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SUMMARY

When testing large numbers of null hypotheses, one needs to assess the evidence against the global null
hypothesis that none of the hypotheses is false. Such evidence typically is based on the test statistic of the
largest magnitude, whose statistical significance is evaluated by permuting the sample units to simulate
its null distribution. Efron (2007) has noted that correlation among the test statistics can induce substan-
tial interstudy variation in the shapes of their histograms, which may cause misleading tail counts. Here,
we show that permutation-based estimates of the overall significance level also can be misleading when
the test statistics are correlated. We propose that such estimates be conditioned on a simple measure of
the spread of the observed histogram, and we provide a method for obtaining conditional significance lev-
els. We justify this conditioning using the conditionality principle described by Cox and Hinkley (1974).
Application of the method to gene expression data illustrates the circumstances when conditional signifi-
cance levels are needed.

Keywords: Conditional p-value; Gene expression data; Genome-wide association data; Multiple testing; Overall
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1. INTRODUCTION

Many studies involve testing large numbers of hypotheses. For example, we may be interested in whether
the expression levels of a large number M of genes are similar in 2 types of cancer tissue or whether
genotypes of M genetic markers are similar in individuals with and without a given disease. To address
such questions, investigators obtain random samples from the 2 populations and form M test statistics
T1, . . . , TM evaluating the differences. An important analytic starting point is assessment of the overall
evidence against the global null hypothesis H0 of no differences between the 2 populations, that is, that
none of the M null hypotheses is false. Such evidence, when present, motivates the search for specific
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attributes that differ in the populations. Even if such evidence is absent, the study can provide important
leads for investigation in other studies. Ultimately, however, one is unlikely to declare that the populations
differ in any specific attributes unless evidence against H0 has been observed in several independent
studies.

There are several strategies for testing H0 (see Westfall and Young, 1993, for a review). Here, we shall
work with the test statistic having largest magnitude. For analytic convenience, we first convert each test
statistic to a z-value:

Zm = �−1[�(Tm)], m = 1, . . . , M, (1.1)

where � is the standard normal cumulative distribution function (cdf) and � is a putative null marginal cdf
for each statistic. Under H0, each Zm has a standard normal marginal distribution. Let X = maxm |Zm |.
If the M statistics were independent, the overall p-value associated with the observed value X = x would
be Px = 1 − [1 − 2�(−x)]M ∼ 2M�(−x), where the approximation holds for large x . When the test
statistics are correlated, we can estimate Px by simulating the global null distribution of X . This is done
by permuting the sample units many times. In each permutation, we compute M test statistics and record
the value of the one with largest magnitude. We estimate Px as the proportion of all permutations whose
maximum test statistic exceeds the observed value x .

However, there is a potential problem with using Px as a measure of overall significance. Specifically,
the shape of the histogram of values Zm varies across studies with correlated tests more than it does
across studies with independent tests (Owen, 2005; Efron, 2007). The larger variation among histograms
of correlated statistics can cause misleading tail counts, and some adjustment is needed to avoid erroneous
inferences.

Here, we describe those situations when histogram variability can produce misleading values for an
overall significance level. We begin with a more formal description of the problem and our proposal for
addressing it. We then review a conditionality principle that describes the circumstances when conditional
significance levels are more appropriate than unconditional ones. We present a simple, permutation-based
method for estimating the difference between conditional and unconditional significance levels, while also
estimating the variance of C (and its covariance with tail counts) for comparison with expected values. The
investigator can then consider whether conditional p-values would substantially alter the interpretation of
results and report them when appropriate. We also derive approximations that elucidate the 2 key factors
determining the need for conditional significance levels. The first factor is the average of the squared
correlation coefficients for all pairs of distinct test statistics. The second factor is the magnitude x of the
maximum test statistic. Finally, we illustrate the method by application to gene expression data.

2. THE PROBLEM

Consider the sample histograms of data from several studies, each producing M test statistics,
Z1, . . . , Z M , with each Zm having a standard Gaussian marginal distribution. If the Zm are independent,
the histograms vary across studies in predictable ways. For example, we can calculate various moments of
the distribution of a histogram’s “central proportion” C , that is, the proportion of test statistics Zm with ab-
solute value less than 1: C = #{Zm : |Zm | < 1}/M . The expected value of C is �(1) − �(−1) = 0.6827,
and its variance is 0.6827(1 − 0.6827)/M = 0.2166/M . However, correlation among the test statistics
increases the variability of the sample histograms (Efron, 2007). For instance, with M = 2000 test statis-
tics, the standard deviation of C increases from 0.01 under independence to about 0.08 when the average
squared correlation coefficient between pairs of test statistics is 0.05. Of particular importance, extreme
values of the test statistics can be more variable than appreciated in the presence of correlation, which can
complicate interpretation of results from any given study. Because a permutation-based estimate of the
overall p-value Px does not account for the excess variability, significance levels assigned to an observed
value X = x can be misleading.
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2.1 Conditioning on the central proportion C

We propose assessing the variability of X via that of C and, when the variability is large, reducing it
by conditioning on the observed value C = c. That is, we replace the permutation-based unconditional
p-value Px by the conditional p-value

px (c) = Pr(X > x |C = c) = E[Y |C = c].

Here, Y = 1 if X > x and Y = 0 otherwise.
This variance-reducing tactic is familiar to statisticians. Our statistic of interest Y is correlated with

another statistic C that is not of interest. (C is not of interest because the test statistics between ±1 are
unlikely to represent hypotheses that are false and thus “interesting.”) Moreover, the variance of C is
greater than expected under standard assumptions, such as independence of the test statistics. This is
precisely the setup for the conditionality principle described by Cox and Hinkley (1974). The principle
states that when C has large variance and is strongly correlated with Y , inferences based on Y should
be drawn as if C were fixed at its observed value. Other values that C might have taken are irrelevant to
the data at hand.

2.2 Example illustrating the conditionality principle

Suppose we randomly choose a coin from a bag containing 90% nickels and 10% quarters. We flip our
chosen coin and then use the outcome (heads or tails) to select one of 2 hypotheses. The first hypo-
thesis states that the nickels are biased toward heads, while the second hypothesis states that the quarters
are so biased. Columns 1 and 2 of Table 1 show the probabilities of heads specified by the 2 hypotheses
for each of the 2 choices of coin. The unconditional probability of heads is 0.9(0.8) + 0.1(0.1) = 0.73
according to hypothesis 1 and 0.9(0.1) + 0.1(0.8) = 0.17 according to hypothesis 2. Suppose we choose
a quarter, flip it, and get heads. If we ignore the coin type chosen, the probabilities in column 3 would
prompt us to favor hypothesis 1. But if we condition on the fact that we chose a quarter, we would favor
hypothesis 2. Thus, directly conflicting evidence is provided if we do not condition on the type of coin
chosen.

In this example, there is a strong association between the heads/tails outcome of interest and the choice
C of coin, and this choice varies from one experiment to another. The likelihood of substantial differences
between conditional and unconditional inferences increases with the strength of dependence between the
outcome of interest and the coin selection C , and it increases with the variance of C . The example shows
that if the covariance between an extreme-value statistic and an appropriately chosen conditioning statistic
C is sufficiently large, and if C is sufficiently variable, then different conclusions about H0 may be drawn,
depending on whether or not we condition on C .

Table 1. Probability of heads when flipping a randomly selected coin, under 2 hypotheses

Hypothesis Heads probability

Conditional on coin type† Unconditional

Nickel Quarter

Nickels biased toward heads 0.80 0.10 0.73
Quarters biased toward heads 0.10 0.80 0.17

†Coin is selected from a bag containing 90% nickels and 10% quarters.
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2.3 When are conditional p-values needed?

The most straightforward way to evaluate the need for conditional p-values is to estimate both conditional
and unconditional p-values and compare them. This can be done by repeatedly permuting the sample units
and generating M test statistics for each permutation. The unconditional p-value is estimated as the pro-
portion of permutations whose maximal test statistic exceeds x . In principle, the conditional p-value could
be estimated by restricting the permutations to those whose C-value lies in a small interval around the ob-
served value C = c and basing the p-value estimate only on the permutation outcomes within that small
subset. For example, for a study comparing the M attributes of 2 samples of N1 and N2 units, the r th of
the R permutations would involve the following steps: (i) randomly select a subset of N1 of all the units,
call it sample 1, and call the remaining N2 units sample 2; (ii) compute the M test statistics comparing the
2 samples; and (iii) flag the permutation if the magnitude of any test statistic exceeds x . Repeating these
3 steps R times, we estimate the unconditional overall p-value as P̂x = #{flagged permutations}/R. In
addition, we might estimate the conditional overall p-value, given conditioning statistic C = c, as

p̂x (c) = #{flagged permutations with Cr ∈ (c − δ, c + δ)}
#{permutations with Cr ∈ (c − δ, c + δ)} , (2.1)

where δ is a small positive number.
A limitation of the latter estimate is the large number of permutations needed to achieve adequate pre-

cision, particularly when the observed c falls in the tail of the distribution of C , a circumstance yielding
the largest potential difference between conditional and unconditional p-values. Instead, we propose in-
ferring px (c) by regression smoothing. Specifically, let Yr = 1 if the test statistic of largest magnitude in
the r th permuted data set is flagged, with Yr = 0 otherwise. We fit to the points {(Yr , Cr ), r = 1, . . . , R}
the logistic regression model logit[Pr(Yr = 1|Cr )] = α + βCr to obtain fitted parameter values α̂ and β̂.
We then use these to estimate the conditional p-value given the observed C = c as

p̂x (c) = exp(α̂ + β̂c)

1 + exp(α̂ + β̂c)
. (2.2)

If the 2 p-values P̂x and p̂x (c) differ appreciably, then the conditionality principle indicates that the latter
is a better summary of the evidence against H0. This regression smoothing borrows strength from the full
ensemble of R permutations instead of just those with C close to c. It is similar in flavor to the regression
smoothing of Efron (2007) when inferring the false discovery rate and the extreme-value smoothing of
Dudbridge and Koeleman (2004). Using simulated data sets (not shown), we have found that the smoothed
conditional p-values (2.2) agree closely with those obtained from extensive permutations using (2.1), for
a wide range of values of C and X .

The permutations also can provide a fuller picture of the need for conditioning, by providing empirical
estimates of the moments var(C) and cov(C, Y ). The extent to which these empirical moments exceed
their expected values under the independence assumption indicates the need for conditioning. We show
in the Appendix that when all pairs of test statistics have bivariate Gaussian distributions, both these
moments have approximate representations in terms of the mean of the squared correlation coefficients
for all pairs of test statistics,

τ 2 = 2

M(M − 1)

∑
1�m<m′�M

ρ2
mm′ .

Specifically,

var(C) ∼ 0.2168

M
+ 0.11713τ 2 (2.3)
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and

cov(C, Y ) ∼ −Px

(
0.6826

M
+ 0.2040x2τ 2

)
. (2.4)

These approximations hold for small values of τ 2 and large values of x . Expressions (2.3) and (2.4)
show that potential differences between conditional and unconditional significance levels increase with
the correlation measure τ 2 and the threshold value x .

3. APPLICATION TO GENE EXPRESSION DATA

Here, we apply the method to expression levels of M = 3226 genes in the breast cancers of 15 patients
with pathogenic mutations of the tumor-suppressor genes BRCA1 (N1 = 7) or BRCA2 (N2 = 8), as de-
scribed by Hedenfalk and others (2001) and analyzed by Efron and Tibshirani (2002) and Efron (2007).
The study goal was to identify genes that are differentially expressed in the 2 cancer groups. An impor-
tant first step toward this goal is to determine whether the data provide evidence against the global null
hypothesis that none of the genes are differentially expressed. In this example, each individual’s expres-
sion levels for different genes are likely to be correlated. The test statistic for the mth gene is the usual
2-sample t-statistic

Tm = µ̂m1 − µ̂m2[
1
7

∑7
i=1(gmi − µ̂m1)2 + 1

8

∑15
i=8(gmi − µ̂m2)2

]1/2
,

where gmi is the log-expression level of gene m in the cancer of individual i and µ̂m1 and µ̂m2 are the
means in individuals with BRCA1 and BRCA2 mutations, respectively. (The t-distribution assumes that
the individual expression levels have lognormal marginal distributions.) We work with the transformed
statistics (1.1), where � is the cdf for the t-distribution on N1 + N2 − 2 = 13 degrees of freedom.

As shown in Table 2, X = max1�m�3226 |Zm | = 4.70 and C = 0.4817. Because this value of
C is less than its expected value 0.6827, the histogram of test statistics Zm is wider than expected under

Table 2. Effect on overall p-value of correlation among test statistics comparing expression of 3226
genes in 2 samples of cancer tissue†

Unconditional p-value‡ Px , x = 4.70 0.006
Conditional p-value‡ px (c), c = 0.4817 0.049

var(C)

Independence 6.71 × 10−5

Permutation based‡ 4.04 × 10−3

Average squared correlation τ2 § 3.36 × 10−2

cov(C, Y )¶

Independence −1.76 × 10−6

Permutation based‡ −3.87 × 10−4

Theoretical‖ −9.70 × 10−4

†Seven BRCA1 cancers and 8 BRCA2 cancers from Hedenfalk and
others (2001).
‡Based on 15!/(7!8!) = 6435 permutations.
§From formula (2.3).
¶Y = 1 if maximum test statistic exceeds 4.70, Y = 0 otherwise.
‖From formula (2.4).
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the assumption of independence. Thus, unconditional overall p-values are likely to be less than
conditional ones. To obtain the latter, we considered the R = 15!/(7!8!) = 6435 ways of randomly
assigning 7 and 8 BRCA1 and BRCA2 labels, respectively, to the 15 patients. We computed the corre-
sponding set of 3226 transformed t-statistics and, for each, its central proportion Cr and a variable Yr

indicating whether its largest test statistic exceeded 4.70, r = 1, . . . , 6435. We then used the regression
smoothing of (2.2) to estimate the conditional overall p-value given C = 0.4817. The fitted parame-
ters were α̂ = 3.139 and β̂ = −12.681. The unconditional overall p-value, given by the proportion of
permutations r with Xr > 4.70, was Px = P4.70 = 0.006. In contrast, the conditional p-value was
p̂x (c) = p̂4.70(0.4817) = 0.049. Table 2 gives some insight into the reasons for such a large difference.
Shown are the permutation-based value of var(C) and the estimated mean squared test correlation τ 2

obtained from (2.3). Also shown is the permutation-based value of cov(C, Y ) and its bivariate Gaussian
approximation (2.4). The table includes for comparison the values expected if the 3266 test statistics were
independent. The correlations among gene expression levels increase var(C) about 60-fold and increase
the magnitude of cov(C, Y ) about 200-fold.

The conditional p-value of 0.049 provides only borderline evidence against the global null hypothesis
that none of the genes are differentially expressed, contrary to the interpretation of Hedenfalk and others
(2001). These conclusions are consistent with those of Efron (2007), who worked with the proportion of
false discoveries in these data. Thus, as illustrated by the coin-tossing example of the previous section,
conditional and unconditional inferences can be substantially different; when this occurs the conditional
ones are more reliable.

4. DISCUSSION

Owen (2005) and Efron (2007) have warned that when the test statistics for a large collection of null
hypotheses are correlated, their histogram can be highly variable. This variability can lead to misleading
inferences from a single study. This is particularly problematic if the study is large and costly so that
replication is difficult. The conditionality principle states that in this situation, inferences conditioned on
statistics that capture this variability are more appropriate than unconditional inferences.

Efron (2007) has suggested ways to implement this conditioning when estimating tail probabilities
and false discovery rates. The general approach involves defining a statistic X on which inferences are
based and then conditioning X on the observed value of a summary statistic C for the histogram spread.
Here, we have used this approach to estimate overall significance levels, with X taken as the test statistic
with maximum magnitude and C taken as the central proportion of the test statistics. We have focused on
overall significance levels to simplify the presentation. However, the proposed permutation-based condi-
tional procedure applies to a large class of inferential problems, such as estimating null tail probabilities,
adjusted p-values for subsets of hypotheses of interest, and false discovery rates.

While we have used the central proportion as the conditioning statistic, other choices are possible.
However, care is needed in choosing this statistic. In general, the set of M test statistics will be a mixture
of 2 unobserved subsets: (i) the test statistics representing the true null hypotheses and (ii) the “nonnull”
test statistics representing the false ones. The summary statistic should account for a large fraction of the
variability of the histogram of null test statistics and conditioning on it should reduce much of the vari-
ability of X . But to avoid power loss by “overconditioning,” the summary statistic should be independent
of the nonnull statistics.
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APPENDIX

To prove (2.3) and (2.4), we use the following lemma, which follows from straightforward differentiation.

LEMMA The standard bivariate Gaussian distribution can be expanded in powers of the correlation
coefficient ρ:

f (x, y; ρ) = 1

2π(1 − ρ2)
exp

{
2ρ − x2 − y2

2(1 − ρ2)

}

=
[

1 + ρxy + ρ2

2
(1 − x2)(1 − y2)

]
φ(x)φ(y) + O(ρ3). (A.1)

Here, φ(z) denotes the standard univariate Gaussian density.

Proof of approximations (2.3) and (2.4). To prove (2.3), we introduce the indicator variable Um = 1 if
|Zm | < 1, with Um = 0 otherwise, m = 1, . . . , M . Thus, E[Um] = γ = ∫ 1

−1 φ(z) dz = 0.6827, and

C = ( ∑M
m=1 Um

)
/M has variance

var(C) = 1

M2

M∑
m=1

M∑
n=1

E[UmUn] − γ 2. (A.2)

Our goal is to approximate the expectations E[UmUn]. We need to only consider pairs m �= n since
E[U 2

m] = γ. We assume that under H0, the test statistics Zm and Zn have the bivariate Gaussian distribu-
tion f (zm, zn ; ρmn) of (A.1). Then, using the lemma and neglecting terms of order ρ3

mn , we have

E[UmUn] =
∫ 1

−1

∫ 1

−1
f (x, y; ρmn)dx dy ∼ γ 2 + 1

2
λ2ρ2

mn = γ 2 + 0.11713ρ2
mn, (A.3)

where

λ =
∫ 1

−1
(1 − z2)φ(z) dz = 0.4840. (A.4)

Thus,

E[UmUn] ∼
{

γ, if m = n,

γ 2 + 0.11713ρ2
mn, if m �= n.

(A.5)

Substituting (A.5) into (A.2) gives

var(C) ∼ γ (1 − γ )

M
+ 0.11713

M 2

∑
1�m �=n�M

ρ2
mn

= 0.2167

M
+ 0.11713

(
1 − 1

M

)
τ 2 ∼ 0.2167

M
+ 0.11713τ 2, (A.6)

which proves (2.3).
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To prove (2.4), we rewrite it as

cov(C, Y ) ∼ −Px

(
γ

M
+ 1

2
λx2τ 2

)
, (A.7)

where λ is given by (A.4). Since C = ( ∑M
m=1 Um

)
/M , we have

cov(C, Y ) = 1

M

M∑
m=1

cov(Um, Y ) = 1

M

M∑
m=1

E(UmY ) − γ Px . (A.8)

But

E(UmY ) =
∑
n �=m

Pr
(

Y = Um = 1, Zn = max
m

Zm

)

=
∑
n �=m

Pr
(

Y = 1, Zn = max
m

Zm

)
Pr

(
Um = 1 | Y = 1, Zn = max

m
Zm

)
. (A.9)

The first factor in the nth summand of (A.9) is

Pr(Y = 1) Pr
(

Zn = max
m

Zm

)
= Px/M . (A.10)

For large x , the second factor is approximately

Pr (Um = 1 | Zn > x).

Substituting these 2 expressions into (A.9) gives

E(UmY ) ∼ Px

M

∑
n �=m

Pr(Um = 1 | Zn > x) = Px

M

∑
n �=m

Amn, (A.11)

where

Amn = 1

�(−x)

∫ 1

−1

∫ ∞

x
f (u, v ; ρmn)du dv . (A.12)

Substituting the expansion (A.1) for the integrand in (A.12) and integrating and ignoring terms of order
ρ3

mn give

Amn ∼ γ − 1

2
λx2ρ2

mn . (A.13)

Here, we have used the fact that
∫ ∞

x (1 − u2)φ(u)du = −xφ(x) and that for large values of x, �(−x) can
be approximated by φ(x)/x . Substituting (A.13) into (A.11) gives

E(UmY ) = Px

⎛⎝γ − γ

M
− λx2

2M

∑
n �=m

ρ2
mn

⎞⎠. (A.14)

Finally, substituting (A.14) into (A.8) gives (A.7). �
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