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Abstract

Microglia are specialized immune cells of the brain. Upon insult, microglia initiate a cascade of cellular responses including a
characteristic change in cell morphology. To study the dynamics of microglia immune response in situ, we developed an
automated image analysis method that enables the quantitative assessment of microglia activation state within tissue
based solely on cell morphology. Per cell morphometric analysis of fluorescently labeled microglia is achieved through local
iterative threshold segmentation, which reduces errors caused by signal-to-noise variation across large volumes. We
demonstrate, utilizing systemic application of lipopolysaccharide as a model of immune challenge, that several
morphological parameters, including cell perimeter length, cell roundness and soma size, quantitatively distinguish resting
versus activated populations of microglia within tissue comparable to traditional immunohistochemistry methods.
Furthermore, we provide proof-of-concept data that monitoring soma size enables the longitudinal assessment of microglia
activation in the mouse neocortex imaged via 2-photon in vivo microscopy. The ability to quantify microglia activation
automatically by shape alone allows unbiased and rapid analysis of both fixed and in vivo central nervous system tissue.
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Introduction

Microglia are the native innate immune cells of the central

nervous system. In response to insult, they become activated,

migrate to sites of damage, phagocytose cellular debris, and release

cytokines [1]. This response is thought to rapidly mitigate local

infection and cell damage. However, chronic activation of

microglia has been implicated as a causative factor in a range of

neurological disorders [2]. The dichotomy of microglia biology in

health and disease is poorly understood due, in part, to a lack of

methods to efficiently quantify microglia activation longitudinally

in the context of their cellular environment.

Mechanical, metabolic or inflammatory activation of microglia

results in several characteristic physiological changes within

individual cells. Microglia undergo a shift in gene expression

profile [3,4,5]; Notably, expression of the calcium binding protein

IBA-1 [6] and the lysosomal protein CD68 [7] are up-regulated.

Consequently, immunohistochemistry detection of IBA-1 and/or

CD68 is routinely used to assess activation within tissue. However,

histological approaches do have limitations, for example they are

incompatible with the longitudinal assessment of individual

microglia in situ.

Another characteristic activation-induced change in microglia is

a transformation in cellular morphology [1]. At rest microglia

exhibit a ramified cell morphology with numerous thin processes

extending tens of microns away from their soma. Upon activation,

these thin processes are drawn back into their soma, resulting in a

rounded amoeboid-like appearance. Recent work suggests that this

change in morphology may provide an opportunity to quantita-

tively study microglia activation within their native cellular context

longitudinally.

Utilizing time-lapse imaging of FITC labeled microglia within

neonatal rat brain slices, Stence and colleagues demonstrated that

microglia undergo a stepwise change in cell morphology with

activation [8]. Specifically, mechanical activation induced the

retraction of fine processes on timescales of minutes prior to

changes in cell motility. Measures of processes length, therefore,

enabled the quantification of activation response on a per cell

basis.

The use of morphological change as a readout of microglia

activation is further supported by studies comparing cell

morphology to the expression level of known markers of

microglia activation. P2Y12 is a metabotropic purinergic receptor

down-regulated within microglia under activating conditions [9].

By comparing the expression level of P2Y12 after mechanical

insult to the number of primary processes emanating from a

microglia, Haynes and colleagues demonstrated a positive

correlation (R2 = 0.93) between process number and P2Y12

expression, consistent with microglia converting to an amoeboid

shape upon activation.
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While informative, the studies described above relied on manual

measurement of microglia morphology. Manual methods are time

consuming, susceptible to human bias, and therefore difficult to

scale up to analyze larger datasets. To circumvent these

limitations, we sought to develop automated image analysis

methods to segment the cell shape of individual microglia from

fluorescence micrograph datasets, calculate morphological param-

eters that characterize individual cell shape, then quantitatively

assess which parameter best reports changes in microglia

activation state.

Here, we report the implementation of an iterative thresholding

method to segment the cell shape of individual microglia with

,90% accuracy compared to manual methods, yet that requires

,1/100th the time, and no human intervention. Segmentation

relies on a priori knowledge of a single characteristic of microglia:

cell size. Utilizing this automated segmentation method in parallel

with immunohistochemistry staining for known markers of

microglia activation, we demonstrate that automated measures

of microglia morphology can be used to quantify their activation

state in tissues, on a per cell basis. We find that soma size best

correlates with expression level of IBA-1 under activating

conditions. Finally, in a proof-of-concept study we illustrate the

utility of tracking soma size longitudinally as a quantitative metric

of microglia activation in vivo. The ability to automatically track

microglia activation without antibody staining will expedite the

study of microglia biology and their role in disease.

Materials and Methods

Ethics Statement
All procedures were carried out with Institutional Animal Care

and Use Committee (IACUC) approval in accordance with the

institution’s ethical guidelines (Genentech Protocol Numbers: 2-

photon intravital imaging 08-1737, immunohistochemistry 10-

1389).

Animals and treatment conditions
Two to four-month old CX3CR1-EGFP heterozygous C57BL/6

animals [10] were used for all experiments. Microglia were activated

in vivo by I.V. injection of 1, 2 or 4 mg/kg of Escherichia coli LPS

(serotype EH100 Sigma) dissolved in 0.9% saline. These mice were

euthanized after 24 h or 48 h (as indicated) for histological analysis.

An independent set of animals were examined in vivo by 2-photon

microscopy through a cranial window, 6 LPS treatment or laser

ablation, and imaged up to 96 h.

Confocal Microscopy of ex vivo tissues
Coronal sections of 40-mm thickness were prepared on a

cryostat and mounted onto slides (see Immunohistochemistry).

Cortical regions of the coronal sections were examined using an

inverted laser scanning confocal microscope (SP5 Leica with multi-

immersion objective 2060.7 NA), with excitation lasers at 488 nm

and 633 nm to excite EGFP (bandpass 510/20 nm) and Alexa 647

(bandpass 675/25 nm), respectively. The laser was then tuned to

533 nm to excite Alexa-564 (bandpass 615/30 nm), to avoid

bleed-through of EGFP into the Alexa-564 channel. Two regions

per mouse, covering 7766776 mm, ,10 optical sections 1 mm

apart (0.76 mm/pixel resolution in X and Y), were imaged with

three line averaging to reduce noise.

Generating maximum intensity projections
All segmentation and quantification was performed on 2D mean

intensity projections (MIPs) of 3D image data. For fixed samples, the

top 10 mm were used to create MIPs from cortical regions. The

imaged depth approximately corresponds to the antibody penetra-

tion depth. For in vivo data, image volumes of 100 mm axial depths

were obtained. Sub-volumes of 10 mm thickness were used to create

MIPs, separated by 20 mm gaps, resulting in three MIPs analyzed

per imaged volume. As soma size is approximately 10 mm in

diameter, we reasoned that the 20 mm gap between volumes used

for maximum projections eliminated the possibility of the same cell

being identified within multiple MIPs.

Image segmentation
All morphometric segmentation was based on green fluores-

cence intensities generated from imaging EGFP expressing

microglia of CX3CR1-EGFP transgenic mice. The automated

segmentation routine consists of three steps:

First, the positions of individual cells within a field of view were

determined by: 1) identifying objects consisting of connected pixels

with intensity values above a regional maxima intensity value

(imregionalmax function within MATLAB), then 2) calculating the

centroid for each object detected with a summed pixel area greater

than 50 mm2. Each centroid defined an individual microglia cell

positions (CP).

Second, cell masks (CM) were generated per CP via iterative local

threshold segmentation of EGFP+ pixels. Specifically, within a

120 mm6120 mm local region (LR) centered on each CP, candidate

cell masks (CCM) were generated by identifying connected pixels

with intensity values greater than the threshold calculated by Otsu’s

method [11] within the LR. Otsu’s method identifies a threshold

pixel value that minimizes the interclass pixel intensity variance

between the two pixel classes (‘on’ or ‘off’) within the image

(graythresh function within MATLAB). The summed pixel area

within a CCM is compared to the predetermined variable, target

cell size (TCS, discussed further in Target cell size). If the CCM equals

the TCS 6 100 mm2 the mask is considered to be an accurate CM

for the associated CP. If not, the threshold is adjusted by a quantity

proportional to the difference between the current CCM size and

TCS averaged over every past iteration (Figure S1). The iteration

stops when either the CCM is within an accepted range of the TCS

6 100 mm2 or if the size of the CCM stabilizes to a fixed value for

more than two consecutive iterations at which point the mask is

considered to be an accurate CM for the associated CP. This

averaging method ensures that the calculations converge.

Third, each CM is subject to two subsequent tests to confirm it

accurately represents a single microglial cell. Test 1: Does the CM

touch the boundary of the LR, thus potentially misrepresent the

area of the cell? If so, the CP and CM are removed from further

analysis. Test 2: Does the CM contain a single soma? A cell soma

mask (CSM) is defined as a contiguous area larger than 16.7 mm2

within the CM with pixel values 50% greater than the rest of the

CM. If the CM contains more than one CSM it is excluded from

further analysis as it likely represents a dividing cell or two cells in

close proximity that could not be accurately resolved. If a CM does

not contain a CSM it is also discarded, as it likely represents a

microglia positioned above or below the imaged volume.

Morphometric measures of cell shape
At rest microglia exhibit a ramified morphology, yet become

amoeboid upon activation. To quantitatively describe this

morphological switch we defined a series of morphological

parameters expected to capture this change. These include cell

perimeter length, the length around the periphery of each cell; cell

spread, the average distance from the cell center of mass to its

detected extremes; eccentricity, the ratio of the major axis to the

minor axis of the smallest circle that can fit the extensions of

the cell; roundness, 4p6area/cell perimeter length2; soma size, the

Longitudinal Assessment of Microglia Activity

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e31814



area contained within the soma mask. All parameters were

calculated from individual segmented soma or cell masks (see Image

segmentation) using the MATLAB regionprops function with the

properties specified as: perimeter, extrema, eccentricity and area,

respectively.

Immunohistochemistry and automated quantification of
protein expression per cell

Animals were euthanized by CO2 asphyxiation and immediately

transcardially perfused with PBS followed by 10% sucrose 4%

paraformaldehyde in PBS. Whole brains were placed in the same

fixative overnight and then transferred into 30% sucrose. Coronal

sections of 40 mm thickness were prepared on a cryostat and mounted

onto slides. Sections were permeabilized (0.1% Triton in PBS),

blocked 1 h at room temperature (5% BSA 0.3% Triton in PBS),

immuno-stained with 1:1000 rabbit anti-IBA-1 (Wako Chemicals) or

1:500 rat anti-CD68 (Serotec) overnight at 4uC. Sections were

washed (0.1% Triton in PBS) and secondary antibodies 1:1000 anti-

rabbit Alexa-564 and anti-rat Alexa-647 (Invitrogen Molecular

Probes), respectively, were applied for 2 h at room temperature.

Sections were mounted with VectaShield (Vector Labs).

Similar to cell shape segmentation, quantification of immunoflu-

orescence data can be complicated by inhomogeneity of fluores-

cence intensities across a large field of view. Often, fluorescence

intensities are quantified by measuring overall image brightness,

and subtracting the mean background fluorescence. Since our work

is concerned with fluorescence intensities in individual microglia,

each cell was analyzed within its local region of interest as defined

during image segmentation (Figure S5). IBA-1 or CD68 expression

was quantified within each cell mask based on secondary antibody

fluorescence intensity. The mean fluorescence intensity was divided

by the mean background intensity within LR. The mean

background intensity was calculated from the mean intensity within

the LR excluding the cell mask. This quotient method was used

instead of a subtractive method, as the former provided more

consistent results with tissues of varying staining intensities.

Target cell size (TCS)
Our segmentation routine utilizes a single variable, TCS, to

minimize the impact of local fluorescence intensity variability in

segmenting individual cells, and thus can potentially influence the

values calculated for the parameters characterizing microglia

morphology. Initially, this value was estimated based on the

approximate size of individual microglia when represented in

MIPs of 10 mm volumes 7006700 mm2 XY fields of view. Once

the segmentation routine, morphological parameters and immu-

nostaining techniques were established, we further explored the

influence of the TCS on the ability to distinguish LPS-induced

microglia activation from control (Figure S2). We found that a

TCS of 5006100 mm2 gave the highest number of detected CMs

and highest differentiation between activated and resting microglia

by both morphological and marker expression matrices. Further-

more, the value of 500 mm2 is consistent with previous estimates of

microglia size in the CNS [12]. Note that if the target cell size is set

too high, it will detect not only cells, but also neighboring touching

cells. If it is set too low, its ability to distinguish activated and

resting cells diminish, as the main delineating factor is expected to

be cell process extensions. For all analysis in this text, TCS was

therefore set to 500 mm2.

2-photon in vivo microscopy
Cranial windows were implanted above the somatosensory

cortex as described previously [13]. Briefly, animals were

anesthetized using isoflurane, secured on a stereotax, and a

craniotomy was performed to remove approximately a 2-mm

diameter region of skull leaving the dura intact. A custom-made 3-

mm diameter No. 1 glass cover slip was placed above the exposed

tissue and secured to the remaining bone with dental acrylic. A

metal bar was embedded within the dental acrylic next to the glass

and used to secure the mouse at a fixed angle during imaging.

Mice were allowed to recover a minimum of two weeks before

beginning an imaging experiment.

For each imaging time point, mice were anesthetized with 1–2%

isoflurane and injected I.V. with 100 ml of the vascular marker

AngioSense 680 (VisEn Medical). Animals were head restrained at

the stage of a 2-photon microscope equipped with four

independent photomultiplier tubes (Prairie Technologies Ulti-

maIV) and powered by a tunable MaiTai DeepSee Ti-sapphire

laser (Spectra-Physics). Images were acquired using a 406 N.A.

0.8 objective (Olympus), 910 nm excitation wavelength, 440/

80 nm, 510/60 nm and 705/50 nm bandpass filters for second

harmonic detection of the dura, EGFP+ and AngioSense 680,

respectively. Laser power and dwell time were constant within an

experiment (,20 mW back focal plane power, 4.8 ms/pixel,

respectively). Only those areas between 50 mm and 200 mm below

the dura were used for imaging. For the first imaging session, up to

3 neighboring 30063006100 mm (XYZ) areas were imaged

(5126512 pixels spaced 1 mm in Z, 0.58 mm/pixel resolution in

X and Y). For subsequent imaging sessions, imaging areas were

identified via the unique patterning of the vasculature. Note: daily

I.V. administration of AngioSense, a macromolecular fluorescent

probe with relatively slow systemic clearance, resulted in a gradual

increase in red fluorescence within the vasculature throughout the

longitudinal studies.

Statistics
Statistical analysis was performed using the MATLAB Statis-

tical Package. Results are shown as mean values 6 standard

deviations (STD). Statistical significance is calculated by Student’s

T-test, and indicated as follows: *p,0.05, **p,0.01, and

***p,0.001. Correlation was calculated by Pearson’s Correlation

Formula.

Results

Automated segmentation of fluorescently labeled
microglia

At rest microglia exhibit a ramified morphology: thin processes

extending tens of microns radial from a larger cell soma. This

shape provides unique challenges for automating cell segmentation

from fluorescent micrographs using standard global threshold

methods. For example, subtle inhomogeneities in fluorescence

excitation or detection across a field of view can influence

fluorescence intensity values across an image and even a single cell.

In the context of fluorescently labeled microglia this translates to

errors when segmenting thin processes. To circumvent this

problem we developed an iterative local threshold method, which

enables the segmentation of microglia within tissues at accuracies

comparable to manual segmentation (see Materials and methods).

Briefly, our segmentation strategy relies on three steps (Figure 1).

1) The identification of microglia cell positions (CP) within a field

of view, achieved through a regional maxima finding algorithm. 2)

Applying an iterative threshold segmentation routine within the

local region surrounding each detected CP to generate an accurate

cell mask (CM) (Figure S1 and Figure S2). 3) Post-segmentation

testing to verify that each CM accurately represents a single cell

with a single soma. Furthermore, since segmentation does not

Longitudinal Assessment of Microglia Activity
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directly relate to fluorescence intensities, the above segmentation

approach is relatively insensitive to pixel saturation.

When implemented in MATLAB, the computing time per cell

within a field of view is approximately 0.2 seconds. Overall, 70 to

100% of cells detected by manual segmentation methods are

correctly identified by this automated algorithm (Figure S3). Note

that due to their ramified morphology, processes from resting cells

are more likely to touch neighboring cells, thus fewer resting cells

are properly segmented per area compared to activated cells.

Similarly, conditions that result in microglia aggregation may

result in fewer detected cells as their probability of contact

increases with increasing proximity.

Per cell morphometric characterization of microglia
within tissue

Once segmented, each cell mask provides the spatial coordi-

nates of individual microglia. To quantitatively describe their

shape, we defined a series of morphometric parameters designed

to capture the ramified morphology of resting microglia

(Figure 2A), see Material and Methods. These include cell

perimeter length; cell spread, which is analogous to the ‘process

length’ metric from previous studies [8]; eccentricity; roundness,

which is similar to the morphology quantification used by Haynes

et al. [9]; and soma size. Once implemented into the image

analysis routine post-segmentation, these morphological parame-

ters could be automatically calculated per cell en masse ,100 times

faster than equivalent manual methods (Figure S3). Within

populations of cortical microglia cell perimeter length, cell spread

and soma size exhibit a normal distribution with mean values of

468689 mm, 29.767.7 mm, 27.764.5 mm2, respectively (Figure

S4). Roundness and eccentricities, conversely, exhibit skewed

distributions with median values of 0.0283 (first quartile = 0.0218,

third quartile = 0.0321) and 0.787 (first quartile = 0.716, third

quartile = 0.892), respectively.

Morphometric-based quantification of microglia
activation

Upon activation, microglia undergo a characteristic morpho-

logical transformation in which they take on an amoeboid-like

shape. To test if our automated segmentation and morphometric

analysis methods enable quantitative assessment of this activation-

induced morphological switch, we compared the calculated values

as a function of LPS-induced activation condition. LPS induces

microglia activation through the TLR4 pathway; Systemic

application of LPS is commonly used to activate these cells in vivo.

CX3CR1-EGFP heterozygous animals were injected I.V. with

varying doses of LPS (0, 1, 2, and 4 mg/kg) 24 h prior to

collection. For each LPS condition, the calculated morphometric

parameters were normalized to control condition (0 mg/kg) values

and plotted as a percentage, where the mean values in the control

sample are defined as 100% (Figure 2B). Strikingly, several

parameters exhibited a significant change as a function of injected

LPS dose: roundness and soma size increased (roundness:

10669%, 126619% and 213644%; soma size: 124612%,

133617% and 170629% for 1, 2 and 4 mg/kg doses of LPS,

respectively; mean 6 STD) while cell perimeter length decreased

(9863%, 9268% and 74610% for 1, 2 and 4 mg/kg doses of

LPS, respectively; mean 6 STD). Soma size was the only

parameter tested that exhibited a significant change compared

to control over the entire LPS dose range.

To confirm systemic LPS injection induced microglia activation

over the dose range, we examined condition-dependent expression

of IBA-1 and CD68, as expression of both proteins increase in

activated microglia [6,14]. Cortical sections from CX3CR1-EGFP

heterozygous animals were immunostained for IBA-1 and CD68

using red and infrared fluorophore linked secondary antibodies,

respectively, and then imaged to detect green, red and infrared

fluorescence. Cell masks, identified through segmentation of

EGFP signal, were used as cell-specific regions of interest for

quantifying immunofluorescence within individual microglia

(Figure 2B and Figure S5). With LPS treatment both IBA-1 and

CD68 detection increased within cells (IBA-1: 11569%, 12268%

and 13063%; CD68: 109611%, 109612% and 11064% for 1, 2

and 4 mg/kg LPS injected, respectively; mean 6 STD), however

only IBA-1 exhibited a significant increase over the entire LPS

dose range. The concurrent dose-dependent increase in IBA-1

expression and measured change in cell shape, specifically soma

size, suggests that morphometric analysis of microglia proves a

quantitative method for assessing microglia activation in situ.

The ability to quantify cell shape and protein expression level on

a per cell basis within a large population provides an opportunity

Figure 1. The image processing strategy for segmenting cell
shape of individual microglia. Cell positions (CP, blue cross) within
a maximum intensity projection were identified by a local maxima-
finding algorithm. Within a 1206120 mm local region (LR, white square)
centered per CP, cell masks (CM) are segmented through an iterative
local threshold algorithm. For each CM, a cell soma mask (CSM) is
defined as an object with pixel values greater than the last iterative
threshold+50% and contiguous area greater than 16.7 mm2. A CM (red
outline) and CSM (white outline) are considered accurate representa-
tions of a cell (bottom figure) if the CM is not touching the edge of the
LR boundary and has a single CSM. Scale bar equals 50 mm.
doi:10.1371/journal.pone.0031814.g001
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to explore the relationship between cell morphology, gene

regulation and LPS-induced activation. We tested if our

automated measurements are capable of revealing per cell

relationships by comparing the detected expression level of IBA-

1 versus CD68 under the various LPS condition (Figure 3 and

Figure S6). In all conditions, IBA-1 and CD68 expression were

correlated (mean R2.0.3); however, there is significant heteroge-

neity within any given population. Even at the highest LPS dose,

subsets of cells exhibited low expression of IBA-1 and CD68,

suggesting that not all microglia activate in vivo with systemic

injection of LPS.

We extended this analysis to test which, if any, morphological

parameters correlate with IBA-1 expression on a per cell basis.

Within a given LPS condition, cell perimeter length, roundness,

and soma size correlated with each other (data not shown).

However, only soma size exhibited a per cell correlation (mean

R2.0.3) with IBA-1 expression in multiple LPS conditions

(Figure 3 and Figure S6), further supporting the use of soma size

as a morphological surrogate to assess microglia activation in situ.

Longitudinal measure of microglia activation in vivo
The correlation between soma size and expression of

microglia activation markers suggests this morphological feature

may provide a method to monitor microglia activation

longitudinally within native tissue. To test this, we quantified

soma size and the expression of IBA-1 and CD68 as a function of

time from cohorts of CX3CR1-EGFP heterozygous animals

dosed 1 mg/kg or 2 mg/kg LPS 0, 24 or 48 h prior to tissue

Figure 2. Morphometric parameters that quantitatively cap-
ture LPS-induced microglia morphology change. (A) Morpho-
logical parameters defined to characterize the shape of segmented
cells: cell perimeter length, cell spread, eccentricity and soma size. Scale
bar equals 50 mm. (B) Relative change in microglia morphometric
parameters, IBA-1 and CD68 expression as a function of LPS dose. For
each LPS condition, a mean value for each morphological parameter is
calculated per animal, which is then normalized to the average value for
that parameter in the control group (0 mg/kg LPS). This relative value
per animal is then used to calculate a mean value and standard
deviation per condition, as plotted, n = 7, 6, 6 and 5 animals/condition,
respectively. Asterisks indicate statistical significance compared to
0 mg/kg LPS (see Materials and Methods), those over horizontal lines
indicate statistical significance between conditions.
doi:10.1371/journal.pone.0031814.g002

Figure 3. Correlation between morphological parameters and
IBA-1 expression. Correlation plots between IBA-1 expression and
CD68 expression or the various morphometric parameters, under
control and 4 mg/kg LPS conditions (n = 7 and 5 animals/group,
respectively). Cell populations from individual mice are plotted in
different symbols. The numbers indicates the mean linear correlation
coefficient (R2) value per comparison derived from linear fits to each
animal dataset within a condition.
doi:10.1371/journal.pone.0031814.g003
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collection (Figure 4A). Soma size, as well as IBA-1 and CD68

expression, exhibited time-dependent increases most pronounced

in the 2 mg/kg dose, suggesting that the time course of LPS-

dependent microglia activation could be assessed by monitoring

soma size.

To test this possibility further, we conducted proof-of-concept in

vivo imaging studies. First, we tested if differences in imaging

properties across microscopes, such as pixel size and optical

section thickness, significantly influences estimates of soma size.

Varying either parameter did not influence calculated values

Figure 4. Longitudinal assessment of microglia activation in vivo by tracking changes in soma size. (A) Quantification of soma size, IBA-1
and CD68 expression relative to control conditions 24 or 48 hours post LPS injection. Asterisks indicate significance for each condition compared to
control (0 mg/kg LPS, 24 h), horizontal line represents statistical comparisons between indicated time points, n = 5, 6, 6, 6 and 6 animals/group,
respectively. (B and C) Top: representative images of microglia (green) and blood vessels (red) imaged in vivo at indicated time points. Bottom:
Outlines of segmented microglia from the corresponding image above color-coded to indicate soma size per cell under control (B) and LPS (2 mg/kg)
(C) conditions; red corresponds to microglia with soma size .65 mm2, thus activated. (D) Quantification of soma size measured in vivo as a function
of time and LPS dose. Data from one control animal, and one LPS stimulated animal, are shown. Scale bar equals 50 mm.
doi:10.1371/journal.pone.0031814.g004
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(Figure S7). We then longitudinally imaged microglia in vivo

through a cranial window by 2-photon microscopy. In control,

microglia were imaged daily for 3 consecutive days (Figure 4B), no

change in soma size was detected (Figure 4D). Injection of 2 mg/

kg LPS, however, induced a time-dependent change in soma size:

a 2-fold increase over the initial 48-hour time period, with similar

timing and magnitude as measured ex vivo, before subsiding to near

resting levels by 96 hours (Figure 4C and 4D). Similar time-

dependent changes in microglia soma size were observed following

I.P. injection of LPS across a population of animals enabling

quantitative assessment of microglia activation/resolution (Ko-

zlowski and Weimer, unpublished), thus supporting the use of the

image analysis routine outlined here in quantifying microglia

activation dynamics.

To test if soma size could be used to track microglia activation

under conditions other than LPS stimulation, we utilized focal

thermal damage to activate microglia. Small (56565 mm) cortical

regions were targeted for laser ablation and associated areas

imaged over four days. Within three cortical regions, targeted focal

ablation induced an increase in the average soma size of nearby

microglia. In adjoining regions away from the ablation site,

microglia soma size remained unchanged (Figure S8). Taken

together, these data suggest that monitoring the change in soma

size provides a longitudinal readout of microglia activation in a

range of activation conditions.

Discussion

In this work, we describe an automated image analysis method

capable of accurately segmenting individual fluorescently labeled

microglia from in situ image data and calculating morphological

parameters that describe their shape, enabling the rapid analysis of

large populations. Segmentation is achieved through a novel local

iterative threshold method, which relies on a single variable, target

cell size. Furthermore, we provide evidence that microglia

activation can be quantified in situ based on morphometric

analysis of microglia; specifically, one parameter, soma size,

exhibits an LPS dose-dependent increase concurrent with

increasing IBA-1 expression. We also provide proof-of-concept

data demonstrating that longitudinal assessment of soma size

provides a quantitative means to capture the dynamics of

microglia insult response in vivo under LPS and thermal-injury

activating conditions.

One of the greatest challenges in automatically detecting cell

morphology from fluorescence microscopy data is compensating

for uneven fluorescence detection across a field of view. This is of

particular importance when relying on subtle changes in cell

morphology as readout of cell physiology. If background levels

vary widely between image regions, applying a global threshold

will result in non-uniform identification of cell shape dependent

upon where the cell is located in the field of view. In the context of

microglia, highly ramified cells, resting cells may appear more

rounded, and therefore activated, if a slightly higher intensity

threshold is used to segment the image. We overcame this problem

by first detecting the positions of the cells within a field of view by

utilizing regional maxima finding algorithm. Accurate cell

segmentation could then be achieved by applying a local iterative

threshold operation within the immediate area surrounding each

detected soma. In this manner we could achieve 70–100%

accuracy in cell detection and segmentation at ,1/100th the time

required for manual intervention.

The morphometric analysis described above relies on segmen-

tation of two-dimensional projection representing a three dimen-

sional volume. As the distribution of branches from a microglia

appears to be random at rest with respect to X, Y and Z

dimensions [12], analysis of branching in a three dimensional

volume projection should provide a representative estimate of total

cell shape and branching pattern. A projection through 10 mm of

Z depth, we show, is sufficient to quantitatively assess changes in

microglia shape. The Z depth of 10 mm is also of importance as it

enables consistent analysis of cell shape and immunostaining

within tissue sections where antibody penetration is limited.

The cell segmentation method outlined in the manuscript is

directly applicable to defining cell-based ROIs to quantify

fluorescent intensities of various different markers. The ability to

measure cell shape change is dependent on contrast across the

labeled cell, and therefore, will only be compatible with labeling

methods that provide staining throughout the cell. Care should be

taken to analyze markers that vary in staining intensity with

microglia activation, such as IBA-1. This is because activated cells

will be easier to detect than resting cells, potentially introducing bias.

Several imaging modalities enable the quantitative measure of

microglia activation in vivo. Positron emission tomographic

imaging of benzodiazepine receptor radioligands, for example,

quantitatively report the upregulation of PBR expression induced

upon microglia activation [15]. Preclinical magnetic resonance

and bioluminescence imaging methods are also emerging for

assessing neuroinflammation in vivo [16,17,18]. While powerful for

assessing gliosis on a whole organ basis, these techniques are

limited in both spatial resolution and temporal flexibility.

Conversely, the image analysis routines and microscopy

techniques utilized in this study enable the quantitative assessment

of microglia activation within large regions of the cortex

longitudinally in vivo with cellular resolution and on timescales of

seconds to months. Automated image segmentation provides a

rapid unbiased method, enabling analysis of large datasets

consisting of numerous imaging volumes and/or multiple time

points. Furthermore, our morphometric analysis extends previous

microscopy-based studies [8,19,20], and supports its use as a

quantitative metric of microglia activation.

The methods outlined above should also be directly applicable

to the study of microglia biology in other nervous system tissue, or

insult conditions; however, the morphological metrics should be

recalibrated to match the experiment. For example, the morphol-

ogy of resting microglia can vary with the nervous system region

[12]. Therefore, the morphometric parameters used for assessing

activation should be confirmed per region and microglia

morphologies compared only within the same region.

Finally, the morphology analysis method here is not limited to

the study of microglia. There are other cell types, such as dendritic

cells that undergo considerable morphology change with activa-

tion [21]. These methods could be used to rationally construct

shape-based activation indicators for cell activation time-course in

vivo.

Supporting Information

Figure S1 Convergence of cell size by iterative threshold
segmentation. (A) A MIP image of a typical microglia. (B)

Example of segmented CCM when an estimated intensity

threshold is set too high (exaggerated for illustrative purposes).

This gives a CCM with a very small area and does not capture the

features of the cell. The iterative method ensures that the threshold

is modified at each iteration, so that the detected cell size

eventually converges* near the TCS** (C). (D) Similarly, if a

threshold is too low initially, the iterative method ensures that the

CCM area converges to a similar (in this case identical) value as in

(C). (E). Note that both iterative methods produce segmented
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images of very similar appearance (compare the last image in B to

that in D). All images are of the same scale. Scale bar equals

50 mm. * Typically, the starting image threshold estimate by the

Otsu method using the MATLAB graythresh function generates a

CCM closer to the final CM than the thresholds used in this

illustration, which are examples of ‘‘worst case’’ scenarios. In order

to investigate the robustness of the convergence algorithm under

these conditions, we substituted the typical Otsu estimated starting

image threshold with either Otsu threshold divided by 2 or

multiplied by 2. This is a wide range that should safely encompass

any errors that would normally arise from the initial threshold

estimation. The mean differences between the cell sizes obtained

from these different starting thresholds were computed as:

abs CMT=2-CMTx2

� �
=CMTx2

Where CMT/2 = cell mask size obtained from using half the Otsu

value for a starting threshold; CMTx2 = cell size obtained from

using double the Otsu value for a starting threshold. Computed for

10,000 cells, the average value was 8.10%, showing that even in

the worst case scenario, the mean error in convergence is relatively

small: less than 10%. **For the method used to determine the

optimal TCS, see Figure S2.

(TIF)

Figure S2 Dependency of morphometric parameter
threshold values. (A) The influence of TCS on morphometric

parameters and detected IBA-1 and CD68 expression, for control,

2 mg/kg, and 4 mg/kg doses of LPS in fixed (IHC) samples. TCS

value of 500 mm2 provided maximal cell detection and the ability to

distinguish between LPS conditions based on measured parameters.

(B) Effect of threshold level on soma size detection in both live and

fixed samples. The soma mask is identified utilizing a threshold

value x above the last iterative threshold used to segment the entire

cell. When x is increased from 0.1 to 0.9, there is a decrease in

recorded soma size. However, for whatever value of x, the results

delineated between microglia from LPS stimulated, and control

samples. This implies that the exact value of x will not influence the

ability to differentiate between activated and control microglia.

(TIF)

Figure S3 Comparisons of manual and automated
methods to detect cells. (A) Examples of manual and

automatic cell detection of microglia under different LPS

conditions 24 h prior to tissue collection. The primary processes

were manually scored (red spots). Only cells that are fully in focus

(the soma is visible), and not touching the border of the frame or

other cells, are counted. The right shows automatically segmented

cells in various colors, and white circles that indicate the detected

cell bodies. Scale bar equals 50 mm. (B) Summary of the time

taken, total number of detected cells, the total number of processes

detected, and the average number of processes per cell detected by

the manual or automatic method. Note that counting processes

manually is very difficult, because of the ‘fractal-like’ shape of

microglia, where small processes extend from larger processes.

Therefore, the manual method must arbitrarily determine the size

of a process that is large enough to be counted.

(TIF)

Figure S4 Distribution of Morphometric Parameters,
IBA-1 and CD68 expression per cell in control samples.
Histogram plots of the distribution of morphometric parameters,

and IBA-1 and CD68 expression assessed from n = 5 animals

under control conditions.

(TIF)

Figure S5 Per cell quantification of IBA-1 and CD68
expression. Cell-specific regions of interest defined through

segmentation of individual microglia based on EGFP fluorescence

(white outline). Protein expression within each ROI is quantified

based on fluorescence intensity of the corresponding secondary

antibody label before any contrast adjustment. For illustration, the

images are contrast adjusted to aide in visualizing the IHC stain.

Scale bar equals 50 mm.

(TIF)

Figures S6 Correlation plots between IBA-1 expression
and CD68 expression or morphometric descriptors. (A)

Correlation plots between the intensity of IBA-1 and CD68

expression for control, 1, 2, and 4 mg/kg doses. (B) Correlation

plots for all morphological parameters vs. IBA-1 expression for

control, 1 mg/kg, 2 mg/kg, and 4 mg/kg doses. Value indicates

the mean linear correlation coefficient (R2) for dataset with n = 7,

5, 5 and 6 animals, respectively.

(TIF)

Figure S7 The influence of resolution in X, Y, and Z
axes on segmentation and soma size estimates. The role

of resolution on microglia soma size detection was explored. When

the Z step size was changed from 1 mm to 2 mm, or when pixel size

was changed from 0.76 mm/pixel to 1.33 mm/pixel, a negligible

change in mean soma size was detected. However, individual cells

may or may not be segmented depending on conditions as the

exact sections used may reveal cell-cell contacts. Scale bar equals

50 mm.

(TIF)

Figure S8 Soma size tracks microglia activation under
laser ablation conditions. A mouse had cranial window

surgery as described in methods, 2 weeks before the experiment,

and was injected with AngioSense 680 prior to imaging. Three

neighboring 245 mm6245 mm640 mm (XYZ) volumes

(zoom = 1.5, 5126512 pixels spaced 2 mm in Z) were selected,

with a single site of focal damage per volume. Pixel size was

0.47 mm/pixel. The zoom was used to limit the analysis area to the

region immediately next to the site of ablation. A focused laser

beam of approximately 200 mW with a dwell time of 10 ms/pixel

was used to irradiate a microglial cell in the center of the imaging

area. Successful laser ablation was confirmed by observing

microglia processes extending to the damaged area, as in Davalos

et al. [22]. (A) Fold change in soma size over days after laser

ablation on day 0 (immediately after ablation) then at 24 h, 48 h,

and 72 h, averaged over the 3 volumes representing 36 individual

microglia. (B) Blood vessels are filled with red (AngioSense 680)

and microglia are in green (EGFP). The border colors on the

microglia indicate soma size, red corresponds to microglia with

soma size .65 mm2, thus activated. Scale bar equals 50 mm.

(TIF)
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