

To decode a discrete state, we first represented the a posteriori probability of γk conditioned
on the history of the firing rates Zk and the previous discrete state γk−1 as in [24]

(1)

G(α; β, σ) here denotes a univariate Gaussian distribution of a random variable α with a
mean β and a standard deviation σ. The vector of weights, w, was used to project Zk onto a
1-D feature space. The parameters μc and σc are the mean and standard deviation of the
Gaussian probability density function (pdf) of a 1-D variable (= wT Zk) in the feature space
for class c.

The output from the FD analysis was multiplied by the probability, p(γk |γk−1) that described
the probability of discrete state transitions from time k − 1 to k, which was empirically
estimated from the training data. Finally, the state at k was decoded as “click” if

(2)

or “movement” otherwise, where 0 < t < ∞ was the decision threshold. The threshold t was
set to 1 in our study by assuming that each state was likely to occur with the same
probability. We observed that overall the posterior probability ratio in (2) was well below 1
for the movement state and well above 1 for the click state. It is possible that optimizing this
threshold could improve discrete-state decoding accuracy.

For continuous state decoding, cursor velocity ( ) was predicted from neural
ensemble firing rates (zk) using a Kalman filter [14], [21]. Here  and  denote the x- and
y-coordinates of the velocity vector at time k. The Kalman filter modeled the firing rates (zk)
as a linear function of velocity (xk) corrupted by Gaussian noise and the current velocity at
time instant k (xk) as a linear function of the previous velocity at k − 1 (xk−1) corrupted by
Gaussian noise. The Kalman filter ran in real time to estimate velocity from the entire
observation history of firing rates using recursive Bayesian inference and has been
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successfully used in human neural cursor control [14]. The details of the Kalman filtering
model can be found in [21].

Both the discrete and continuous state decoders were trained following the training
procedure described in Section II-B1. The Kalman filter parameters were first trained with
the OL block data using least squares (LS) estimation [21]. Then, we used the CL block data
to update the Kalman filter parameters using LS to cope with the possible changes in neural
activity resulting from closed-loop feedback. Finally, the optimal projection vector w was
estimated from all the DS block data using FD analysis. The generalization performance of
these models was evaluated using the testing block data.

Since cursor velocity (xk) and the discrete state (γk) were independently inferred, we
decoded both of them in parallel and combined the results. When γk = γ(1), the NC was
moved with velocity xk estimated from the Kalman filter. When γk = γ(0), the NC was forced
to stop (i.e., xk = [0 0]T) and a click state was generated. To reduce click errors due to noisy
classification, we temporally integrated the click state estimates over a period of time
(typically 500 ms). Specifically, if the click state was consistently decoded over the fixed
time interval, a click signal was generated. This time interval was set to 500 ms
corresponding to the length of the firing rate history for all the recording sessions except the
one on day 464 of S3, where no integration interval was applied and the click signal was
generated whenever the click state was decoded.

D. Analysis Methods
1) Tuning Analysis—Using the training data, we analyzed how each neuronal unit
modulated its firing rate with respect to the discrete and the continuous states.

First, we evaluated neural tuning to the discrete state by testing the change of firing rates
between discrete and continuous training phases. Specifically, we tested whether the firing
rate distribution during DS blocks was significantly different from that during OL and CL
blocks, using a Kruskal-Wallis (KW) test (p < 0.01). Units exhibiting a significant
difference in the firing rate distribution were regarded as tuned to the discrete state.

Second, tuning of each unit to the continuous state was evaluated using a multivariate linear
regression model

(3)

where βj’s were linear coefficients and εk was noise. The parameters βj were estimated from
the training data using least squares estimation. We tested whether the coefficients β1 and β2
were significantly different from zero using the F-test (p < 0.01). If one or both of them was
different from zero, we considered the unit as being tuned to velocity.

2) Control Performance Evaluation—We quantified the performance of neural point-
and-click cursor control using two types of measures: gross measures and fine measures.

Gross measures evaluated speed and accuracy of the overall point-and-click performance for
each session. Specifically, we adopted two measures defined in the ISO 9241-9 standard
[29] for evaluating non-keyboard pointing devices. Speed was evaluated using movement
time (MT), which measured how long on average it took to move the NC to a target and
click on it. Note that MT was only measured for successful target acquisition runs; for
targets that were not acquired, MT was undefined. Accuracy was evaluated using the error
rate (ER), which measured the percentage of the runs where a target was missed. A target
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could be missed because either a time limit expired or a false target was selected. We refer
to the first type of error as “ER by timeout” (ER-to) and the second as “ER by false
selection” (ER-fs), respectively.

Fine measures evaluated the details of individual cursor trajectories using several metrics
proposed by MacKenzie et al. [30]. Consider an optimal straight path (termed a task axis)
connecting the starting point of a NC movement to the center of a target. The actual NC
movement path was evaluated against the task axis using four metrics: 1) orthogonal
direction change (ODC) counts the changes in the direction orthogonal to the task axis, 2)
movement direction change (MDC) counts the changes in the direction parallel to the task
axis, 3) movement error (ME) measures the mean distance of the NC from the task axis, and
4) movement variability (MV) measures the standard deviation of the offset of the NC from
the task axis. Overall, ODC represents how consistently the NC moves forward to the target,
MDC represents how smooth the NC path is, ME represents how much the NC path deviates
from the optimal straight path, and MV represents how straight the NC path is. See
MacKenzie et al. [30] for details.

3) False Click Analysis
In addition to the above measures of continuous cursor control, we also evaluated the
accuracy of discrete state decoding. First, we defined a false click rate (FCR), which
measured how many times per run the click state was decoded on the background space
before the NC reached the target. It is worth noting that the participants were not instructed
to avoid clicking on the background. False clicks on the background space could be
unintentionally generated due to decoding error or intentionally generated but in the wrong
place. Intentional errors could occur, for example, when the cursor was close to, but not
quite overlapping, the target. We analyzed these different possible causes of false clicks by
assuming that if all the false clicks had been caused only by decoding error, false clicks
would have occurred regardless of whether the NC was close to the target or not. Hence, we
computed the Euclidean distance between the NC and the target when every click signal was
generated (including all false and successful clicks). Then, we binned all those distance
measurements with a bin size of 39 pixels (1.7°). The bin size was determined to be the sum
of the target radius (24 pixels) plus the NC radius (15 pixels). This ensures that all
successful clicks fell in the bin closest to the target and all other false clicks in the remaining
bins (see Fig. 5).

III. Results
A. Neural Tuning Analysis

We investigated how the spiking activity of a neuronal population was tuned with respect to
the discrete state (click versus movement) and the continuous state (cursor velocity). We
analyzed the discrete state tuning using the DS training blocks and the directional tuning
using the final CL training blocks that were used to build the final Kalman filter for testing.
We present the results for the tuning of a total of 160 units recorded during four sessions
with S3 and 86 units from one session with A1.

We categorized the observed firing patterns into four groups. Group 1 units statistically
changed their firing rates between the movement and click state and were not tuned to the
TC velocity [Fig. 2(A)]. Group 2 varied their firing rate with respect to the TC velocity but
did not show significant tuning to the discrete state [Fig. 2(B)]. Groups 3 and 4 exhibited
firing activity correlated with both the TC velocity and the discrete state. While both groups
exhibited tuning to the TC velocity, they differed in their tuning to the discrete state. Group
3 significantly increased the firing rate [Fig. 2(C)] while group 4 decreased the firing rate
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[Fig. 2(D)] during the click state. We examined the firing patterns of these four groups
during click training (Fig. 2, second row) and during the closed-loop point-and-click task
(Fig. 2, third row), in which the cursor was under active control of the participant, with
visual feedback from the TC. We observed similar firing patterns with respect to the click
state in both cases. This suggests that the neural population firing activity was modulated by
an abstract instruction of imagined motion (e.g., text on screen) without explicit visual
movement cues, and that the participant utilized this imagined motion to volitionally
modulate the same neural population to generate a click signal during active control.

We quantified the proportion of recorded units in each of the four groups using the statistical
testing methods described above (see Section II-D). For S3, 68.1% (109/160 units) were
tuned to the continuous state (i.e., TC velocity) (F-test: p < 0.01), 56.9% (91 units) were
tuned to the discrete state (KW-test: p < 0.01) and 41.9% (67 units) were tuned to both (Fig.
3). This means that 83.1% (133 units) were tuned either to the continuous or discrete state.
For A1, 65.1% (56/86 units) were tuned to the continuous state, 31.4% (27 units) were tuned
to the discrete state, 23.3% (20 units) were tuned to both, and 73.3% (63 units) were tuned to
at least one state (Fig. 3). It is noteworthy that here we evaluated the neural tuning with
respect to cursor velocity only. Previous studies have shown that the neural populations of
S3 and A1 were also tuned (to a lesser extent) to cursor position [14], [31]. Hence, the
percentage of the neural populations tuned to any continuous state variable might have been
larger if we had included other kinematic parameters.

Finally, it is worth noting that filter building time was fairly rapid. Filter building time taken
over all blocks ranged from 10.5 to 13.5 min for the four S3 sessions (mean 11.6 ± 1.4 min).
Building time for A1 was 17.5 min in the single session reported here. This excludes breaks
between blocks.

B. Point-and-Click Neural Cursor Control
We illustrate continuous NC movements in a radial point-and-click task by showing the
paths of the NC movement from the center area towards each of the eight targets. All the NC
paths during a 10 or 15 min long control session, regardless of whether or not the target was
successfully acquired, are illustrated in Fig. 4 for each of five recording sessions. In each
case the NC was under continuous and uninterrupted control by the participant, although the
illustration only shows the path out to the target from the center. Recall that each motion
required that the NC be placed at the center target by the participant. We observed from
these NC paths that the NC movements of A1 were less accurate than those of S3. In the
sole data set from A1, the NC movements showed a bias towards the lower-left corner of the
screen (see Section IV for further discussion). Our earlier study, which only considered
cursor movement, also found that A1 had longer, less straight and more biased cursor
motions than S3 [14]. These differences can also be seen in the average paths of the NC to
each target (Fig. 4). To obtain the mean path for each target, we linearly interpolated
individual NC trajectories to match the number of time samples. Then, we calculated the
sample mean at every point. Despite having poorer 2-D control than S3, A1 was able to
reach and click on targets using neural cursor control.

We assessed the point-and-click performance using standard pointing device evaluation
measures (see Section II-D2) summarized in Table I. S3 successfully acquired 97.4% of the
targets in 193 runs over four sessions. Mean trial duration was 7.2 ±3.8 s to achieve
continuous movements from the center to the target and then click on the target, where the
mean distance to the target was 278 pixels (12 cm; visual angle = 11.8°). The 2.6% error in
completing a trial for S3 was attributed fully to targets not clicked before the timeout period
expired (ER-to = 2.6%); no false target was clicked (ER-fs = 0%). A1 acquired 52.6% of
targets correctly. Again, all the errors were due to failing to complete a trial before the
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timeout (ER-fs = 0%). The performance difference between the participants was larger in
the continuous control measures including ODC, MDC, ME, and MV than in the discrete
control measures including FCR.

The quantification above was obtained excluding the NC movements from the peripheral
targets towards the center target because for the most sessions, the center target was selected
by holding the NC on it for >500 ms instead of clicking on it. This indicates that the
participants could select a target on the screen by either regulating the NC speed to hold it
on the target or by generating a click. We examined the discrete decoding outputs during the
periods when the center target was selected and observed that there was no significant
increase of clicks when the participants attempted to hold the NC on the center target,
showing that click generation was independent of the NC speed.

To investigate how much time was spent attempting to click on a target, we divided
movement time (MT) into “pointing time” and “clicking time”: the former measured the
average time taken to move the NC from a starting point to a target while the latter measured
the average time taken to click on the target once the cursor reached it. The ratio of pointing
time to clicking time was 4.7 s to 2.5 s for S3 and 7.4 s to 6.9 s for A1. Note that clicking
time included 0.5 s for the temporal integration of consecutively decoded click states (in all
but one session).

C. Discrete Cursor Control Performance
We found that a false click occurred on average 0.74 times per run in S3 and once per run in
A1 (Table I). The participants were not explicitly instructed to avoid false clicks and there
was no overt “penalty” for false clicks on the background.

For click histograms, we examined whether false clicks were related to the distance between
the NC and the target, which would suggest anticipatory clicking when in the vicinity of a
target of interest. First, we evaluated all the NC positions when either a correct or a false
click signal was generated, from four sessions of S3 and one session of A1 [Fig. 5(A)]. To
visualize the data from all eight targets in one plot, we rotated the task axis (a straight line
between the starting point (e.g., center) and the target) for each target to the vertical axis and
marked the NC positions relative to the rotated task axis. Next, we measured the distance
between each NC position and the target and computed a histogram of these distances for
each participant [Fig. 5(B)]. This histogram describes the occurrence of click as a function
of distance to target. It shows that for S3, most false clicks occurred when the NC was near
the target, suggesting that most false clicks were generated when target acquisition was
anticipated but the NC did not exactly overlap the target. We also examined when the first
click occurred in each run [Fig. 5(C)]; these also occurred near the target. This first-click
analysis demonstrates that S3 successfully performed point-and-click target selection with
no false clicks for more than 50% of runs while A1 did so for more than 25% of runs. Note
that all false clicks corresponded to clicking on the “background” space on the monitor.
There was no instance of clicking over incorrect targets during 212 runs in two participants
(ER-fs = 0%).

We also analyzed whether false clicks were correlated with the direction of the NC
movement. We hypothesized that the modulation of the units that were tuned to both the
continuous state (direction) and the discrete state (click) could cause the decoding algorithm
to misinterpret the movement intention as the intention to click, particularly when moving in
the preferred directions (PDs) of those “multi-state tuned” units. We computed a histogram
of the intended direction, which was defined as the instantaneous direction from the NC to
target [31], measured at the time of every false click [Fig. 6(A)]. We then computed another
histogram of the PDs of the multi-state tuned units [Fig. 6(B)]. If these two histograms
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showed similar distributions, it would support the hypothesis that the multi-state units could
lead to misclassification in the discrete-state decoding. We found, however, that the
histogram of the intended directions was distinct from that of the PDs (Fig. 6). This suggests
that false clicks might be more likely to occur in directions where a relatively small number
of units modulated their firing rates, thus possibly increasing uncertainty about the
movement state for the discrete-state decoding algorithm.

IV. Conclusion and Discussion
We have developed an intracortical NIS that enabled persons with tetraplegia to move a
computer cursor to an arbitrary position on the screen, stop the cursor, click on the area of
interest and move to another position, without any interruption, automated recentering of the
cursor or other external intervention used in previous BCIs. One participant (S3) was able to
smoothly control cursor velocity and switch between cursor movement and clicking using
different imagined movements. The other participant (A1) was able to move the cursor and
click on targets, but cursor velocity control was relatively poor in the single session
appropriate for analysis. A key advance of this study is the demonstration of online decoding
of both continuous and discrete motor signals from a small population of motor cortical
neurons in the dominant arm-hand area of humans with tetraplegia. The decoding model
combines two methods: Fisher discriminant analysis and the Kalman filter. The simplicity of
these two methods makes real-time implementation practical and decoder training easy. We
modified previous filter building methods [13], [14] for users with paralysis by
incorporating a new discrete state training method into the paradigm. We found that some
particular imagined motions (e.g., squeezing the hand for S3 or opening the hand for A1)
modulated motor cortical activity in a way that could be readily discriminated from
continuous cursor movements and, therefore, could be used to generate a click signal. With
well-established measurements for the effectiveness of non-keyboard pointing devices [29],
[30], we have quantified the point-and-click performance of two participants (including one
over multiple recording sessions). This assessment approach provided more comprehensive
and practical measures of cortical cursor control than conventional measures such as mean
squared errors or correlation coefficients. We believe that these measures will be useful for
future BCI research, for which there is no currently accepted set of standard performance
metrics [32].

We found motor cortical units that exhibited distinct tuning to both cursor direction and
“click” movements. We cannot rule out the possibility, however, that these units were, in
fact, multi-units of two distinct neurons, each being tuned to a different movement feature,
because mixtures of neurons can occur with these fixed electrodes. Importantly, other work
has found that hand and arm information is intermingled within the MI arm region, as
sampled by this sensor [13], [33]. From the perspective of neural prosthetic development,
however, the important observation is that such a classification is possible using only this
small population of cells.

It would be of practical interest to know how many neurons are needed to achieve
reasonable control of both pointing and clicking. One possible way is to address this point is
performing the neuron dropping analysis [3] in which we remove one or more neurons at a
time from the decoder and evaluate the effect on accuracy during closed-loop control. As we
observed diverse groups of neurons tuned to velocity, clicking or both, the neuron dropping
analysis may be done for each tuning group independently. Of course, the better-tuned units
are likely to contribute more to generating correct control signals. If there is a linear
relationship between the tuning depth and the contribution to control, we might be able to
predict the level of cursor control from the degree of the tuning of all recorded units even
before executing a closed-loop experiment. This could be useful for determining what level
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of control may be possible and thus allow a technician to change properties of the interface
to suit the conditions (e.g., making the targets larger or smaller, or changing the integration
window for click decoding).

2-D cursor control performance with the intracortical NIS shown in this study differs from
previous BCI studies [8], [9]. After our initial report on point-and-click cursor control in a
human [34], McFarland et al. demonstrated 2-D cursor control with target selection using
EEG signals in humans [9]. Besides fundamental differences in cortical signals, an
important difference is the way the cursor was controlled. First, we simultaneously decoded
both continuous cursor kinematics and click signals from the same neural ensemble while
McFarland et al. operated cursor control in two separate modes—continuous cursor
movement and discrete target selection—and the switch between modes was conducted
based on non-neural signals (i.e., whether or not a target was reached). Second, in our study,
the cursor was always present and had to be held on the target by the participant until the
target was selected. In McFarland et al., the cursor movement was frozen once it came in
contact with a known target location. Hence, the user could focus only on the target
selection with no need to control the cursor movement. Third, we did not use an automatic
recentering of the cursor in the workspace while most previous studies have relied on this.
Fourth, McFarland et al. updated the decoder parameters using information about the target
after acquisition. However, in a natural cursor control task, the true target is unknown,
making such updating infeasible in practice. Consequently, we trained the decoder
parameters and then held them fixed during testing.

A1 participated in three point-and-click sessions through the entire pilot trial and did not
achieve point-and-click control in two of them. In these two sessions, the neuronal ensemble
did not modulate well with cursor direction or click state during training, so we ended the
session without evaluation. In the single session reported here, A1 achieved some level of
point-and-click control. A1’s click performance was only slightly worse than S3 (1 versus
0.74 of FCR), showing that A1 could volitionally generate clicks when intended. A1’s
velocity control was quantitatively worse than S3’s, resulting in an overall 47.4% error rate;
this error rate was due entirely to runs ending as a result of the timeout. This error rate was,
however, roughly comparable to previous studies of 2-D velocity control in which A1 had a
31.8% error rate on average with a simpler four-target task [14]. With a more complicated
cursor control task (smaller targets, click selection and all targets displayed) as in this study,
the roughly 17% increase in error rate is not surprising. However, it is an obvious problem
that the neural cursor tended to move in a particular direction (i.e., lower-left corner of the
screen). The cause of the movement bias to the lower-left portion of the screen is not known
(see [14] for a discussion of related issues). Current work is exploring the possible sources
of performance variability. It is noteworthy, however, that control was achieved in
participants with both ALS, a progressive neurodegenerative disease, and after long-
standing stroke.

Although the cursor was controlled reasonably well by motor cortical activity, there is still
significant room to improve control, which might be accomplished by improving the
encoding and decoding models. For instance, the maximum speed of the neural cursor was
markedly slower than cursor speed generated by able-bodied users. We hypothesize that this
slower cursor movement might be in part caused by the linearity assumption in our decoding
model. Future work should explore nonlinear models as well as acceleration decoding. To
better discriminate movement and click states, we are currently considering more accurate
classification methods such as a logistic regression, a Bayes classifier with reduced input
dimensions, or a support vector machine with a linear kernel. A more sophisticated temporal
model of changes in discrete state, such as a hidden Markov model, might improve the FCR.
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We also aim to determine the optimal classification threshold for our current classifier from
training data using cross-validation.

In our study, a click state meant that the cursor came to a stop. However, it is possible to
define the discrete state (γk) in different ways for different computer applications. For
instance, if a given application requires dragging an item from one location to another on the
screen, we should decode both the velocity and the click at the same time. In that case, we
can simply change the outputs of the discrete state such that γ(1) keeps the cursor moving
and γ(0) simply generates a click without stopping the cursor. As the imagined motions for
the continuous and discrete states are made independently, we can adjust the discrete state
outputs flexibly to the user applications.

The demonstration of reliable and accurate point-and-click cursor control provides further
evidence that even the use of a single implanted microelectrode array might be useful for
neural cursor control applications. The development of a natural, reliable, and fast point-
and-click interface for people with tetraplegia would be extremely valuable. A reliable
control signal could be used to operate most computer software as well as commercial
assistive technology. This study, together with [14], presents the first demonstration of an
intracortical point-and-click cursor neural interface used by humans with tetraplegia. The
results provide a proof of concept that a direct neural interface system can provide people
with paralysis the ability to achieve continuous control and make goal selections using a
small ensemble of MI neurons even when paralyzed for years.
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Fig. 1.
Illustration of training paradigm. (A) Continuous state (CS) training was divided into OL
and CL training blocks. See the text for details of OL and CL blocks. (B) DS training
involved alternating continuous movement and “click action” within a block. See the text for
details of DS blocks. (C) A typical sequence of training blocks is illustrated. The CS training
phase began with two OL blocks (each for 1.5 min) followed by four CL blocks (each 1.5
min). Then, the DS training phase used two DS blocks (each 1.5 min). The symbol ^
indicates training/updating the CS decoder and * indicates training the DS decoder. The time
between blocks was < 1 min.
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Fig. 2.
Neuronal firing patterns related to cursor movement and click. Raster plots of spiking
activity of four units (recorded on day 303, S3) represent four different types of neuronal
firing behaviors: (A) firing rate varied with click training only; (B) firing rate varied with
TC direction only; (C) and (D) firing rate varied with both click motion and the TC direction
by increasing the rate (C) or decreasing the rate (D) during click. (top) For each TC
movement direction, 10 spike trains are shown beginning 1 s before target onset (vertical
bar) to 1.5 s after onset. The octagons in the center circle illustrate the mean firing rates for
each direction during 1.5 s after target onset. (middle) The raster plots show 10 spike trains
recorded during click training in which the participant (S3) imagined squeezing the hand.
The sequence of click training is described in the text (see Section II-B). Below each raster
plot, the smoothed version of the peri-stimulus time histogram (PSTH) is shown. Black
horizontal dashed lines indicate the mean firing rate estimated from the training data.
(bottom) The spiking activity during the closed-loop point-and-click target acquisition task
is shown for 48 successful target acquisition runs for all eight directions. The top plot shows
the temporal variation of the distance from the NC to the target for each run. The horizontal
line indicates a distance within which the NC overlapped a target. The middle spike raster
plots are aligned from 2 s before to 2 s after target acquisition (the second vertical bar). The
target was acquired when the click was continuously decoded over a 0.5 s interval during
which the NC overlapped the target. The dashed bar indicates the start of decoding the click
state 0.5 s before generating the actual click signal. The bottom plot shows the smoothed
PSTH. Black horizontal dashed lines indicate the mean firing rate observed in the training
data.
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Fig. 3.
Percentage of neuronal units with different tuning properties. The variability in tuning
properties of neuronal units, recorded over four sessions in S3 and one session in A1, is
shown. These include: tuned to both cursor velocity and click; tuned to velocity only; tuned
to click only; or tuned to neither velocity nor click.
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Fig. 4.
The NC movement paths. Individual NC movement paths made from the onset of target
appearance to target acquisition (successful or failed) are illustrated by black lines. Circles
approximately represent the target location and size (visual angle 2.6°). Below each plot of
the NC paths are the mean NC paths to each target. Different lines denote the mean path for
each of eight targets. The number of neuronal units (N) used for controlling the NC and the
number of target acquisition runs (n) are marked.
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Fig. 5.
Click generation as a function of distance to the target. The NC location when a click was
generated is compared with its distance to the target. (A) A scatter plot of the NC locations
with respect to the target is shown for all successful clicks (blue dots) and false clicks
(orange dots). 193 click location samples are shown for S3 and 16 samples for A1. The
circle represents the area around the target within which the NC overlapped the target (i.e.,
the target was selectable). The square represents the center of the screen. (B) The
normalized histogram of the distance to the target for all successful (blue) and false (orange)
clicks (the bin width was 39 pixels). (C) The normalized histogram of the distance at which
the first click occurred in each target acquisition run.
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Fig. 6.
Histograms of the preferred direction and the false-click-related movement direction. (A)
Polar histograms of the intended direction of the NC movement at the point when false
clicks were generated are shown for eight angular bins centered at {0°,45°,…, 315°}. 138
false click events were analyzed for S3 and 19 for A1. (B) Polar histograms of the preferred
direction (PD) of the “multi-state tuned” units that were tuned to both click and direction.
The histogram for 61 multi-state tuned units is shown for S3 (15 units for A1).
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