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Abstract
Maintenance of hematopoietic stem cells (HSCs) pool depends on fine balance between self-
renewal and differentiation of HSCs. HSCs normally reside within the bone marrow niche of an
adult mammal. The embryonic development of HSCs is a complex process that involves the
migration of developing HSCs in multiple anatomical sites. Throughout the process, developing
HSCs receive internal (transcriptional program) and external (HSC niche) signals, which direct
them to maintain balance between self-renewal and differentiation, also to generate a pool of
HSCs. In physiological condition HSCs differentiate into all mature cell types present in the
blood. However, in pathological condition they may differentiate into non-hematological cells
according to the need of the body. It was shown that HSCs can transdifferentiate into cell types
that do not belong to the hematopoietic system suggests a complete paradigm shift of the
hierarchical hematopoietic tree. This review describes the developmental origins and regulation of
HSCs focusing on developmental signals that induce the adult hematopoietic stem cell program, as
these informations are very critical for manipulating conditions for expansion of HSCs in ex vivo
condition. This review also states clinical application and related patents using HSC.
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INTRODUCTION
The regeneration of blood cells for whole life of any individuals depend on the ability to
self-renew and to differentiate towards multiple lineages of hematopoietic stem cells (HSC)
[1]. During embryogenesis, original pool of HSC is developed from a complex process that
involves several anatomical sites such as yolk sac, the aorta-gonad-mesonephros (AGM),
placenta and fetal liver, however at birth HSCs colonize to the bone marrow (BM). A steady
state condition is established during postnatal life, in which a balance between self-renewal
and differentiation maintains HSC pool. The specialized microenvironment (niche) of the
bone marrow made this possible, where the multipotency of HSCs is conserved through
asymmetric cell divisions, while their progeny are directed towards multi-lineage
differentiation [2]. Increasing evidences in the field of HSC biology, HSC development, BM
niche and homoeostatic regulation advances the efficiency in clinical application.
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Advancement of research will help in manipulation of HSC in ex vivo or in vitro conditions.
HSC transplantation is common practice now-a-days in various malignant and non-
malignant hematological disorders. Moreover, immense amount of basic and clinical
research is focusing on application of HSCs as a regenerative or adjuvant therapy in various
non-hematological conditions such as neurological disorders (Parkinson disease), ischemic
conditions (stroke, myocardial ischemia). In this review, we focus on the developmental
aspect of HSCs and how microenvironment affects on self-renewal and differentiation
processes. Additionally numerous patents related to HSC biology and their clinical
implications are also discussed.

ONTOGENY OF HEMATOPOIETIC STEM CELLS
Fetal hematopoiesis is a complex coherent process where multiple factors and different
anatomical sites are intertwined with each other and mediate specialized signals. In this
complex process, blood cells are generated for immediate embryonic development, growth,
and at the same time a stockpile of undifferentiated HSCs are established even though the
bone marrow and its specialized niches have not yet developed. The anatomy of the embryo
changes during organogenesis. As a result, the shift in site of hematopoiesis is evident from
one location to another. Different inductive signals from these compartments of fetal
hematopoiesis support these two important processes. Multiple fetal hematopoietic sites are
common features in many non-vertebrate and vertebrate animals, such as flies, amphibians,
fish, birds, rodents and humans [3, 4]. HSC development is well characterized in the mice,
and serves as a model for human hematopoiesis [5-7].

EMERGENCE OF HEMATOPOIETIC STEM CELLS
Close to a century ago first blood cells in vertebrate animal was found in the yolk sac with
the simultaneous development of vasculature [8]. The first wave of blood production is
called primitive hematopoiesis, occurs in the mammalian yolk sac. At this stage, erythroid
cells express embryonic globin proteins. Primitive hematopoiesis support embryonic growth
by the production of red blood cells that facilitate tissue oxygenation. The primitive
hematopoietic system was found to be transient and rapidly replaced by definitive
hematopoiesis. Transplantation of cells isolated from various regions of mouse conceptus at
embryonic day (E) 8-E12 into irradiated adult mice have shown that long-term, multilineage
HSC population appeared at E10.5 in the AGM region of the embryo, specifically in the
vitelline and umbilical arteries [9-11]. Ex-plant culture demonstrated that these adult
repopulating HSCs (which are equipotent of adult bone marrow HSCs) are autonomously
generated in the AGM [9]. Also it was found that those cells are located in the ventral side
of the dorsal aorta [12-14]. HSCs were also found in other tissues, such as placenta and liver
[9, 10, 15, 16]. De novo generation of hematopoietic cells in fetal liver, yolk sac and
placenta was controversial for long time. It was shown that liver does not produce
hematopoietic cells de novo rather it is colonized during late E9, whereas these cells were
generated in other tissues [17, 18]. The possibility of the yolk sac and placenta as de novo
generators of HSCs is argued by the involvement of embryonic circulation. Data suggest
that circulation is established approximately E8.25-E8.5 [19] and it is likely that this
circulation distribute HSCs throughout the conceptus. However, quantitative analysis of
HSCs indicate that the placenta [15, 16] and yolk sac [20] may contribute to HSC pool in the
liver. It was found that there were more number of HSCs in the fetal liver than in the AGM
alone [20], which suggests the possible contribution of yolk sac, placenta and AGM together
to fetal liver population [15]. However, it is possible that the liver may help in expansion of
HSC population [21]. So, two main distinct unrelated classes of functional hematopoietic
cells are generated in mouse conceptus. Primitive erythrocytes evolved at E7.5 and
definitive adult repopulating HSCs generated at E10.5.
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Other classes of progenitor cells such as myeloid progenitors and lymphoid-myeloid
progenitors are also generated in the mouse conceptus between E7.5 and E10.5. Experiments
demonstrated that the presence of myeloid progenitors in the yolk sac and para-aortic
splanchnopleura (pSp; prospective AGM region) even before the circulation is established at
E8.25 [22-24]. The lymphoid-myeloid progenitors were found to be multipotent [25] and
were also located in the E8 pSp-AGM of the embryo before the circulation is established
[24]. However, Yolk sac explants do not contain such cells until the circulation is
established, which suggests that cells with lymphoid-myeloid potential are generated de
novo in the pSp-AGM. Even similar observation was found in explant culture of human yolk
sac and pSp-AGM tissues [26]. Hence, there are several broad classes of hematopoietic cells
are found in the mammalian conceptus as defined by activity in in vitro clonogenic or
transplantation assays and these cells are generated independent of each other and in distinct
anatomical sites Fig. (1).

DEVELOPMENTAL ORIGIN OF HSC
Developmental origin of HSCs is less unanimous than where they were found during
development. The century-old theory proposes that primitive erythrocytes and endothelial
cells were closely associated physically and they have a common mesodermal precursor
called hemangioblast [27]. Later on in vitro differentiation of mouse embryonic stem cells
proved the existence of hemangioblast [28, 29]. Analyses of early stage mouse conceptus
have shown that hemagioblast express both the mesodermal marker brachyury and fetal liver
kinase 1 (Flk1) in the posterior region of the primitive streak [30]. These hemangioblasts
migrate to the yolk sac and committed to endothelial and hematopoietic progenitors and
many of them contribute to the formation of each blood island [31, 32]. Thus, during
mammalian embryonic development, the earliest population of mesodermal cells emerging
from the primitive streak and transform into endothelial and hematopoietic fate before
formation of blood island and give rise to primitive red blood cells and some of the
vasculature in the yolk sac.

On the other hand, a younger theory proposes that haematopoietic stem cells (HSCs)
originate from a subset of early endothelial cells known as hemogenic endothelium. Based
on morphology it has been proposed that as the AGM forms, hemogenic endothelial cells in
the ventral wall of the aorta, which bud off HSCs. Experiments show that the transcription
factor Runx1 is necessary for formation of blood from hemogenic endothelium but not from
yolk sac hemangioblasts [13, 33]. The relationship between haemangioblasts and hemogenic
endothelium has never been resolved until recently. Current in vitro observations suggest
that haematopoietic progenitor cells arise from haemangioblasts through a haemogenic
endothelial intermediate [34]. It is also found that haemogenic endothelial cells can be
generated in vitro from ES cells and naturally present in the mouse embryos [35]. Finally, it
was shown that, Runx1 expression with in endothelium is essential for the formation of
HSCs and their progenitors over a period of roughly 3 days during mouse embryonic
development (E8.25-11.5) [36]. These observations strongly suggest that HSC emerge
directly from hemogenic endothelial cells. Moreover, it was also found that most fetal liver
cells and adult bone-marrow cells originate from the hemogenic endothelium [37]. Several
other previous studies in mouse also suggest that the direct precursors of HSCs are
hemogenic endothelial cells [13, 14, 38]. Recent study also suggests HSCs emerge in large
vessels in the placenta [39].

FACTORS REGULATING HSC DEVELOPMENT
Development of hematopoietic cells is programmed by sets of transcriptional factors and is
influenced by morphogens and signaling molecules originating from the adjacent germ cell
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layer and tissues. De novo generation, variation in numbers of HSCs in different anatomical
territories such as yolk sac, placenta, AGM suggest that genetic program, complex
regulatory networks, downstream targets, interacting molecules and developmental timing
are overlapped among these anatomical sites and leading to hematopoietic specification
[40]. It is also likely that hematopoietic specification may due interplay between specific
transcription factors at different stages of development as transcriptional factors work in
concerts. Interactions between endoderm and mesoderm are necessary for the formation of
primitive erythroblast in chick embryo [41-43] as culturing any one of them alone hinder the
development. The importance of endodermal signaling for primitive hematopoiesis also
evident in mouse conceptus studies [44, 45]. Several signaling molecules, such as VEGF,
bFGF and TGF-1 have the ability to substitute the endodermal signal [46]. Hedgehog
signaling is essential for primitive erythropoiesis [45]. In dorsal aorta, hedgehog stimulates
blood cell formation through a complex signaling cascade that includes the down stream
effectors such as VEGF, Notch, GATA-2 and Runx1 [47]. VEGF, bFGF, TGF- and BMP4
are considered as ventralizing factors and involved in hematopoiesis [48-50] where as
dorsalizing factors (EGF, TGF−) antagonize hematopoietic induction [46]. The role of
BMP4 signaling in hematopoietic cell formation and induction of HSCs is also evident from
embryonic stem cell-differentiation cultures [51] and from explant cultures of AGM [52]and
other related tissues [53]. Ventralizing factors also may control the expression of
transcription factors such as SCL and GATA-1, essential for hematopoiesis. Notch 1
signaling is very important for the survival of conceptus and AGM hematopoiesis [54] and it
is also evident that Notch family and its ligands are expressed in endothelial cells lining the
dorsal aorta [55]. The role of transcription factors such as GATA-2, Runx1and PU.1 in
primitive and adult hematopoiesis is very important, and complex interactions of these
factors determine stage and site specific hematopoiesis. GATA-2 is expressed in the aortic
endothelium [56] and mice lacking GATA-2 suffer from impaired primitive erythropoiesis
and other committed progenitors, and die at E10.5 [57]. Runx1, key transcription factor for
definitive hematopoiesis is expressed ventrally in the mesenchyme, endothelium and
hematopoietic clusters of the dorsal aorta [13, 33]. Prostaglandin E2 also affects
hematopoiesis in the zebrafish and mouse AGM [58]. Thus, an understanding of how the
‘master regulators’ are being controlled and are ‘fine tuned’ in terms of their amounts in
different hematopoietic subpopulations and sites will provide insight into the genetic
network that governs hematopoietic emergence in the conceptus.

DIFFERENCES BETWEEN FETAL AND ADULT HSCS
Fetal hematopoiesis occurs in multiple sites including yolk sac, AGM, and the fetal liver,
where as adult hematopoiesis occurs primarily in bone marrow. Fetal and adult HSCs
express different surface markers and exert unique characteristics. It has been reported that
HSCs acquire quiescent adult phenotype from a proliferating fetal phenotype after 4 weeks
of birth [59]. Different transcriptional regulators such as Gfi-1 [60], Tel/Etv6 [61], and
Bmi-1 [62] maintain quiescence of adult HSCs. In contrast, Sox17 is tightly restricted to the
fetal and neonatal HSCs and is required for their maintenance and proliferation, however,
Sox17 is not required for adult HSC maintenance, proliferation, or mobilization [63]. Thus,
this complex genetic regulation along with niche regulation support expansion of HSC in the
fetal liver, whereas most adult HSCs are quiescent [64]. In human, fetal liver provide a niche
to HSCs by regulating Wnt signaling, whereas bone marrow niche is tightly regulated by
Notch signaling pathway [65]. However, there is no clear demonstration of identical role of
Wnt signaling both in human and mouse hematopoietic development. Further studies on the
regulation of Wnt signaling along with Sox17 in mouse and human fetal hematopoiesis will
help in understanding the regulatory mechanisms in development of HSCs across the
species. It has also found that HSCs acquire differentiation potentials throughout ontogeny
and in the adult bone marrow are very different. Red blood cells derived from HSCs in the
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yolk sac contains embryonic hemoglobins and nucleated, whereas erythrocytes derived from
FL and adult BM are containing only adult hemoglobin and nonnucleated [66-68]. Various
aspects of the fetal and adult T [69-71] and B cell developmental programs are also different
[72]. It has also been shown that IL-7 is required for adult B cell development, but it is
dispensable during fetal hematopoiesis [73, 74]. However, the molecular mechanisms are
yet to be learned regarding the transition from proliferative fetal HSCs to quiescent adult
HSCs.

SELF-RENEWAL VERSUS DIFFERENTIATION
HSCs can differentiate to form mature blood cells and simultaneously can replicate
themselves to maintain self-renewal. Transplanting a single HSC from the bone marrow into
a lethally irradiated animal can assess self-renewal of HSC and as a result the entire immune
system can be rescued. Self-renewal occurs in a cell-autonomous manner but is governed by
highly orchestrated integration of environmental signals originate from the stem cell niche
[75, 76]. It is evident that asymmetric cell division is responsible for functional
heterogeneity of HSC population [77]. Various cytokines [78], and proteins [79] support the
asymmetric mode of HSC division. Self-renewal is regulated by many molecular signals in a
distinct manner in different tissues.

Various signals such as developmental regulators or certain oncogenes activate self-renewal
process. It was found that Myc, Notch and leukaemic fusion proteins stimulate self-renewal
of HSCs [80, 81]. Thus, it is likely that signaling through multiple pathways is responsible
for triggering a set of cellular events associated with self-renewal. Some of the embryonic
pathways mediated by BMPs, fibroblast growth factors, Delta-like, Wnt proteins, PGE2,
also play important role in adult HSC self-renewal. However, Conditional gene knockout
experiments have shown that developmental factors such as Wnt proteins and Notch are not
usually involved in HSC maintenance but are involved in stress-induced situations or during
regeneration [82, 83]. But other essential factors for HSC production during embryogenesis,
such as SCL and Runx1 are not required for adult HSC self-renewal [84]. Cell cycle
regulation is another mechanism, which also contribute to self-renewal of HSC. It has been
found that chromatin-associated factor Bmi1 regulates the transcription of the cell-cycle
regulator Ink4A [85, 86] and contribute to self-renewal of HSC. Self-renewal also can be
stimulated by addition of factors like Wnt3A [87], angiopoietin-like factors [88]or PGE2
[58], which can be used for in vitro or in vivo manipulation of HSC self-renewal pathways.
Self-renewal is also regulated by Hox gene expression. It is evident that overexpression of
Hoxb4 [89] or Hoxa9 [90] in mouse bone marrow cells leads to increased self-renewal of
HSCs. The switch between self-renewal and differentiation is governed by competition
between transcription-factor complexes [91]. The inactivation of a variety of transcription
factors, such GATA2 [92], Gfi1 [93], Myc [94] and Smad4 [95] has been shown to inhibit
HSC self-renewal. Thus, self-renewal signaling pathways are conserved and the orchestrated
integration between transcriptional factors provide stem cell characteristics.

DIFFERENTIATION OF HSC
HSCs are multipotent cells and have a capacity to differentiate into progenitors of all blood
cells such as, erythrocytes, granulocytes, monocytes, platelets, and all subtypes of
lymphocytes. Multipotent nature of HSC is evident by a reconstitution of normal polyclonal
hematopoiesis in the recipient after successful hematopoietic stem cell transplantation
(HSCT). Recently, a series of exciting reports have demonstrated the possibility that HSC
may transdifferentiate into cell types of unrelated tissues. Reports have shown that cells
found in BM are capable of giving rise to endothelial precursors [96], brain microglia and
macroglia [97, 98, 99], hepatic cells [100, 101], skeletal muscle [102-104] and cardiac
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muscle [103, 105] cells. However, transdifferentiation potential of HSCs remains to be
demonstrated. The ability of the HSCs to transdifferentiate into cell types other than
hematopoietic system indicates a complete paradigm shift of the hierarchial hematopoietic
tree. The differentiation of HSCs into muscle can be logical considering the fact that blood
cells and muscle cells belong to the same germ layer, the mesoderm [106]. This process also
may be bidirectional. Thus, plasticity can be referred as crossing barriers within the same
germ layer. In contrast, HSCs differentiating into neural cells would indicate crossing of the
embryonic germ layer barrier (mesoderm to ectoderm) and thus referred to as
transdifferentiation. In this section, we have emphasized the clinical studies, which
demonstrate plasticity or transdifferentiation of HSC into non-hematological cells in humans
who underwent allogeneic HSCT Fig. (2).

HEMATOPOIETIC DIFFERENTIATION OF HSCS
Continuous blood cell production throughout the lifetime of an individual is ensured by
differentiation of HSCs to all the blood cells of the hematopoietic system. As the life-span of
many hematopoietic cells is short, HSCs maintain a delicate balance between differentiation
and self-renewal in order to fulfill an enormous need of daily blood cell supply of 1 × 1011

to maintain homeostasis [107]. During the course of differentiation, as an HSC commits to
become a mature functional cell of a particular lineage, it first loses its self-renewal capacity
and loses lineage potential in a step by step manner. The mammalian blood system
composed of different mature cell types such as, red blood cells (erythrocyte), platelets,
monocytes, macrophages, granulocytes, mast cells, T and B lymphocytes, natural killer cells
(NK), and dendritic cells (DC). HSCs give rise to the multi potent progenitors (MPPs),
which have reduced self-renewal ability and maintaining full-lineage differentiation
potential [108, 109]. It is evident that MPP is a heterogeneous population [109, 110]. MPPs
then give rise to two oligopotent (which differentiates into several but not all lineages of a
tissue/organ) progenitors, common myeloid progenitor (CMP) [111] and common lymphoid
progenitor (CLP) [112-114]. Further downstream, CMPs give rise to megakaryocyte-
erythroid progenitors (MEPs) committed to the formation of erythroid and megakaryocytic
progeny and also granulocyte-macrophage progenitors (GMPs), able to generate
granulocytic, macrophage, and eosinophil progenitors [115, 116]. However, mast-cell
progenitors are segregated in the CMP populations but they do not pass through the GMP
stage [117]. DC can be derived either from CMP or CLP [118, 119].

However, there is increasing consensus for revision of the classical model of hematopoietic
differentiation of HSC in both mouse and human on the basis of recent findings [120-126].
In mouse, the classical model suggests the initial lineage strictly divide into separate
common myeloiderythroid and lymphoid lineages. But recent studies suggest that
multipotential progenitors (MPPs) initially differentiate into lymphoid primed multipotential
progenitors (LMPPs) with lymphoid and granulocyte-macrophage but no megakaryocyte-
erythroid potential [120-122, 127]. More committed myeloid and lymphoid progenitors
remain towards the downstream [111, 116]. Recent persuasive data also suggest that human
hematopoiesis does not follow a rigid model of myeloid-lymphoid segregation as evident in
mouse. Human multi lymphoid progenitors (MLPs) were identified as Thy-1neg–loCD45RA+

cells in the immature CD34+CD38− compartment of both cord blood and bone marrow that
also contains Thy-1+CD45RA− HSCs and Thy-1−CD45RA− candidate MPPs [124]. It has
also found that these isolated CD34+CD38− Thy-1neg–loCD45RA+ cells gave rise to all
lymphoid cell types, as well as monocytes, macrophages and dendritic cells, suggesting that
these myeloid lineages arise in early lymphoid lineage specification [126]. In mammalian
hematopoietic system this complex multi-tiered process allows generation of terminally
differentiated cells and at the same time maintains regulation of HSC homeostasis.
Hematopoietic differentiation is regulated by particular combination of transcription factors
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in a specific manner. It was found that overexpression of RARa leads to monocyte formation
at the expense of granulopoiesis [128, 129]. In another example, when GATA-1 is over
expressed CLPs converted to megakaryocyte and erythroid precursors [130] but
underexpression of PU.1 led to excess granulocyte formation at the expense of monocyte
formation [131].Thus, small imbalance in a transcription factor complex can determine
differentiation and fate of HSCs.

NON-HEMATOPOIETIC DIFFERENTIATION OF HSC
Transdifferentiation potential of HSC in the central nervous system in preclinical models has
been reported in several literatures. It was found that after transplantation of bone marrow
cells into normal and ischemic brain, BM cells could differentiate into neurons and
astrocytes [132-134]. At the same time it was also reported that after intravenous
administration of BM cells into terminally irradiated rats, neuronal cells derived from
injected BM origin found in the brain [97, 98]. Similar transdifferentiation patterns of HSC
also found in human. It was reported that after transplantation of male bone marrow into
females resulted to presence of transgender neurons (1% of all neurons), astrocytes and
microglia (1-2% of all glial cells) in the female autopsy brain after 6 years. Donor derived
neurogenesis was evaluated by immunohistochemistry, fluorescence in situ hybridization
(FISH) and tissue analyses. These assays demonstrated the presence of only one X
chromosome in the host brain tissue samples excluding the possibility of cell fusion,
suggesting HSCs can transdifferentiate into neurons, astrocytes and microglia [135]. In
separate study in human, similar conclusion was made where 3 out of 4 required criteria to
demonstrate plasticity of adult stem cells were fulfilled [136]. These criteria are as follows:
1) prospective isolation and transplantation of donor population without culture
manipulation, and transplanted stem cells should give rise to robust and sustained
regeneration of the target tissues; 2) the differentiated cells should not only exhibit desired
morphological and molecular phenotype, but also should be functionally active; 3)
transdifferentiated stem cells should have normal chromosome contents; finally, 4)
transplanted cells should be homogeneous and the presence of contaminated cells should be
systematically ruled out [137]. The female patients in this study had received either bone
marrow or stem cell (CD34+ enriched) transplants from their brother. FISH analysis and
other assays exclude the possibility of cell fusion and fetomaternal microchimerism.
However, the number of labeled cells was 10-fold lower than the rodent studies [97, 98].
There are also reports, which contradict these transdifferentiation phenomenon of HSCs
where other groups have shown that Purkinje neurons from the cerebellum can fuse with
bone marrow-derived cells in both mouse and human beings [138-140].

Highly purified HSCs are able to differentiate into colonies of hepatocytes when
transplanted into fumarylacetoacetate hydrolase−/− (FAH−/−) mice [141]. After HSC
transplantation, liver function was restored in FAH−/− mice and at the same time these
transplanted mice also showed hematopoietic reconstitution. Later on it was shown that cell
fusion could be a mechanism that explains part of the results of transdifferentiation of HSCs
into liver cells [142]. Although some clinical studies have shown the presence of
hepatocytes in the transplanted patients were of donor bone marrow origin after HSCT [143,
144]. In attempt to repair myocardial infarction, lots of efforts have been made to
demonstrate the regenerative efficiency of different populations of hematopoietic stem and
progenitors cells obtained from bone marrow or umbilical cord blood indicated their ability
to differentiate into cardiomyocytes. It was shown that after transplantation of purified
population of HSC in to myocardial infarcted mouse, donor cells differentiated into
myocytes and vascular structures and also ameliorating the function of the infarcted heart
[105]. In humans, several studies indicate improvement in cardiac function when autologous
bone marrow or peripheral stem cell is administered directly into damaged myocardium. But
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these studies did not explain whether improved outcomes were result from generation of
HSC derived myocytes or were secondary effects or due to paracrine signaling [145-149].
Apart from the major organ regeneration potential, it was also found that HSC could be
transdifferentiated into endothelial and epithelial cell lineages after HSCT [150]. Donor
specific marrow cell-derived epithelial and endothelial cells were found in the recipient skin
biopsy [151, 152] or peripheral and aortic arteries [153]. In vivo study also revealed that the
adult valve fibroblasts may be derived from HSCs. Y-chromosome-specific FISH analysis
of female to male transplanted mice suggest that the EGFP+ valve cells are the result of
HSC-derived cell differentiation and not the fusion of EGFP+ donor cells with host somatic
cells [154]. Recently it has also been found that mitral valve leaflets contain endothelial cells
with multilineage mesenchymal differentiation potential, including osteogenic
differentiation [155], suggesting the trans-differentiation ability of different progenitor cells.
In another interesting study, the in vivo plasticity of peritoneal macrophages and their ability
to transdifferentiate from a myeloid to mesenchymal phenotype has also been reported
[156].

However, there are reports, which provide the partial explanation of these afore-mentioned
transdifferentiation observations. They have explained that BM-derived cells fuse in vivo
with Purkinje neurons in the brain, hepatocytes in liver and cardiac muscle in the heart [138,
157]. As a result multinucleated cells are formed. This mechanism refuses the
transdifferentiation of HSC.

The controversies on plasticity are related to the methodology to detect donor-derived non-
hematopoietic cells in various tissues and organs. The proposed criteria as discussed earlier
should be fulfilled in order to claim the occurrence of HSC plasticity or transdifferentiation
after HSCT [137]. Conceptually, differences between donor and recipient cells can be
evaluated by genetic analysis. Cell fusion phenomena can be excluded by performing
karyotyping with FISH, which distinguishes between cellular transdifferentiation (diploid,
donor genotype) and cell fusion (tetraploid or greater, mixed donor and recipient genotypes).
In situ hybridization method is frequently employed to determine the sex of individuals.
However, this technique is only suitable in case of sex mismatched transplantation in
human. The DNA-based small tandem repeat (STR) is other popular method to detect donor
derived HSC chimerism of HSC transplantation. This method only confirms the presence of
donor cells but the cell type of the donor cells could not be identified. Thus, there may be
undetected mixed non-hematopoietic chimerism during the HSC transplantation.
Furthermore, these undetected non-hematopoietic cells of donor origin may differentiate into
the desired cell types suggesting the false positive transdifferentiation phenomenon.

CLINICAL APPLICATIONS OF HSC
In physiological condition HSCs give rise to all mature blood cells through the process of
hematopoiesis also maintains the balance of blood cells by balancing between quiescent and
actively cycling state. However, in response to stress during certain pathophysiological
conditions these rare cell populations differentiate according to the need of tissues. HSCs are
used in autologous or allogeneic transplantations for the treatment of patients with diverse
hematopoietic disorders to reconstitute the hematopoietic cell lineages [158]. As allograft
contains mature immune cells, it can respond to host specific antigens and mediate graft-
versus-host disease (GVHD) after HSC transplantations. Thus, different approaches have
been taken to reduce or neutralize this reaction such as myeloablative therapy or ionizing
radiation [159]. There are several sources of HSC, such as bone marrow, mobilized
peripheral blood (MPB) or umbilical cord blood (UCB). In clinical practice, BM-derived
HSCs from patients or healthy donors may be collected from BM aspirate or by apheresis
after their mobilization to the peripheral blood by administering mobilizing agents such as
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granulocyte macrophage colony stimulating factor, granulocyte colony-stimulating factor, or
by using synthetic chemical compounds like AMD 3100 [160, 161]. The increased number
of mobilized HSCs in peripheral blood samples can be stored and used in transplant
therapies. Recently, immunomagnetic isolation of CD34+ immature HSCs from BM or
peripheral blood samples were performed. Hence, BM or MPB HSC-containing samples or
isolated HSC preparations may be used as autografts or allografts to the recipients. In
addition, bank-stored UCB derived HSCs are also popular in allogeneic or autologous
transplantation in certain clinical practice, as these cells induce less intense alloreactive
response [162, 163]. There are several challenges involved in HSC transplantation in regular
clinical practice obtained from these sources, such as increased risk of infection and delayed
engraftment in post transplanted patients. It has been observed that recovery of white blood
cell were occurred around 20 days after conventional BM transplant, whereas, 28 days in
umbilical cord blood transplant. The number of HSCs obtained from UCB is also not
sufficient for routine clinical application. Among several attempts, one important approach
is the transplantation of two umbilical cord blood specimens to enhance HSC engraftment as
it boosted total HSC number but recovery of neutrophil could not be improved [164]. Thus,
several ex vivo HSC expansion protocols are underway to fulfill this unmet need [165].
Despite of these deficiencies, HSCs are used in autologous or allogeneic transplantations for
the treatment of malignancies, such as lymphoma and leukaemia as well as for autoimmune
diseases and other blood-related disorders [158]. The combination of HSC transplants with
high-dose of chemotherapy or ionizing radiation has found to be an alternative successful
therapeutic strategy [166-168]. Several approaches have been adopted to improve the quality
of life and to increase the life expectancy of patients with hematological malignancies.
Different methods of HSC therapy are found to be beneficial in leukemic patients [169-171].

HSC transplantation induce donor-specific tolerance to solid organs [172] and also useful
for the treatment of severe autoimmune diseases (ADs) [173, 174]. HSC transplant improves
the immune response of patients, and thereby helps to repair damaged tissues in diverse
pathological conditions and at the same time prevents infectious diseases after the
transplantation of tissues. In AD condition, therapeutic benefit of syngeneic or autologous
HCT can be achieved without replacing the host hematopoietic system. In different clinical
studies it has been found that some patients with AD show long-lived clinical remissions,
whereas others relapsed after initial benefit as a result of autologous HCT. Transplant-
related mortality ranged from 0% to 12.5% [173, 174]. On the contrary, evidences of
allogeneic HCT therapy to treat AD are more uniform and successful [175, 176]. The
beneficial results from allogeneic HCT studies suggest that donor cells effectively modify
recipient immune responses [177]. The list of patents regarding hematopoietic stem cell
therapy in various disease states is provided in the Table 1.

CONCLUSION AND FUTURE DEVELOPMENT
After decades of research on developmental stages and biology of HSC, improvement in
understanding of stem cell niche has been achieved and current investigations are underway
for better understanding of this important aspect of HSC biology. Thus, studying the
microenvironment of HSC during embryogenesis and in adult life has an immense
therapeutic potential. There are inherent differences between embryonic and adult HSC as
shown by their predisposition to undergo expansion or quiescence. This is due to the
presence of distinct regulatory mechanisms, which dictate either de novo generation of HSC
and expansion during embryogenesis or support the quiescence of HSCs during steady state
hematopoiesis in the adult. However, there are many common signals may be used in
embryonic and adult HSC niches. Along with the niche signaling, differential expression of
transcription factors also coordinate during HSC development and adult hematopoiesis. For
clinical purpose, these inherent differences should be exploited to identify a suitable subtype
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of HSCs, which can retain self-renewal ability during therapeutic manipulation. By
dissecting the HSC niches in various anatomical locations during each stage of HSC
development, specific cellular and molecular component can be identified. And this
knowledge can be translated as a tool to culture and manipulate HSCs in vitro or ex vivo.
The primary difficulty in HSC transplantation is to maintain self-renewal and multipotency
during ex vivo culture. Thus, better understanding of these signaling molecules, proteins
those maintain self-renewal during HSC development will help to develop better culture
system. As a result, by mimicking the appropriate HSC niche, it will be possible to perform
ex vivo expansion of HSCs obtained from umbilical cord blood or other sources for
successful and efficient clinical transplantation. These advances will then vertically improve
HSC-based therapies for malignant and non-malignant hematopoietic disorders and
immunodeficiencies.
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Fig. (1).
Development of hematopoietic stem cells in the different regions of mouse conceptus.
Hematopoietic stem cells (HSC) development starts at primitive streak (PS) after fate
specification from hemangioblast. HSCs undergo several stages of maturation, expansion, in
the yolk sac (YS), aorta-gonad mesonephros (AGM) region, placenta (P), and fetal liver
(FL). Subsequently, after birth HSC reside within the bone marrow (BM) in a preferred
quiescent state.
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Fig. (2).
Plasticity of bone marrow-derived hematopoietic stem cells. Potential contribution of
hematopoietic stem cells obtained from bone marrow in to different tissue system by
differentiation or transdifferentiation.
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