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Genome Sequence of the Biocontrol Strain Pseudomonas fluorescens F113
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Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) that has biocontrol activity against fungal
plant pathogens and is a model for rhizosphere colonization. Here, we present its complete genome sequence, which shows that
besides a core genome very similar to those of other strains sequenced within this species, F113 possesses a wide array of genes
encoding specialized functions for thriving in the rhizosphere and interacting with eukaryotic organisms.

P5eudomonas fluorescens F113 is a Gram-negative, rod-shaped
member of the genus Pseudomonas, isolated from the sugar-
beet rhizosphere (19). P. fluorescens F113 can colonize a wide
range of plants and is used as a model strain to study rhizosphere
colonization (7, 21). It also exhibits biocontrol activity against
phytopathogens, such as the oomycetes Pythium ultimum and
Phytophthora cactorum and the fungus Fusarium oxysporum in
several plant crops, including sugar-beet (13), tomato, and straw-
berry (6) and is antagonistic toward the potato-cyst nematode
Globodera rostochiensis (11). This biocontrol activity is linked to
the production of secondary metabolites, including diacetyl-
phloroglucinol (DAPG) and hydrogen cyanide, and this strain has
been widely used to study the regulation of secondary metabolism
in P. fluorescens (1, 2, 13, 15). Bioremediation derivatives of this
strain able to degrade biphenyl and polychlorinated biphenyls
have also been constructed (8, 22) and tested in situ (12). To gain
insight into ecological traits, to improve its biotechnological ap-
plications, and to better understand its evolution, we sequenced
the complete genome of this bacterium.

The sequence of the P. fluorescens F113 genome was deter-
mined by using a combination of Illumina Solexa GAIlx (7e+6
single reads 36 nucleotides [nt] long) and Roche 454 Titanium
(7e+5 reads 400 nt long). The reads were assembled into 83 con-
tigs with 30X sequence coverage using MIRA software (9). These
contigs were further assembled into 4 supercontigs by using the
ends of an ordered bacterial artificial chromosome (BAC) library
and using BLAST (4) against the genomes of other P. fluorescens
strains (14, 17, 20). The remaining gaps were closed by PCR and
subsequent Sanger sequencing. Open reading frame (ORF) calling
and annotation were first performed automatically using the
RAST pipeline (5) and then manually curated using the Blast2GO
package (10).

The genome of F113 consists of a single circular chromosome
of 6,845,832 bp with an average GC content of 60.8%. This ge-
nome is predicted to contain 5,862 protein-coding genes, 8 non-
coding RNAs (ncRNAs), 5 rRNA operons, and 66 tRNA loci. Al-
though the genome shows a high degree of homology and synteny
with the chromosomes of other sequenced P. fluorescens strains,
such as Pf0-1, Pf5, SBW25, and WHES, its closest relative is the
genome of Pseudomonas brassicacearum subp. brassicacearum
NFM421 (16), a pseudomonad isolated from the plant rhizo-
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sphere in Australia. It is interesting to note that these two strains
show infrequent common traits, such as a similar phase variation
process during rhizosphere colonization (3, 18) and genes for
denitrification with identical genetic organization.

The genome of F113 contains genes encoding proteins that
correlate with its plant growth promotion (PGPR) and biocontrol
traits, for example, 1-aminocyclopropane-1-carboxylate deami-
nase, secreted protease, and biosynthesis of secondary metabo-
lites, such as DAPG and hydrogen cyanide. The importance of
motility for this bacterium is highlighted by the presence of genes
encoding two sets of different flagellar apparatus and three com-
plete chemotaxis systems. Finally, one of the most striking features
of the F113 genome is the large number of potential secretory
systems, including gene clusters similar to the Hrpl and SPI-1
type 3 secretion systems (T3SS) and three complete T6SS loci re-
lated to HSI-1, HSI-2, and HSI-3.

Nucleotide sequence accession number. The P. fluorescens
F113 genome sequence and annotation data have been deposited
in GenBank under accession number CP003150.
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