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Abstract
Intensive longitudinal data (ILD) have become increasingly common in the social and behavioral
sciences; count variables, such as the number of daily smoked cigarettes, are frequently-used
outcomes in many ILD studies. We demonstrate a generalized extension of growth mixture
modeling (GMM) to Poisson-distributed ILD for identifying qualitatively distinct trajectories in
the context of developmental heterogeneity in count data. Accounting for the Poisson outcome
distribution is essential for correct model identification and estimation. In addition, setting up the
model in a way that is conducive to ILD measures helps with data complexities – large data
volume, missing observations, and differences in sampling frequency across individuals. We
present technical details of model fitting, summarize an empirical example of patterns of smoking
behavior change, and describe research questions the generalized GMM helps to address.
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Technological advances, such as web-based assessments, hand-held computers (e.g.
personal digital assistants, wrist watches, phones), and portable devices that automatically
capture human behavior, physiology, and contextual surroundings (e.g. GPS, pedometers,
cigarette and medication dispensers), yield detailed records at low cost with little intrusion
in participants’ life. In the social sciences, this method of collecting data in real time and
naturalistic settings is often called ecological momentary assessments (Schwartz & Stone,
1998; Smyth & Stone, 2003; Stone & Shiffman, 2002) or experience sampling (Larson &
Csikszentmihalyi, 1983). In statistical terminology, such assessments are referred to as
intensive longitudinal data (ILD; Collins, 2006; Walls & Schafer, 2006), which are
characterized by “more than a handful of time points” (Walls & Schafer, 2006, p.xiii),
usually exceeding 20 or more repeated assessments per person (Collins, 2006; Walls,
Hoppner, & Goodwin, 2007). In addition, ILD collected in proximal time to the phenomena
under investigation tend to have reduced recall and reactivity biases (Shiffman, Stone, &
Hufford, 2008; Smyth & Stone, 2003; Stone et al., 1998). Importantly, they allow for a
nuanced monitoring of time-sensitive developmental processes such as changes in smoking
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urges during a smoking cessation period, progression of post-operative pain intensity, or a
pathway of emotional recovery after a traumatic event.

A number of statistical approaches have been applied to describe patterns of ILD-based
developmental trajectories, while accounting for ILD challenges, such as inter-correlation
between repeated assessments, data missingness, and differences in sampling frequency and
timing of observations. Multilevel modeling (MLM; Armeli et al., 2003; Schwartz & Stone,
1998, 2007) has been the most widely used technique for describing time-dependent
trajectories, which accounts for classical heterogeneity in developmental curves (Walls et
al., 2007). Alternative techniques for modeling more complex time-dependent processes
include time-series analysis (Nesselroade & Molenaar, 2004; Velicer & Fava, 2004) and a
number of nonparametric models (Li, Root, & Shiffman, 2006; Walls et al., 2007). None of
these approaches, however, account for large distinctions in trajectories; thus, modeling of
unique developmental clusters falls outside the capacity of these methods.

In this paper, we introduce the generalized growth mixture modeling (generalized GMM)
approach (Muthén, 2004, 2007; Muthén & Shedden, 1999) for modeling Poisson-distributed
ILD. In social sciences, count data are very common. Some examples of ILD include daily
alcohol or cigarette consumption, number of correct or incorrect responses during a learning
process, frequency of health-related symptoms, rate of a particular coping strategy use, or
frequency of experiencing certain feelings or emotions. In spite of high prevalence of count
data, they are often not modeled appropriately. In previous applications of GMM to
traditional repeated-measures data, some authors treated a count outcome as continuous (e.g.
Beadnell, et al., 2005), dichotomized it in order to simplify a distribution to a binary case
(e.g. Audrain-McGovern, et al., 2004), collapsed categories to reduce non-normality (e.g.
Lansford, et al., 2010), or performed a logarithmic transformation (e.g. Jackson & Sher,
2005), which does not correct for the overrepresentation of low values (e.g. zeros and ones).

Thus, the goal of the current paper is two-fold. First, we strive to encourage researchers
modeling count data with GMM to consider the nature of the outcome very carefully.
Second, in response to increased popularity of ILD, we demonstrate how the model can be
specified in a flexible way to account for ILD complexities.

GMM Research Questions and Applications
The purpose of the GMM method is to describe heterogeneity in development by identifying
a number of qualitatively distinct trajectories. Conceptually, GMM can be used to address a
number of unique and important research questions. First, the model can identify distinct
trajectories of development as a parsimonious summary of inter-individual differences.
Recognition of developmental groups (latent classes) is based on similarities in trajectories
rather than predetermined person-level indicators, such as race or gender (common for
describing heterogeneity in MLM). Second, the model allows linking each developmental
class to a distal outcome for class validation purposes as well as examination of lingering
developmental effects. Finally, covariates can be incorporated to build a profile of
individuals following each developmental trend based on a combination of personal
characteristics, which is essential for understanding early indicators of a particular
developmental process.

Summarizing complex ILD-based developmental patterns may prove invaluable for
epistemological and practical reasons. For example, learning about normative and
pathological trajectories as well as related risk factors can help to identify individuals at risk
and to prevent negative consequences or intervene to minimize them. In traditional
longitudinal studies, GMM has been used to study the probability of criminal arrest in
adulthood across classes of individuals exhibiting different progressions of antisocial
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behavior during adolescence (Schaeffer et al., 2006) and to study the risk of Alzheimer’s
diagnosis for elders with various patterns of memory deterioration in pre-clinical years
(Small & Backman, 2007). Another example involves identification of reading
developmental profiles in primary school children and their association with reading
difficulties in kindergarten (Boscardin, Muthén, Francis, & Baker, 2008). Two ILD studies
applied the model to examine the mood patters and bulimic behaviors (a normally-
distributed outcome; Crosby et al., 2009) and differential effects of the drug and behavioral
therapy on the probability of drinking (Gueorguieva et al., 2010). In these applications, the
model was specified in a traditional way, not accounting for differences in sampling
schedules across individuals or missing data.

Implications for Count GMM
The central research question of GMM is the identification of distinct latent developmental
classes. Statistically, this is accomplished by searching for the best solution that satisfies the
conditional normality assumption, which posits that distributions of repeated measures
within latent classes are normal. It has been demonstrated that GMM is very sensitive to
violation of this assumption (Bauer, 2007; Bauer & Curran, 2003; Tofighi & Enders, 2008),
such that, in cases when this assumption is violated even to a small degree, the number of
extracted classes tends to be over-estimated, resulting in invalid findings, model
misinterpretations, and possible non-intended practical implications. In case of a count
outcome, if a Poisson distribution is not specified, false classes may emerge by artificially
accounting for data non-normality.

In addition to improper class enumeration, misspecifying a model for count data may lead to
problems with model interpretation. Examples of such difficulties include model predictions
that fall outside the scale boundaries (e.g. taking negative values) or estimates that do not
make practical sense (e.g. non-integer values).

The Current Study
To demonstrate how generalized GMM can be properly specified and carried out in the
context of intensive longitudinal count data, we introduce its features, including the
important stages of model fitting and selection. Next, we present an empirical demonstration
of daily smoking data, carrying out analyses with the correct model specification. Technical
materials are incorporated to describe data structure and syntax is provided to ease
implementation of the model by other researchers. We conclude with remarks about the
importance of generalized GMM for ILD Poisson-distributed outcomes and some software
considerations.

Generalized GMM: a Model Overview
Generalized GMM is a statistical approach similar to but broader than Structural Equation
Modeling (SEM), which can be used to answer a wide array of research questions related to
growth processes. In this paper, the focus is on three major inquiries. First, we are interested
in identifying and describing distinct developmental classes, measured by count ILD (e.g.
describing profiles of smoking cessation behaviors). Second, as part of the class validation
process, we are concerned with whether or not trajectories are predictive of a distal outcome
(e.g. are people who take a particular behavioral approach to smoking cessation more
successful in quitting than others?). Finally, we want to investigate whether baseline
covariates (e.g. age, nicotine dependence) can be used to predict which behavioral pattern
might be expected for individuals with certain characteristics.

Theoretically, generalized GMM bridges out from finite mixture models (McLachlan &
Peel, 2000), which relax the assumption of developmental homogeneity. This implies that
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intercept and slope growth parameters can have an underlying distributional mixture, which
is constructed from several distinct distributions with their own parameters. Figure 1
presents a simulated example of a mixture of slopes from a model with two latent classes.
When class membership is ignored, the combined single distribution of slopes appears
bimodal. Practically speaking, detecting a mixture of distributions is not always
straightforward, because the deviation from normality can be minor (Bauer & Curran, 2003,
2004; Nagin & Tremblay, 2005), and not all non-normal distributions consist of a mixture.
A description of the model selection procedure is presented in the following section of this
article.

Figure 2 provides a conceptual overview of generalized GMM, where, in accordance with
SEM conventions, observed variables are depicted in rectangles and latent variables in
circles. In generalized GMM, developmental trajectories are specified at the class level K for
each person i, measured at time t. Note that Ki is a person-level variable, as an entire
personal trajectory is conceptualized to represent a particular latent behavioral class. It is
possible to specify Kit on the observational level, but this is more commonly done in cross-
sectional studies where individuals are nested within higher-level units, such as classrooms,
neighborhoods, or hospitals. A developmental trajectory for each latent class Ki is described
by individual random intercept Intik and slope Slik parameters. Within-class individual
variability in those parameters is captured by intercept and slope random effects r0ik and r1ik.
Time-invariant baseline characteristics Xi differentiate between individuals falling within
each developmental class. A distal outcome ui is linked to each developmental trajectory to
assess and compare the impact of each latent class.

What distinguishes this model from a GMM for traditional longitudinal data is the ILD
outcome Yitk, measured on the count scale. The outcome can be expressed as a vector of
responses {yi1, yi2, …, yiTi} for each study participant i, measured at Ti different time points.
Yit takes on only positive integer values (i.e. 0, 1, …), such as the daily number of cigarettes
smoked or the number of alcoholic drinks consumed. Ti is a continuous time indicator,
specific to each person i. Due to differences in assessment schedules, tit may differ across
study participants, such that the second observation for two people can be measured at
t2 (i=1) = .3 and t2(i=2) = 1.1 days, respectively. In addition, the number of observations (i.e.,
length of the response vector Yit) can also vary across individuals due to differences in the
total number of assessments.

In Poisson data, the outcome Yitk is not modeled directly; this is signified with an asterisk (*)
in the figure. Instead, the Poisson parameter representing a class-specific rate of behavior for
a person i measured at time t is modeled. In contrast to the SEM convention, where data
have a multivariate (i.e. wide) structure, we represent the repeated measures outcome Yitk by
a single rectangle, assuming a univariate (i.e. long) data structure, which is explained in
detail in the model fitting section.

Generalized GMM: a Technical Model Summary
In count ILD, the outcome Yitk has an underlying Poisson distribution, that isYitk | Ki = k ~
Poisson (λitk), and the underlying mixture model is based on the mixture of Poisson
probability functions of the form:
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The mean and variance parameter λitk defines the Poisson distribution. If the outcome were
daily smoking count, the probability of observing a smoking rate of 5 cigarettes on a given
day t would depend on the average observed rate λ for a particular day t for individuals in
class Ki = k.

While the growth part of the model in Figure 2 can be defined in several ways, the MLM
perspective (Goldstein, 2003; Hox, 2002; Raudenbush & Bryk, 2002; Singer & Willett,
2003) appears to best accommodate the demands of ILD. Such a model, with no baseline
covariates, can be formulated in the following way:

(1)

In Equation 1, the natural logarithm of the Poisson parameter λitk is used as a link function
to ensure that all model predictions fall within the positive continuum of the scale.
Assuming a linear relationship after the logarithmic transformation, the rate of change is
modeled as a simple linear function, conditional on latent class membership. The model can
be extended to contain higher order polynomial terms to account for any remaining
developmental non-linearity after the logarithmic transformation. The intercept β00k and
slope β10k parameters are referred to as fixed effects that take on class specific values. They
define the shape of developmental curves for each latent class. Within-class variability in
growth parameters is captured by random intercept r0ki and slope r1ik effects that are also

class specific; that is (r0ik, r1ik) ~ MVN(0,τk), where .

Inclusion of random effects in the growth model has been a topic of controversy. Some
authors argue that allowing variability across average trajectories may lead to diffusion of
classes (Nagin, 2005) and problems with model identification and convergence (Jung &
Wickrama, 2008). Considering potential complications, random effects can be beneficial for
describing latent classes, but need to be incorporated cautiously and, possibly, only for some
model parameters and some latent classes (Asparouhov & Muthén, 2008). Generalized
GMM is flexible enough to work on a class-by-class basis, freeing some model parameters
and constraining others. Similarly, developmental shapes do not need to be identical across
classes, such that a linear form may be sufficient for one class but quadratic or cubic
functions are more descriptive for others.

In GMM, baseline covariates Xi serve an important role in describing profiles of individuals
representing each latent group. Statistically, this relationship is characterized by multinomial
logistic regression for unordered responses (Agresti, 2002):

(2)

where K is the reference class. The log odds of being a member of a particular class k versus
being in the reference class K are modeled as a function of person-level baseline covariates
Xi.

Finally, in the case of a binary distal outcome (e.g. success vs. failure), the log odds of
observing a positive outcome (ui = 1) are estimated for each developmental class K by
means of binary logistic regression:
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(3)

The individual class membership ki is estimated using the pseudo-class draw technique
(Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Wang, Brown, & Bandeen-Roche,
2005). For each pseudo-class draw, the model parameters in Equation 3 are estimated and,
subsequently, averaged. Corresponding asymptotic variances of the estimates are computed
(Schafer, 1997). It is possible to expand Equation 3 to accommodate baseline covariates Xi
as possible predictors of ui in addition to class membership information.

Finding the correct number of latent classes is of prime importance in fitting generalized
GMM. According to recommendations from a number of simulation studies (Nylund,
Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008; Tolvanen, 2007) with four waves of
longitudinal data, including conditions with small samples of 50 (Tolvanen, 2007) and 200
individuals (Nylund et al., 2007), BIC and ABIC were used in the empirical example
presented in the following section to select a model with the smallest value on the
information criteria. We also relied on classification tables (Boscardin et al., 2008; Wang &
Bodner, 2007), graphical summaries (Boscardin et al., 2008), the magnitude and
interpretability of model parameters, and the replicability of the best log likelihood (LL).

Generalized GMM for Poisson-distributed ILD: an Empirical Demonstration
To illustrate the use of generalized GMM with Poisson-distributed ILD, we present an
example of data collected as part of the smoking cessation trial for newly-diagnosed cancer
patients awaiting cancer-related surgery. As part of the intervention, 74 individuals recorded
their smoking behavior in real time, marking all smoked cigarettes on a personal digital
assistant (PDA). After adding all daily smoked cigarettes for every patient, 896 daily
amounts of smoking were reconstructed. On average, 12.1 days of total daily cigarette count
were available per person (SD = 6.1, range: 2 to 29 days, median = 9.5). Figure 3 presents a
random sample of smoking trajectories from 20 patients. The overall sample was comprised
of an approximately equal number of men and women, with about a third diagnosed with
smoking-related tumors (i.e., thoracic, head and neck, and bladder), an average daily
baseline smoking rate of 18.8 cigarettes (SD = 9.2), and an average smoking history of 34.5
years (SD = 12.7). More details on sample and study design description are reported
elsewhere (Ostroff et al., in preparation).

Due to multiple smoking-related peri-operative complications as well as the smoke-free
hospital policy, the study was designed to elicit a change in smoking behavior with the goal
to achieve complete pre-hospitalization abstinence. All study participants were given a
combination of the scheduled reduced smoking (SRS) intervention (Cinciripini et al., 1995),
nicotine-replacement therapy, and counseling. SRS entailed a gradual tapering regimen,
individualized for every patient based on the baseline smoking rate and time until surgery.
Patients were free, however, to change the schedule by initiating an earlier quit attempt or
postponing their quit date.

Due to hypothesized heterogeneity in pre-surgical smoking behavior, it was theorized that
patterns in smoking behavior change would follow several qualitatively distinct latent
classes. The analytical goal was to identify and describe classes of smoking behavior
change; examine efficacy of each behavioral approach evaluated by verified smoking status
at surgery admission; and describe profiles of individuals within each class based on a
number of baseline covariates such as self-efficacy for quitting, number of smoking years,
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nicotine dependence, and time until surgery. In the following sections, we present a step-by-
step description of fitting, selecting, and interpreting GMM for Poisson-distributed smoking
data.

Model Fitting
In the social sciences, one of the most frequently used software packages for fitting growth
mixture models is Mplus (Muthén & Muthén, 2007). While it may not be ideal for fitting
generalized GMM for ILD for some reasons described later, it is flexible enough to
accommodate ILD’s intensity, missingness, and between-person differences in measurement
time. The “multilevel” and “mixture” add-ons to the “base” software package are required to
fit the generalized GMM for Poisson ILD. The complete syntax with accompanying
comments for fitting a single class and three-class generalized GMM is reported in
Appendices 1 and 2. The current section only focuses on the data structure and several
MODEL1 statements that require explanation.

Data Structure
When modeling the growth process for ILD, it is convenient to specify the model from the
MLM perspective (Equation 1) with data following the long or univariate format (Table 1).
With this data structure, the outcome vector yit is stretched vertically, such that a single
column contains all data values. The vector of responses is accompanied by a continuous
timeti indicator, specifying timing of each observation and differing across individuals, and a
person indicator (i.e. SubjectIDi). This format of data structure accommodates extended
time-series of records that differ in length and assessment times.

Model Specification in MPlus
In MPlus, the MLM specification is done in the WITHIN part of the MODEL statement,
where the amount of daily smoking SmoRate is regressed on the day indicator Day. The
model is specified as follows: Sl | SmoRate ON Day;where both the intercept SmoRate and
slope Sl parameters are random and estimated for each individual. In the process of model
enumeration, consecutive model building requires an initial estimation of the model with a
single class. Although such a model is a special case of generalized GMM, it requires
special syntax statements to accommodate a distal outcome. With random intercept and
slope parameter, a model with a distal outcome would address a question of whether there is
a relationship between individuals’ initial level of smoking, magnitude of smoking decline,
and later smoking status. With only one class, a distal outcome QuitSurg in the BETWEEN
part of the model is regressed on random person-specific intercept and slope parameters,
computed by the following formula:

(4)

In MPlus, however, the distal outcome QuitSurg cannot be directly regressed on Int and Sl
parameter estimates in a single-class model. Instead, two phantom (Grimm & Ram, 2009)
latent variables phant0 and phant1 are created that absorb values of the parameters: phant0
BY SmoRate; phant1 BY Sl; Subsequently, variances of the original intercept and slope
parameters are constrained to zero, while variances of newly created phantom parameters
are freely estimated: SmoRate@0;Sl@0;. As a result, the distal outcome QuitSurg is
regressed on two latent intercept and slope parameters: QuitSurg ON phant0 phant1;. For the

1All syntax statements are written in ‘Courier New’ font.
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multi-class generalized GMM, it is important to remember to indicate the number of latent
classes in the VARIABLE statement:CLASSES = cb (3);and to assign the newly created
class indicator cb to the list of variables measured on the between-person level:BETWEEN
= cb …;.The rest of the syntax follows recommendations from the MPlus user guide
(Muthén & Muthén, 2007).

Specification of GMM for traditional longitudinal data produces a number of graphical
summaries that are necessary for model evaluation and interpretation (e.g. predicted and
actual mean trajectories). They are unavailable for the univariate (i.e. long) data structure in
GMM and need to be carried out outside of MPlus. In addition, prevalence of classes is not
accurately estimated (i.e. prevalence is computed based on the number of repeated
assessments rather than individuals), and posterior probabilities need to be saved in an
external file through the SAVE DATA command for further computations. We used R (v.
2.9.2) for all additional graphical and statistical summaries.

Smoking Cessation ILD: Results
Model Selection Process

The model selection process in the context of ILD follows traditional steps of model
selection, extensively described in the GMM literature (e.g. Jung & Wickrama, 2008; Li,
Duncan, Duncan, & Acock, 2001; Muthén, 2004; Ram & Grimm, 2009; Wang & Bodner,
2007). They can be roughly divided into problem definition, model specification, estimation,
selection, and interpretation (Ram & Grimm, 2009). We follow these steps below.

Problem definition and model specification—In our empirical example, we were
interested in exploring heterogeneity of behavioral responses to a smoking cessation
treatment. It is generally recommended to begin the analysis with a single-class MLM (with
a Poisson link function for count data) to evaluate the model fit and practical usefulness.
Parameters of the best-fitting model are summarized in the following prediction equation
(with all estimates significant at the .01 level):

with the covariance matrix for random effects . In the
above model, Fagerstrom is a measure of nicotine dependence (Fagerstrom, Heatherton, &
Kozlowski, 1990; Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991), SelfEff is an
assessment of quitting confidence (Baer, Holt, & Lichtenstein, 1986), and NumberYRSmo is
an indicator of the total smoking years.

To investigate the fit of the MLM, individual estimates of intercept and slope parameters as
well as their raw and empirical Bayes (EB) residuals were extracted. The distributions of
raw and EB intercept residuals resembled a normal curve, thus satisfying the assumption of
residual normality: r0i ~ N(0, τ00 ). Neither actual nor EB slope residuals, however, followed
a normal pattern, which is evident from the graphical summary in Figure 4 as well as
skewness and kurtosis statistics (p < .001), violating the normality assumption r1i ~ N(0,
τ11). The distribution of predicted intercept parameters was normal, satisfying the
assumption of normality β00 ~ N(μ, σ2), but the distribution of slopes was highly skewed (p
<.001), with a large proportion of slope values clustered between the values of zero and
negative .5, and a left tail extending to negative 1.6 (middle graph in Figure 4), thus
violating the assumption of normality β11 ~ N(μ, σ2). A large positive association between
the slope values and residuals was observed, with a Pearson product-moment correlation of .
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92 (p < .001), such that individuals with the steepest estimated slopes also had large
residuals (last graph in Figure 4), indicating that average model parameters did not capture
developmental patterns well for people with steep cessation slopes.

Finally, the smoking presurgical outcome was predicted from individual-level intercept and
slope parameters, computed from Equation 4. The smoking status remained unexplained
(from logistic regression, p > .25), raising questions about the utility of MLM beyond
explanation of some developmental inter-individual differences.

Model estimation and selection—Therefore, we pursued the generalized GMM
analysis, hypothesizing that the distribution of slopes can be represented as two or more
clusters of developmental trajectories. A comparison between models with several latent
classes was carried out sequentially. Initially, unconditional models with intercept and slope
residual variance parameters constrained to zero (τ00k = 0 and τ11k = 0 ) were fitted for
Classes 1 through 5 (Table 2A). A continuous reduction in BIC and ABIC was observed,
with additional classes significantly improving the overall model fit. To evaluate the
practical usefulness of the model with five latent classes, we examined values of the slope
parameters. Two classes had slopes of comparable magnitude: β104 = −.118 (SE = .019) and
β105 = −.133 (SE = .012), with larger differences in intercepts: β004 = 3.330 (SE = .12) and
τ005 = 2.642 (SE = .08). Relaxing the restriction on intercept variances (i.e. τ00k ≠ 0) could
account for inter-individual variability in baseline smoking rates without class over-
extraction. Thus, the six-class model was not pursued due to little practical usefulness.

Variability in intercept parameters was added to models with 1 through 4 classes. For the
model with 4 latent classes, the best log likelihood (LL) was not replicable. Within-class
slope variability was also tested for some classes (τ11k ≠ 0), but resulted in model estimation
problems and non-replicable LLs. Finally, baseline covariates were added as predictors of
latent classes (Equation 2) for the full model with two and three latent classes, containing a
distal outcome ui (Equation 3). Quitting self-efficacy and time until surgery were identified
as possible predictors (p < .1). According to the BIC and ABIC criteria, the three-class
model fit the data better (Table 2C).

Based on a combination of statistical and conceptual indicators of model fit, a model with
three classes, group specific random intercepts, fixed slopes, baseline covariates predicting a
class membership, and a distal outcome was chosen. The model summary in combination
with additional fit indicators is presented below.

Three-Class Generalized GMM Model Summary: Model Interpretation—
Parameters of the final growth mixture model with three behavioral classes are summarized
in Table 3. Graphically, classes are represented in Figure 5. Based on the results, the
baseline smoking rate was comparable across the classes with more interpersonal
heterogeneity in Classes 2 and 3, as indicated by τ00k and inspection of randomly sampled
smoking trajectories from 10 patients within each latent class. Between-group qualitative
differences are captured by slope parameters, with three latent classes exhibiting different
reduction in smoking over time: abrupt, medium, and slow. The class of abrupt reducers
exhibited an immediate drop in smoking with the largest slope parameter of τ101 = −1.338,
reducing smoking to nearly zero within the first 4 days. About 15% of the sample was
identified as likely members of this behavioral class. The largest class (53%) was comprised
of medium reducers, who were trimming down their smoking gradually (β102 = −.220),
consistent with the SRS intervention. Finally, a third of the sample followed a shallow
decreasing smoking trajectory (β103 = −.07), tapering down at a very slow and rather
inconsistent rate.
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Predicted and actual mean smoking trajectories were compared. Actual trajectories were
constructed based on daily smoking averages for individuals estimated to be members of a
particular latent class. Dotted lines in Figure 5 represent actual mean smoking trajectories
for each latent class. In all classes, there is a close match between actual and fitted
trajectories, which indicates a good model fit. While predicted and average trajectories in
abrupt and medium classes almost overlap, there is a slightly bigger discrepancy in the slow
group, but it appears that the average captured the overall trend reasonably well.

It is important to note that class prevalence was computed outside the MPlus environment
based on the saved posterior probabilities of class membership. In MPlus, the posterior
summaries of class proportions are computed on the observational level, counting each
repeated assessment rather than individuals, thus yielding inaccurate estimates of 11%, 43%,
and 46% instead of 15%, 53%, and 32%, respectively. Of note, when the model is specified
in a multivariate format for traditional longitudinal data, values of class prevalence from
MPlus are accurate.

Individuals in each profile had observable differences in their presurgical smoking status.
Specifically, the rate of cessation for abrupt reducers was estimated to be 81.7% (ν01 =
1.497, SE = .783 on the logarithmic scale, see Table 3), 47.5% for medium reducers (ν02 =
−.059, SE = .334), and 28% for slow reducers (ν03 = −.968, SE = .492). In terms of class
profiles, abrupt reducers exhibited the highest level of baseline self-efficacy for quitting
(bottom of Table 3). Abrupt and medium reducers had their surgery scheduled at a more
proximal time to the beginning of the intervention, compared to the slow reducers.

Additional model fit indicators were examined for this three-class model. Posterior
probabilities for class membership were cross-tabulated to assess the quality of class
separation. As every person had a non-zero probability of being a member of each latent
class, having a high probability for a single class is indicative of a clear class assignment.
From Table 4, average posterior class probabilities are close to one, demonstrating a good
model fit.

Discussion
In the current paper we presented an innovative application of generalized GMM,
appropriate for identifying underlying subgroups of individuals, characterized by similar
patterns of intensively-measured behavior. In particular, we focused on modeling a
phenomenon measured on a count scale over time, namely the number of daily smoked
cigarettes. With advances in data collection techniques, researchers increasingly capture
behavioral and psychological processes intensively. Growth models for ILD require
flexibility in handling large data volumes as well as missingness in observations and
unbalanced sampling. Additionally, multiple psychosocial phenomena measured on the
count scale (e.g. number of cigarettes, number of alcoholic drinks, symptom frequency)
need to be modeled according to the underlying Poisson distribution rather than with
methods that rely on the assumption of normality. The proposed modeling approach brings
together the following features: an intensively-measured process, an outcome best
characterized by a Poisson distribution, and a latent class framework for organizing
individuals according to similar developmental trajectories over time.

GMM has been previously used to discover unique developmental patterns in traditional
longitudinal studies (e.g., Boscardin et al., 2008; Greenbaum, Del Boca, Darkes, Wang, &
Goldman, 2005; Hunter, Muthén, Cook, & Leuchter, 2010; Schaeffer et al., 2006; Small &
Backman, 2007) and can be successfully extended to model count-distributed ILD. By
relaxing the assumption of normality in model parameters, this statistical approach allows
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the identification of qualitatively distinct trajectories, which may have important practical
implications. Our empirical example demonstrated that patterns of smoking-behavior change
may be indicative of smoking-cessation success. Other examples may include post-surgical
patterns in physical symptoms as indicators of the quality of recovery, learning progressions
as markers of mastery, or alcohol-use behaviors as predictors of alcohol dependence. As part
of the generalized GMM, it is possible not only to distinguish developmental trajectories but
also to identify a set of covariates that define individual profiles. Based on the set of
covariates, it becomes plausible to identify at-risk individuals and intervene to minimize or
prevent harmful consequences, while promoting the best allocation of resources.

From the methodological standpoint, modeling Poisson data appropriately is of great
importance. Specifically, by using the Poisson link function, all predictions are made within
the non-negative integer scale, allowing for a meaningful result interpretation (e.g., a
prediction of −1.3 offenses on a criminal scale is ruled out). Further, with the Poisson-based
model, a curvilinear development on the count scale can often be expressed linearly on the
logarithmic scale, greatly simplifying the estimation process. Post transformation, non-linear
relationships can still be accounted for with quadratic or cubic slope parameters on a class-
by-class basis. Further, due to the nature of the Poisson distribution, λit represents the mean
and variance parameter, which models higher variability for classes with larger mean
trajectories. Our empirical example demonstrates an application of this property, where the
variability in the “slow” class was accounted for by the high λit3 parameter and did not have
to be modeled separately. This model feature is very important as, often, it is not
computationally feasible to estimate unique variances across classes when a growth mixture
model is applied to normally distributed data.

Finally, modeling count data properly assures that the assumption of conditional normality is
not violated and, thus, latent classes are not artificially drawn to correct for a non-normally
distributed outcome (Bauer, 2007; Bauer & Curran, 2003). As part of our empirical analysis,
we attempted to ‘normalize’ daily cigarette counts and modeled the log-transformed
outcome. Based on the model fit indices, a four-class solution was selected. An examination
of growth parameters revealed that there were few substantive differences between the
classes and the class of “abrupt” reducers (an important behavioral class) was not detected.
Thus, a combination of our own research as well as work of others demonstrates that
misspecifying a model can have important analytical and practical implications.

Although generalized GMM can be very flexible in accommodating time-varying covariates,
complex developmental shapes, and random effects for growth parameters, one should be
wary of a too-complex model. A good balance should be struck among model parsimony,
practical and theoretical considerations, and statistical fit. Naturally, the overall sample size
(on the individual rather than observational level), class prevalence, and class separation are
of great importance when specifying the model (Wang & Bodner, 2007).

Software Considerations
To estimate the generalized GMM for Poisson-distributed ILD, we relied on the MPlus
(Muthén & Muthén, 2007) commercial statistical package, which allows multi-level
specification of the model to accommodate intensive data properties. It is worth noting some
limitations of the software, however. These do not compromise the estimation process but
require extra effort and care with model fitting and interpretation of results.

First, with the univariate (i.e., long) data structure, all graphics in the form of mean latent
class trajectories, actual trajectories from individuals within each latent class, and mixtures
of model parameters are disabled. Thus, all graphical summaries need to be carried out in a
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separate statistical package. Conveniently, the MPlus output files can be saved for further
analysis.

Second, summaries of class prevalence statistics need to be carried out outside the MPlus
environment. In spite of the specification of the class variable on the individual level, the
posterior summaries of class proportions are still computed on the basis of individual
observations, not persons. It is often appropriate for studies that use the long format of data
structure, with individuals nested within institutions or geographic areas. However, for ILD
nested within individuals, the MPlus software-produced class proportions are misleading.

As GMM develops into a widely researched and used method, other software alternatives
become available. For example, an open-source software such as OpenMX (Boker et al.,
2009), developed for use with R, can be currently used to carry out GMM analysis for
traditional longitudinal data (Shiyko, Ram, & Grimm, in press). Further developments will
soon allow for more advanced applications.

Conclusion
While multiple methodological concerns in regards to fitting generalized GMM to ILD in
general and Poisson-distributed ILD in particular remain, this paper provides an overview of
the model, demonstrates the model-fitting procedure, as well as interpretation of results.
With increased collection of count ILD, the proposed model provides an opportunity to
address complex research questions in regards to heterogeneity in developmental processes.
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Figure 1.
A Mixture of Slopes from Two Normal Distributions: Individual Distributions are Captured
by Dashed Curves, the Mixture is Represented by a Solid Line.
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Figure 2.
Conceptual Diagram for Generalized GMM for Poisson-Distributed ILD.
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Figure 3.
Smoking Trajectories for a Random Sample of 20 Patients from the SRS Study.
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Figure 4.
Diagnostic Graphs for Slope Parameters from a Single-Class Multilevel Model.
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Figure 5.
Predicted (Solid) and Actual (Dotted) Average Developmental Trajectories for Three Latent
Classes with 10 Randomly Sampled Actual Smoking Trajectories (in Gray) for Each Class
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Table 1

An Example of Long/Univariate Format of ILD Structure

Subject ID Count Outcome (Yit) Time (t) Age (Xi) Distal Outcome (ui)

01 20 0.2 62 0

01 18 1.6 62 0

01 17 2.3 62 0

01 12 4.0 62 0

02 40 0.0 55 0

02 36 1.9 55 0

02 36 2.2 55 0

02 25 7.4 55 0

… … … … …

74 15 1.8 54 1

74 3 4.3 54 1

74 0 6.8 54 1

74 0 7.1 54 1
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Table 3

Parameter Estimates of the Final Three Class Generalized GMM

Parameters Parameter Estimate Standard Error p-value Exp (Parameter)

Intercept-related parameters

 β001 2.807 0.121 <.001 16.56

 τ001 0.098 0.042 .020

 β002 2.711 0.046 <.001 15.04

 τ002 0.249 0.071 .001

 β003 2.809 0.174 <.001 16.59

 τ003 0.283 0.076 <.001

Slope parameters

 β101 −1.338 0.286 <.001 .262

 β102 −0.220 0.009 <.001 .803

 β103 −0.070 0.015 <.001 .932

Probability of quitting at surgery

 ν01 1.497 0.783 4.468

 ν02 −0.059 0.334 .942

 ν03 −0.968 0.492 .380

Baseline covariates as predictors of class membership (K = 2 is reference)

 ω01 −2.137 1.764 0.118

 ω11 * SelfEfficacy 0.043 0.021 .042 1.044

 ω21 * SxDays 0.055 0.221 .802 1.057

 ω03 −10.400 2.395 .0003

 ω13 * SelfEfficacy −0.040 0.028 .155 0.961

 ω23 * SxDays 1.007 0.237 <.001 2.737
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Table 4

Classification Table of Posterior Probabilities and Actual Class Assignment for the Final Three-Class
Generalized GMM

Predicted classes

Assigned classes 1 2 3

1 .994 .006 0

2 0 .996 .004

3 0 .024 .976
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Appendix 1

Mplus Syntax for the Final 1-Class MLM with a Distal Outcome

Syntax Comments

DATA:

FILE is data.dat; Specify the data file

VARIABLE:

NAMES ARE SubjID Day SmoRate …; Variable names in the data file

MISSING = ALL (999); Specify missing values

USEVARIABLE = SubjID Day SmoRate
YRSsmo SEMean QuitSurg Fager;

Use variables for current analysis

CLUSTER = SubjID; Clustering variable in MLM

CATEGORICAL = QuitSurg; Categorical distal outcome

COUNT = SmoRate; Poisson distributed count outcome

WITHIN = Day; Level-1 time variable

BETWEEN = YRSsmo SEMean Fager; Level-2 between-person covariates

ANALYSIS:

TYPE = TWOLEVEL RANDOM; Type of analysis: MLM with random effects

ALGORITHM = INTEGRATION; Numerical integration is used to obtain maximum likelihood

CHOLESKY = OFF; Turning off Cholesky optimization method for numerical integration

STARTS = 20 5; The number of EM random starts

MODEL:

 %WITHIN% Level-1 MLM

Sl | SmoRate ON Day;

 %BETWEEN% Level-2 MLM

phant0 BY SmoRate; Intercept latent variable phant0 is measured by intercept parameter
SmoRate

SmoRate@0; Variance of intercept parameter SmoRate is constrained to zero

phant0 ON Fager; Latent intercept is regressed on baseline covariate

phant1 BY Sl; Slope latent variable phant1 is measured by slope parameter Sl

Sl@0 Variance of slope parameter Sl is constrained to zero

phant1 ON SEMean YRSsmo; Latent slope is regressed on baseline covariate

phant0 WITH phant1@0; Covariance of latent intercept and slope parameters is constrained to zero

QuitSurg ON phant0 phant1; Distal outcome QuitSurg is regressed on intercept and slope latent
parameters

OUTPUT:

SAMPSTAT Request sample descriptive statistics

PATTERNS; Request a summary of missing data patterns
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Appendix 2

Mplus Syntax for the Final 3-Class Generalized GMM

Syntax Comments

DATA:

FILE is data.dat;

VARIABLE:

NAMES ARE SubjID Day SmoRate …;

MISSING = ALL (999);

USEVARIABLE = SubjID Day SmoRate QuitSurg SEMean
cancer Fager SxTime;

CLASSES = cb (3); Number of latent classes (3)

CLUSTER = SubjID;

COUNT = allSmo;

CATEGORICAL = QuitSurg;

WITHIN = SmoRate;

BETWEEN = cb QuitSurg SEMean cancer Fager
SxTime;

ANALYSIS:

TYPE = TWOLEVEL RANDOM MIXTURE; MLM mixture model with random effects

ALGORITHM = INTEGRATION;

CHOLESKY = OFF;

STARTS = 1500 10;

STITERATIONS = 20; Maximum number of iterations in the initial EM
stage

MODEL:

 %WITHIN% Level-1 MLM

 %OVERALL%

Smo ON Day; Model with fixed slopes

%cb#2% Smo ON Day; Request separate estimation of model parameters for
classes 2 and 3

%cb#3% Smo ON Day;

 %BETWEEN% Level-2 MLM

 %OVERALL%

SmoRate; Random intercept

CB on SEMean cancer Fager SxTime; Predicting class membership from baseline covariates

 %cb#2% SmoRate; Request separate estimation of intercept variance for
classes 2 and 3

 %cb#3% SmoRate;

OUTPUT:

SAMPSTAT

TECH7 Request sample statistics for each latent class
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Syntax Comments

SAVEDATA: Saving data

FILE is 3CLmodel.dat; Name of output data file

SAVE = cprob; Save posterior class probabilities
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