

Complete Genome Sequence of the Thermophilic Bacterium *Thermus* sp. Strain CCB_US3_UF1

Beng Soon Teh,^a Ahmad Yamin Abdul Rahman,^a Jennifer A. Saito,^a Shaobin Hou,^b and Maqsudul Alam^a

Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia,^a and Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii, USA^b

Thermus sp. strain CCB_US3_UF1, a thermophilic bacterium, has been isolated from a hot spring in Malaysia. Here, we present the complete genome sequence of *Thermus* sp. CCB_US3_UF1.

T*hermus* spp. are Gram-negative, aerobic, nonsporulating, and rod-shaped thermophilic bacteria (3). Members of the genus *Thermus* have potential in biotechnological applications as sources of thermostable DNA polymerase used in PCR techniques (10, 11). Here, we report the complete genome sequence of *Thermus* sp. strain CCB_US3_UF1, isolated from a hot spring in Ulu Slim, Perak, Malaysia, at 92.4°C, pH 7.

The genomic DNA of *Thermus* sp. CCB_US3_UF1 was extracted using a modified phenol-chloroform protocol (5). The whole-genome sequencing of *Thermus* sp. CCB_US3_UF1 was performed using Roche 454 and Solexa paired-end sequencing technology. A 3-kb genomic library was constructed, and 97,991 paired-end reads and 54,397 single-end reads were generated using the GS FLX system, providing 21.14-fold genome coverage. A total of 3,469,788 reads from the 3-kb library were produced to reach a depth of 115-fold coverage with an Illumina Solexa GA IIx (Illumina, San Diego, CA). These reads were mapped to the scaffolds using the Burrows-Wheeler alignment (BWA) tool (7).

The complete genome of *Thermus* sp. CCB_US3_UF1 is composed of a single circular chromosome of 2,243,772 bp and a plasmid of 19,716 bp, with G+C contents of 68.6% and 65.6%, respectively. There are 2,247 predicted coding sequences (CDS), 2 rRNA operons, and 48 tRNA genes. There are 32 predicted CDS in the plasmid. The automated annotation of the genome was done using the DIYA (Do-It-Yourself Annotator) pipeline (12). Open reading frames (ORFs) were identified using Glimmer3 (4), followed by a protein similarity search using BLAST (1) against UNIREF (13), RPS-BLAST against CDD (9), and Asgard (2). Transfer RNAs were predicted by using tRNAscan-SE (8), while ribosomal RNAs were identified by using RNAmmer (6).

The genome reveals that *Thermus* sp. CCB_US3_UF1 possesses numerous transporters for efficient substrate and nutrient uptake and for utilization of various energy sources.

Nucleotide sequence accession numbers. The genome sequences of *Thermus* sp. CCB_US3_UF1 have been deposited in GenBank under accession numbers CP003126 (chromosome) and CP003127 (plasmid).

ACKNOWLEDGMENT

This work was supported by APEX funding (Malaysia Ministry of Higher Education) to the Centre for Chemical Biology, Universiti Sains Malaysia.

REFERENCES

- Altschul SF, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389– 3402.
- Alves JM, Buck GA. 2007. Automated system for gene annotation and metabolic pathway reconstruction using general sequence databases. Chem. Biodivers. 4:2593–2602.
- 3. Brock TD, Freeze H. 1969. *Thermus aquaticus* gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. **98**:289–297.
- Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679.
- 5. Fulton J, Douglas T, Young M. 2009. Isolation of viruses from high temperature environments, p 43–54. *In* Clokie M and Kropinski AM (ed), Bacteriophages: methods and protocols. Volume 1: isolation, characterization, and interactions. Humana Press, New York, NY.
- Lagesen K, et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108.
- 7. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.
- Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955–964.
- Marchler-Bauer A, et al. 2011. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39:D225– D229.
- Niehaus F, Bertoldo C, Kahler M, Antranikian G. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51:711–729.
- Pantazaki AA, Pritsa AA, Kyriakidis DA. 2002. Biotechnologically relevant enzymes from *Thermus thermophilus*. Appl. Microbiol. Biotechnol. 58:1–12.
- 12. Stewart AC, Osborne B, Read TD. 2009. DIYA: a bacterial annotation pipeline for any genomics lab. Bioinformatics 25:962–963.
- Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. 2007. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23:1282–1288.

Received 26 November 2011 Accepted 12 December 2011 Address correspondence to Beng Soon Teh, bengsoon@ccbusm.edu.my, or Maqsudul Alam, maqsudul@ccbusm.edu.my.

Copyright © 2012, American Society for Microbiology. All Rights Reserved.

doi:10.1128/JB.06589-11