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Seventeen laboratories participated in a cooperative study to validate the regional susceptibility testing of Neisseria gonorrhoeae
in The Netherlands. International reference strains were distributed. Each laboratory determined the MICs of ciprofloxacin,
penicillin, and tetracycline, for each strain by Etest. To explore a more transparent assessment of quality and comparability, a
statistical regression model was fitted to the data that accounted for the censoring of the MICs. The mean MICs found by all of
the laboratories except three were closer than one 2-fold dilution step to the overall mean, and the mean MICs of each antimicro-
bial agent were close to the MICs for the international reference strains. This approach provided an efficient tool to analyze the
performance of the Dutch decentralized gonococcal resistance monitoring system and confirmed good and comparable
standards.

Successful control of Neisseria gonorrhoeae over the past de-
cades has been hampered by the rapid development of resis-

tance against successive treatment regimes. Therefore, circulating
strains need to be monitored carefully so the resistance levels are
known and may be used for guidelines for appropriate treatment
(5). This surveillance needs quality systems to ensure comparable
and reliable data. In quality assurance exercises, MICs need to be
compared between multiple antimicrobial agents against an ap-
propriate number of reference strains, and between many labora-
tories. The statistical methods described here were used for the
analysis of a quality control exercise in the laboratories which
participate in monitoring the antimicrobial susceptibility of N.
gonorrhoeae in The Netherlands (4).

Antimicrobial susceptibility of bacteria is often measured us-
ing dilution series methods and the last dilution inhibiting bacte-
rial growth is registered as the MIC. However, in reality, the actual
value of the MIC may be anywhere between the last dilution in-
hibiting growth and the first dilution not inhibiting growth. In
statistics, such data are known as censored data, that is, data where
the exact value of the outcome is not observed and only the
boundaries below or above are and the value lies between them.

The question is how to deal with such data properly. Several
methods have been proposed. For a specific strain and antimicro-
bial agent combination, one can determine the consensus MIC
value (mode) among different laboratories (2, 9). However, how
accurate is this modal MIC estimate, e.g., in terms of a 95% con-
fidence interval? Another option is to replace the MICs with a
value halfway between the lower and upper boundaries. A stan-
dard error can then be estimated (and thus a 95% confidence
interval), but this is rather arbitrary.

In this paper, we describe a methodology that properly deals
with censored MIC data. Analysis of censored data has a long
history in statistics, especially in survival analysis, where death of
biological organisms or failure of mechanical systems is studied
(3). In that case, the analysis involves time-to-event (death, fail-
ure) data as a function of explanatory variables. These data are
usually right censored because some subjects are still alive when

they are lost to follow-up or when the study ends, meaning that the
exact time of the event is unknown, but it is known to occur after
the moment a subject is lost to follow-up or the end of the study.
While modeling MICs, the actual MIC (the event) is unknown,
and we only know that it is somewhere between two boundaries
(interval censored). Moreover, similar to the time in survival anal-
ysis, the MIC may run off the scale and be higher than the highest
concentration or lower than the lowest concentration of an Etest
strip or a dilution series. So MIC values are left, interval, or right
censored.

This methodology allows the fitting of a statistical model to
censored MIC data. Subsequently, the results can be used to com-
pare MICs between different strains and/or antimicrobial agents,
including 95% confidence intervals. Furthermore, by allowing
heterogeneity between different laboratories, we are able to con-
sider lab performances. Finally, we compare our results to pub-
lished MICs for reference strains.

MATERIALS AND METHODS
A hypothetical data example. We first sketch the problem for which the
method we propose was devised by giving a hypothetical example. We
consider 30 observers (e.g., laboratories) and consider a random variable
y (e.g., a log MIC). Each observer determines an actual value for y, which
we call yact. The true mean of y equals 1, but due to random noise, the 30
observers all measure some value around 1. The true standard devia-
tion equals 2. The random variable y has a normal distribution. For
one particular case, the 30 yact values determined by the observers are
shown in Table 1 and illustrated in Fig. 1 by the small vertical lines at
the bottom.
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Given these 30 values for yact, our task is to estimate the mean and the
standard error of the mean. The estimate of the mean is simply calculated
by taking the average of the yact values, while the standard error is calcu-
lated by dividing the estimated standard deviation by �30. In this exam-
ple, the estimated mean is 1.46; its standard error 0.43.

Unfortunately, the actual y values cannot be observed. Observers can
only determine the nearest integer value greater than yact (e.g., by dilution
series). For example, yact � 2.42 will be observed as yobs � 3. To complicate
things further, yact values lower than �2 and greater than 4 are off the
strip; e.g., yact � 5.18 will be observed as yobs � 4. Such data are called
interval-, left-, and right-censored data, respectively. These yobs are also
shown in Table 1 and illustrated in Fig. 1 by the shaded areas.

Given these 30 observed y values, we may set the same goal, i.e., to
estimate the mean and its standard error. Several options are proposed,
such as to take the mode of the 30 observed y values. Here the mode equals
2 (8 records). But how can the standard error of the mode be calculated?
Another naive solution is to ignore the censoring and just calculate the
mean of the observed y values and its standard error. Using these data, the
estimated mean is 1.77 and its standard error 0.34, but is this appropriate?

Statistical analysis of censored data. We propose a more sophisti-
cated statistical method that properly estimates the mean and its standard
error while dealing with the censored nature of the observations. We will
first sketch the main idea in the context of the hypothetical example.

The idea is based on the maximum-likelihood principle (7): given a
data set and a statistical model, for what model parameters do the obser-
vations become most likely? In our approach, the data set are the interval-
censored data (lower and upper boundaries, Table 1), while the statistical
model is an interval-censored normal distribution. This distribution has
two parameters: the mean, which is the parameter of interest, and a stan-

dard deviation. The latter is a nuisance parameter, because the maximum-
likelihood principle directly provides the standard error of the mean.

The model can easily be fitted using standard statistical software for
survival analysis, for example, using the function survreg in R (8). R code
is provided in the appendix. The lower and upper boundaries are provided
in Table 1. Using this method, the estimated mean is 1.60 and its standard
error 0.47.

Figure 2 shows what happens if we repeat the above calculation 1,000
times (black dots). Each run provides 30 new samples of yact and yobs. For
each run, the following values are being computed: the mean of yact (i.e.,
the mean that we would have obtained if we had observed the actual y
values), the naively calculated mean of yobs (i.e., the mean that we obtain
based on the observed y values, ignoring censoring) and the properly
calculated mean of yobs (i.e., the mean that we obtain based on the ob-
served y values, with censoring) (left panels). Standard errors are com-
puted as well (right panels). Estimates differ between runs due to random
variation of the samples. The true mean and standard error are indicated
by diamonds. The means of the estimates are indicated by circles.

Compared to the actual and proper estimate, the means of the naive esti-
mate are clearly overestimated by about 0.5, while the standard errors are
underestimated. The proper estimates are close to the actual estimates. The
overestimation of the mean by 0.5 is due mainly to ignoring the interval
censoring of the observed data, while the underestimation of the standard
error is due mainly to ignoring the left and right censoring. Subtracting 0.5
from yobs would improve the estimate of the mean but not that of the standard
error. In conclusion, the hypothetical example shows that we should analyze
censored observations using proper statistical methods.

MIC data. Twenty regional laboratories participate in the surveillance
of the antimicrobial susceptibility of N. gonorrhoeae in The Netherlands
(4). In 2007 and 2010, the participating laboratories were requested to
determine the susceptibilities of four and six reference strains, respec-
tively, in order to determine quality and comparability of the decentral-
ized testing results. Seventeen laboratories, including the reference labo-
ratory, agreed to participate.

The reference strains used to assess the performance and comparabil-

FIG 1 Illustration of censored data. Variable y has a normal distribution with
a mean of 1 and a standard deviation of 2. Thirty values are shown at the
bottom. Values of ��2 are left censored, values of �4 are right censored, and
values in between are interval censored.

TABLE 1 Hypothetical data created by 30 random samples from a
normal distribution with mean 1 and standard deviation 2

Observation yact yobs Lower Upper Event ySurv

1 �0.79 0 �1 0 3 [�1, 0]
2 1.37 2 1 2 3 [1, 2]
3 4.18 � 4 4 Infa 0 4�
4 �1.26 �1 �2 �1 3 [�2, �1]
5 0.84 1 0 1 3 [0, 1]
6 1.26 2 1 2 3 [1, 2]
7 2.42 3 2 3 3 [2, 3]
8 0.52 1 0 1 3 [0, 1]
9 4.97 � 4 4 Inf 0 4�
10 0.72 1 0 1 3 [0, 1]
11 1.84 2 1 2 3 [1, 2]
12 2.96 3 2 3 3 [2, 3]
13 0.21 1 0 1 3 [0, 1]
14 �1.08 �1 �2 �1 3 [�2, �1]
15 4.56 � 4 4 Inf 0 4�
16 �3.62 ��2 �Inf �2 2 �2�
17 2.76 3 2 3 3 [2, 3]
18 1.07 2 1 2 3 [1, 2]
19 3.03 4 3 4 3 [3, 4]
20 1.86 2 1 2 3 [1, 2]
21 5.18 � 4 4 Inf 0 4�
22 �1.40 �1 �2 �1 3 [�2, �1]
23 4.18 � 4 4 Inf 0 4�
24 4.91 � 4 4 Inf 0 4�
25 1.01 2 1 2 3 [1, 2]
26 �3.90 ��2 �Inf �2 2 �2�
27 1.95 2 1 2 3 [1, 2]
28 �0.19 0 �1 0 3 [�1, 0]
29 2.58 3 2 3 3 [2, 3]
30 1.58 2 1 2 3 [1, 2]
a Inf, infinity.
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FIG 2 One thousand runs of 30 samples where the mean (left panels) and standard error of the mean (right panels) were estimated for each run (black dots). The
“actual” values are based on the actual values, yact; “naive” values are based on the observed values, yobs (ignoring censoring); and “proper” values are based on
the observed values, yobs (accounting for censoring). The true mean (� 1) and standard error (� 2/�30) are indicated by diamonds. The means of the 1,000
estimates are indicated by circles.
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ity of the Dutch laboratories participating in the decentralized testing and
monitoring of gonococcal surveillance were N. gonorrhoeae ATCC 49226;
strains 5, 8, and 10 of the European Surveillance of Sexually Transmitted
Infections; and WHO quality assessment strains 08-02 (WHO G), 09-02
(WHO F), 09-03 (WHO K), 09-04 (WHO L), 09-09 (WHO M), and 09-10
(WHO O), kindly provided by C. Ison (2, 9). The antimicrobial agents
tested were ciprofloxacin, penicillin, and tetracycline. In addition, the
strains were tested for cefotaxime but the cefotaxime data could not be
included in this study because reference MICs were not available. The
laboratories provided details about their laboratory methods. In 2007, all
of the laboratories used the Etest (bioMérieux); in 2010, 8 of the 17 labo-
ratories used MICE strips (Oxoid).

Statistical analysis of MIC data. First the Etest values were log2 trans-
formed. These log2-transformed MICs were treated as interval-censored data
since only lower and upper boundary values can be measured. In this case,
the upper boundary equals the measured log2 MIC and the lower boundary is
the upper boundary value minus 1. The actual log2 MIC value lies between the
upper and lower boundaries. Furthermore, we have to deal with left-censored
MIC data (actual MIC lower than the lowest MIC on the strip) and right-
censored MIC data (actual MIC higher than the highest MIC).

In order to compare the MICs between strains and antimicrobial
agents, the above model was expanded to a more general regression
model. First, the mean must become a function of the strain, antimicro-
bial agent, and agar medium. It is assumed, for any given combination of
those variables, that the distribution of log2 MIC values is a censored
normal distribution with a common variance, as is usually done in regres-
sion modeling.

The regression model was further expanded to a multilevel regression
model. The strain, antimicrobial agent, and agar medium were treated as
fixed effects, while the laboratory was treated as a random effect. The term
“random,” usually “frailty” in survival analysis, is a random component
designed to account for variability due to unobserved laboratory level
factors that is otherwise unaccounted for by the fixed-effect terms in the
model. These laboratory factors may contribute an extra layer of hetero-
geneity, leading to greater variability in MICs than may be expected under
the model without the random component. An interaction term between
the strain and the antimicrobial agent was added, since the antibiogram
differs among the strains.

The multilevel regression model is specified symbolically as follows.
The data set consists of n records. For each record i, the actual log2 MIC
values are normally distributed, conditional on the mean �i and variance
�2. The distribution of the observed log2 MIC values is interval censored
and normally distributed with lower and upper boundaries for each ob-
servation. In fact, these lower and upper boundary values are the obser-
vations: log2(MICi) � Normal(�i, �2)I(loweri, upperi).

Subsequently, the mean is a linear function of a model matrix X and
regression parameters �. The model matrix represents the fixed-effect
terms and is filled with ones and zeros, turning variables “on” and “off” for
that specific record. In addition, a lab-specific random effect, blab, is
added: �i � Xi� � blab,j[i].

In turn, these random effects are assumed to be normally distributed
with mean zero and variance �lab

2 : blab,j � Normal�0, �lab
2 �.

Fitting such a model is not straightforward using standard statistical
software packages. We therefore reformulated the model into a Bayesian
setting, which allowed us to implement it easily into the WinBUGS soft-
ware package (6). Since a Bayesian approach requires specification of
prior distributions on all unknown parameters, all (hyper)parameters
were given noninformative prior distributions, meaning that the poste-
rior parameter distributions were inferred from the observations only.
The WinBUGS code is shown in the appendix.

We ran two independent MCMC (Markov chain Monte Carlo)
chains, each containing 5,100 iterations. We used a “burn-in” period of
100 iterations and applied a thinning factor of 10 to prevent autocorrela-
tion in the samples. For each parameter, this resulted in 1,000 samples
from the posterior distribution.

A first analysis showed that the effects of the agar medium and test
strip were not significant. Therefore, these factors were not taken into
account in the further analyses. Next, for any given combination of anti-
microbial agent and strain, the posterior distribution of the correspond-
ing MIC can be calculated by adding up the corresponding regression
parameters and taking the antilog. The posterior distributions of the
laboratory-specific deviations were obtained directly from the model
output.

The fold differences between our MICs and the reference MICs were
calculated as well. This was done as follows. For each antimicrobial agent
and strain, we took the 1,000 samples from the posterior distribution of
our calculated log2 MIC and subtracted 1,000 random uniformly distrib-
uted samples from the corresponding interval-censored reference log2

MIC. This resulted in 1,000 samples of log2 differences. Right-censored
reference MICs were omitted, since differences from right-censored ref-
erence MICs are undefined. The differences were pooled for each antimi-
crobial agent separately, as well as for all antimicrobial agents together.
Subsequently, the mean log2 differences and their 95% confidence inter-
vals were determined. These log2 values were transformed back to the
original scale (the difference becomes a fold difference, i.e., a ratio) by
taking the antilog.

All data pre- and postprocessing were done in R (8).

RESULTS
Laboratory performance. The model predicts laboratory-specific
fold differences from the mean of all laboratories, which is the
expected MIC value based on the strain and antimicrobial agent.
Figure 3 shows the fold difference (and the 95% confidence inter-
val) for each laboratory. This figure allows an objective rating of
each laboratory. On the original scale, the differences are fold
differences or ratios.

Most predicted MICs fell within a factor 2 (1 doubling dilu-
tion) of the overall mean. The deviation was significant only for
laboratories 19 and 20, which reported MICs which were, on av-
erage, more than 2-fold lower than the overall mean. Laboratories
7, 9, 11, 12, 14, 15, and 16 were nearest to the overall mean.

FIG 3 Laboratory-specific fold differences (and 95% confidence intervals) from
the expected mean MIC. A 1-fold difference is no difference [log2(1) � 0].
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Strain- and antimicrobial-agent-specific MICs compared to
reference MICs. From the same analysis we obtained the predicted
mean MIC and its 95% confidence interval for each combination of
strain and antimicrobial agent (Fig. 4). The mode MICs are given for

comparison. Although the original MIC data were interval censored,
the model provides continuous mean MICs.

The mean MICs of each strain and antimicrobial agent as pre-
dicted by the model were subsequently compared to the corre-

FIG 4 Predicted mean MICs and 95% confidence intervals (solid squares), mode MICs (open squares), and reference MICs (solid circles), with their corre-
sponding lower boundary accounting for interval censoring (open circles), for each combination of strain and antimicrobial agent.
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sponding reference MICs (2, 9). The reference MICs are shown in
Fig. 4 as intervals, since these MICs are interval censored as well.
The fold differences of the mean MIC of the participating labora-
tories from the reference MIC for each antimicrobial agent and
their 95% confidence intervals were 0.6 (0.3 to 1.4) for ciprofloxa-
cin, 1.3 (0.5 to 7.0) for penicillin, 1.0 (0.3 to 2.9) for tetracycline,
and 0.95 (0.33 to 4.73) for all antimicrobial agents. The wide con-
fidence interval of the overall analysis was due mainly to the mean
penicillin MIC of 32 mg/liter, which our laboratories found for
strain 09-09, compared to the reference value of 8 mg/liter (9).
When we left the MIC of penicillin for this strain out of the anal-
ysis, we found differences of 1.06 (0.46 to 2.44) for penicillin and
0.89 (0.34 to 2.53) for all antimicrobial agents.

DISCUSSION

Using statistical methods for the analysis of censored data, we
were able to obtain mean MIC values with their confidence inter-
vals for any given combination of explanatory variables, including
laboratory (Fig. 3) and the combination of strain and antimicro-
bial agent (Fig. 4). The methods presented here are not new, but to
our knowledge, this is the first time they have been applied in the
field of antimicrobial susceptibility testing.

Although the basic model for censored data seems fairly sim-
ple, implementation of the multilevel regression model for cen-
sored data in standard statistical software is not straightforward.
This especially applies to the “frailty” term in the model, which
complicates the calculations. However, by putting the model into
a Bayesian context, implementation in WinBUGS is relatively
easy. Still, when doing MCMC inference, one has to inspect con-
vergence and proper mixing of the chains. First, have both chains
converged to the same posterior distribution? Second, is there no
autocorrelation in the successive samples? Without these checks,
results may be meaningless. Also the pre- and postprocessing of
the data may be complicated. We are aware that our method may
not be easy to implement without the help of a statistician. How-
ever, our R code for pre- and postprocessing of the data is available
on request and the WinBUGS model is provided in the appendix.

An earlier analysis of a quality assurance exercise of antimicro-
bial susceptibility tests included counting the number of deviant
results based on preestablished breakpoints (1). Our method al-
lowed comparing the performances of the laboratories to each
other (Fig. 3) and comparing the mean MICs for each antimicro-
bial agent and strain to the reference MICs of the WHO strains
(Fig. 4). Both fold differences were within acceptable limits, i.e.,
one dilution step. The wide confidence interval for the mean fold
difference of our mean penicillin MIC from the reference value
was due mainly to strain 09-09 (WHO M). Our laboratories found
a mean penicillin MIC of 32 mg/liter for this strain, whereas it is 8
mg/liter according to Unemo et al. (9).

All of the laboratories in this study except three scored a mean
predicted MIC within one doubling dilution of the overall mean.
We expected that the number of isolates tested per year in each
laboratory, its experience, would have the greatest impact on its
accuracy, but this effect was far from significant (data not shown).
Overall, the participating Dutch laboratories performed well com-
pared to each other and to international standards. Since 2011,
strains have been routinely tested for ceftriaxone, spectinomycin,
and azithromycin resistance and similar testing for resistance to
these antimicrobial agents can be performed next year.

APPENDIX
R code for calculating the mean of censored data. In R, we must first
create a so-called Surv object for the data. This object contains the lower
and upper boundaries, based on the observed y values. In order to do that,
we must know what type of censoring we are dealing with. This should be
translated to an event code as follows: 3 � interval-censored data, 2 �
left-censored data, 0 � right-censored data. After identifying the event
code for each record, a Surv object is created as follows:

library(survival)
y.Surv �- Surv(

time � ifelse(event �� 3, y.obs-1, y.obs),
time2 � y.obs,
event � event,
type � “interval”)

The result is shown in Table 1. The mean and standard error of the
mean are subsequently estimated by the survreg function as follows:

y.mean �- survreg(y.Surv � 1, dist � “gaussian”)
summary(y.mean)

WinBUGS code for fitting the multilevel model with interval-
censored response variable. The data set consists of n records. Conditional
on the mean � and precision �, the observations are normally distributed
(note that WinBUGS works with precisions [� variance�1] instead of vari-
ances). The I operator indicates that the distribution is interval censored with
a lower and an upper boundary. The mean is a function of the model matrix
X and regression coefficients �. The blab term is a lab specific deviation. These
deviations are normally distributed with mean zero and precision �lab. All
(hyper)parameters are given noninformative priors.

model {
for (i in 1:n) {

y[i] � dnorm(mu[i], tau)I(lower[i], upper[i])
mu[i] �- inprod2(X[i, ], beta[]) � b.lab[lab[i]]

}
for (j in 1:n.lab) {

b.lab[j] � dnorm(0.0, tau.lab)
}
for (k in 1:n.beta) {

beta[k] � dnorm(0.0, 1.0E-4)
}
tau �- pow(sigma, �2)
sigma � dunif(0.01, 100)
tau.lab �- pow(sigma.lab, �2)
sigma.lab � dunif(0.01, 100)

}
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