

Antistaphylococcal Activity of TD-1792, a Multivalent Glycopeptide-Cephalosporin Antibiotic

Johanne Blais,* Stacey R. Lewis, Kevin M. Krause,* and Bret M. Benton

Theravance, Inc., South San Francisco, California, USA

TD-1792 is a new multivalent glycopeptide-cephalosporin antibiotic with potent activity against Gram-positive bacteria. The *in vitro* activity of TD-1792 was tested against 527 *Staphylococcus aureus* isolates, including multidrug-resistant isolates. TD-1792 was highly active against methicillin-susceptible *S. aureus* (MIC₉₀, 0.015 μ g/ml), methicillin-resistant *S. aureus*, and heterogeneous vancomycin-intermediate *S. aureus* (MIC₉₀, 0.03 μ g/ml). Time-kill studies demonstrated the potent bactericidal activity of TD-1792 at concentrations of $\leq 0.12 \ \mu$ g/ml. A postantibiotic effect of > 2 h was observed after exposure to TD-1792.

he global emergence of Gram-positive pathogens with decreased susceptibility to available therapies has become a major public health problem, with Staphylococcus aureus being of particular concern (2, 6). We initiated a program to design multivalent antibiotics optimized for activity against multidrugresistant Gram-positive bacteria. The chemical design included covalent attachment of vancomycin through a chemically stable linker to a cephalosporin. The details concerning the discovery of the heterodimer TD-1792 (Fig. 1) have been described elsewhere (12). This agent exerts bactericidal activity against clinically relevant Gram-positive pathogens, including multidrug-resistant organisms, such as methicillin-resistant S. aureus (MRSA) and vancomvcin-intermediate S. aureus (VISA) (10). In a randomized, double-blind phase 2 study of patients with complicated skin and skin structure infections (cSSSI), TD-1792 was found to be safe and noninferior to vancomycin with respect to efficacy (14).

A total of 527 clinical isolates of *S. aureus* collected worldwide at various hospitals from 2005 to 2007 were used in the MIC studies described here. Six strains of MSSA representing four distinct staphylococcal β -lactamases (types A, B, C, and D) were also studied (9). TD-1792 and THRX-169797 (representing the cephalosporin moiety of TD-1792) were prepared by Theravance, Inc. (South San Francisco, CA). All comparator antibiotics for MIC testing were provided by Trek Diagnostics (Cleveland, OH). Comparator antimicrobial agents included linezolid (Zyvox; Pfizer), nafcillin, penicillin G, and vancomycin (Sigma Chemical Co., St. Louis, MO). Susceptibility testing was performed using a broth microdilution assay following the recommended CLSI methodology (3).

The MIC results for TD-1792 and comparator agents are summarized in Table 1. On the basis of MIC_{90} , TD-1792 was the most active agent tested against clinical strains of MSSA (MIC_{90} , 0.015 μ g/ml). TD-1792 was also found to be very active against a large group of MRSA isolates. The highest MIC of TD-1792 among all MRSA strains surveyed was 0.03 μ g/ml. Based upon MIC₉₀ comparisons, TD-1792 was 16-fold more active than daptomycin, 32-fold more active than vancomycin, and 128-fold more active than linezolid. A single daptomycin-nonsusceptible strain (MIC, 2 μ g/ml) was identified. This isolate was susceptible to vancomycin (MIC, 1 μ g/ml); the TD-1792 MIC for this isolate was 0.015 μ g/ml.

All tested MRSA isolates underwent pulsed-field gel electrophoresis (PFGE) genotyping as described previously by Bae and

FIG 1 Chemical structure of TD-1792.

colleagues (1). Among the 324 MRSA isolates evaluated, 208 (64.2%) were characterized by the USA typing schema. Of these 208 isolates, 181 (87.0%) were USA300 (TD-1792 MIC range, 0.008 to 0.03 μ g/ml), and 20 (9.6%) were USA100 (TD-1792 MIC range, 0.008 to 0.03 μ g/ml). Other phenotypes identified were as follows: USA 200 (1 isolate; TD-1792 MIC, 0.015 μ g/ml), USA 400 (3 isolates; TD-1792 MIC range, 0.015 to 0.03 μ g/ml), USA 500 (2 isolates; TD-1792 MICs, 0.015 μ g/ml), and USA 600 (1 isolate; TD-1792 MIC, 0.015 μ g/ml).

A collection of 39 *S. aureus* isolates confirmed as heterogeneous VISA (hVISA) by population analysis profiling (11), was also tested. For these isolates, the vancomycin MIC_{90} was 2 μ g/ml.

Received 19 August 2011 Returned for modification 31 October 2011 Accepted 30 November 2011

Published ahead of print 27 December 2011

Address correspondence to Bret M. Benton, bbenton@theravance.com.

* Present address: J. Blais, Novartis, Emeryville, California, USA; K. M. Krause, Cerexa, Inc., Oakland, California, USA.

Copyright © 2012, American Society for Microbiology. All Rights Reserved. doi:10.1128/AAC.05532-11

TABLE 1 In vitro activity	v of TD-1792 against S.	aureus isolates

	MIC (µg/ml)			
S. aureus (no. tested) and antibiotic	Range	50%	90%	% Susceptible ^a
Methicillin susceptible (164)				
TD-1792	0.002-0.03	0.008	0.015	NA
Oxacillin	≤0.06-2	0.25	0.5	100
Vancomycin	≤0.25-2	1	1	100
Daptomycin	0.06-1	0.5	0.5	100
Linezolid	1-4	2	4	100
Clindamycin	≤0.5->4	≤0.5	≤0.5	93.3
Ciprofloxacin	0.12->8	0.5	2	89.0
Gentamicin	≤0.06->16	0.5	2	97.0
Erythromycin	≤0.12->16	1	>16	23.2
Trimethoprim-sulfamethoxazole	≤0.5/9.5-2/38	≤0.5/9.5	≤0.5/9.5	100
Methicillin resistant (324)				
TD-1792	0.008-0.03	0.015	0.03	NA
Vancomycin	≤0.25-2	1	1	100
Daptomycin	0.12-2	0.5	0.5	99.7
Linezolid	1-4	2	4	100
Clindamycin	≤0.5->4	≤0.5	>4	66.4
Ciprofloxacin	0.12->8	8	>8	26.2
Gentamicin	≤0.06->16	1	>16	73.5
Erythromycin	0.5->16	>16	>16	1.5
Trimethoprim-sulfamethoxazole	$\leq 0.5/9.5 - \geq 4/76$	≤0.5/9.5	≤0.5/9.5	90.7
Heterogeneous vancomycin intermediate (39)				
TD-1792	0.015-0.06	0.03	0.03	NA
Vancomycin	0.5-2	1	2	100
Daptomycin	0.25-2	0.5	1	97.4
Linezolid	1–2	2	2	100
Clindamycin	$\leq 0.5 -> 4$	>4	>4	5.1
Ciprofloxacin	2->8	>8	>8	0
Gentamicin	0.5->16	>16	>16	20.5
Erythromycin	>16	>16	>16	0
Trimethoprim-sulfamethoxazole	$\leq 0.5/9.5 -> 4/76$	>4/76	>4/76	48.7

^a Susceptibility of each agent as defined by CLSI document M100-S21 (4).

TD-1792 demonstrated potent *in vitro* activity against this collection, with all MIC values being $\leq 0.06 \ \mu$ g/ml. One of the hVISA isolates was also nonsusceptible to daptomycin (MIC, 2 μ g/ml); TD-1792 maintained an MIC value of 0.03 μ g/ml against this strain.

Time-kill experiments were performed according to CLSIdefined methodology (13). TD-1792 demonstrated potent bactericidal activity at concentrations equal to two times the MIC ($2 \times$ MIC) against all six S. aureus isolates tested (Table 2). Against both MSSA isolates tested, TD-1792 at $2 \times$ MIC resulted in a ≥ 3 -log₁₀ reduction by 4 h. Vancomycin, nafcillin, and cefazolin were also bactericidal but only by 24 h when tested at 8× their respective MICs. Against the three MRSA isolates tested, TD-1792 was bactericidal at all MIC multiples tested (0.03 to 0.25 μ g/ml) and reduced the inoculum by $\geq 3 \log_{10}$ as early as 4 to 8 h against MRSA MED 1805 and MRSA MED 2028. In contrast, vancomycin at 8imesMIC required 24 h to reach the bactericidal endpoint against all three strains. Linezolid was bacteriostatic against the MRSA strains. Against VISA Mu50, TD-1792 was bactericidal at all MIC multiples with 0.12 μ g/ml (2× MIC) reducing the inoculum by $>3 \log_{10}$ by 8 h. At 0.25 and 0.5 μ g/ml, TD-1792 was bactericidal as early as 4 h. When tested at 8× MIC, vancomycin and linezolid were bacteriostatic at 24 h.

Postantibiotic effect (PAE) was determined according to the method outlined by Craig and Gudmundsson (5). After a 1-h exposure to TD-1792 at 4× MIC, growth of *S. aureus* ATCC 29213 (MIC = 0.015 μ g/ml) and ATCC 33591 (MIC = 0.03 μ g/ml) was suppressed for 2.2 h and 2.7 h, respectively. The PAEs of TD-1792 were similar to those observed for the comparators; vancomycin (for both strains, 2.4 to 3.4 h), nafcillin (for ATCC 29212, 2.1 h), or linezolid (for ATCC 33591, 3.2 h).

Comparison of the stability of TD-1792 to staphylococcal β -lactamases is shown in Table 3. As expected, there was no more than a 2-fold difference in the TD-1792 MIC between the β -lactamase-negative strain and strains producing various staphylococcal β -lactamase types. These results were consistent with the stability of THRX-169797, representing the cephalosporin moiety of TD-1792.

Our results demonstrate the potent *in vitro* inhibitory activity of TD-1792 against *S. aureus* isolates, including the emerging hVISA phenotype. Based upon MIC₉₀ comparisons, TD-1792 was consistently the most active antibiotic tested against the isolates profiled in this study. It is notable that the activity of THRX-169797, the cephalosporin component of the heterodimer, is modest against MSSA ATCC 29213 (MIC, 1 μ g/ml) and is 8-fold less active against MRSA ATCC 33591 (MIC, 8 μ g/ml). Neverthe-

	Antibiotic		Concn tested (µg/ml)	$\Delta \log_{10} CF$	$\Delta \log_{10}$ CFU/ml at:		
Organism		MIC (µg/ml)		2 h	4 h	8 h	24 h
MSSA ATCC 29213	TD-1792	0.015	0.03	-2.1	-3.0	-3.9	-4.3
			0.06	-0.8	-2.4	-3.9	-4.7
			0.12	-0.5	-2.4	-4.2	-3.8
	Vancomycin	1	8	-0.7	-0.9	-2.6	-4.7
	Nafcillin	0.5	4	-0.6	-1.0	-2.5	-4.6
	Cefazolin	0.5	4	0.1	-0.5	-2.4	-3.0
MSSA ATCC 13709	TD-1792	0.015	0.03	-1.9	-3.4	-4.1	-5.5
			0.06	-1.5	-2.7	-3.4	-5.4
			0.12	-1.6	-3.5	-4.6	-5.3
	Vancomycin	0.5	4	-0.2	0.0	-1.0	-5.0
	Nafcillin	1	8	-0.2	-0.1	-0.9	-5.7
	Cefazolin	0.5	4	0.2	-0.4	-2.3	-3.2
MRSA ATCC 33591	TD-1792	0.03	0.06	0.1	-0.3	-1.5	-4.2
			0.12	-0.1	-0.3	-1.4	-4.1
			0.25	-0.7	-1.2	-2.3	-3.7
	Vancomycin	1	8	0.0	0.1	-0.9	-3.2
	Linezolid	1	8	0.1	0.1	-0.8	-1.7
MRSA MED 1805	TD-1792	0.015	0.03	-0.5	-2.7	-3.2	-3.3
			0.06	-1.0	-2.6	-3.2	-4.2
			0.12	-1.9	-3.1	-3.7	-3.9
	Vancomycin	0.5	4	-0.1	-0.2	-0.9	-3.4
	Linezolid	2	16	0.0	-0.4	-0.3	-1.6
MRSA MED 2028 ^a	TD-1792	0.03	0.06	-0.2	-3.3	-3.9	-3.7
			0.12	-0.7	-3.3	-3.8	-4.4
			0.25	-3.6	-3.7	-4.2	-4.3
	Vancomycin	1	8	0.1	-0.1	-0.7	-4.0
	Linezolid	2	16	0.0	-0.6	-1.8	-2.7
VISA Mu50	TD-1792	0.06	0.12	-0.7	-2.4	-3.3	-3.6
			0.25	-1.5	-3.2	-4.1	-4.2
			0.5	-2.3	-4.0	-4.2	-4.1
	Vancomycin	4	32	-0.2	-0.4	-0.8	-2.5
	Linezolid	2	16	-0.2	-0.3	-0.9	-2.3

TABLE 2 Kill kinetics of TD-1792 and comparators against six S. auren	<i>is</i> isolates
---	--------------------

 a MRSA isolate nonsusceptible to daptomycin.

less, due to its unique chemical construct, the antistaphylococcal activity of TD-1792 is unaffected by coexisting resistance mechanisms, including resistance to methicillin/oxacillin and heterogeneous resistance to vancomycin. This finding suggests a cooperative mechanism of action between the cephalosporin and glycopeptide components of TD-1792 and warrants further study.

In a phase 1 study, administration of a single dose of TD-1792 intravenously at 2 mg/kg of body weight yielded plasma concentrations that exceed the MIC at which 100% of MRSA

TABLE 3 Susceptibility	v of B-lact	tamase-producing	g staphylococ	ci to TD-1792
INDEL 5 Ousceptionit	or p rac	unitable producing	s stupiny lococ	

The Development of producing output/tococci to 15 172						
Strain	β-lactamase		MIC (µg/ml)			
	Туре	Levela	TD-1792	THRX-169797 ^b	Penicillin G	
ATCC 25923	Negative	0	0.015	1	0.03	
ATCC 29213	А	0.006	0.015	1	1	
PC1	А	0.201	0.015	1	256	
NCTC9789	А	0.088	0.015	1	64	
22260	В	0.024	0.015	2	16	
V137	С	0.034	0.03	2	64	
FAR19	D	0.030	0.015	1	2	

^a Activity reported as micromoles of nitrocefin degraded/min/cell mass after incubation (8).

^b THRX-169797 is the cephalosporin moiety of TD-1792.

isolates are inhibited (0.06 μ g/ml) for 24 h (15). At this dose, serum concentrations are predicted to exceed the AUC/MIC target ratio required for efficacy *in vivo* (7). This survey of the susceptibilities of multidrug-resistant *S. aureus* isolates to TD-1792, together with the favorable *in vitro* pharmacodynamic interactions described herein, supports the continued development of this new agent for the treatment of serious infections caused by *S. aureus*.

REFERENCES

- 1. Bae IG, et al. 2009. Presence of genes encoding the Panton-Valentine leukocidin exotoxin is not the primary determinant of outcome in patients with complicated skin and skin structure infections due to methicillin-resistant *Staphylococcus aureus*: results of a multinational trial. J. Clin. Microbiol. 47:3952–3957.
- Boucher HW, et al. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48: 1–12.
- 3. Clinical and Laboratory Standards Institute. 2009. Methods for dilution susceptibility tests for bacteria that grow aerobically; approved standard—eighth edition CLSI document M7-A8. Clinical and Laboratory Standards Institute, Wayne, PA.
- 4. Clinical and Laboratory Standards Institute. 2011. Performance standards for antimicrobial susceptibility testing. Approved standard M100-S21. Twentieth informational supplement. Clinical and Laboratory Standards Institute, Wayne, PA.
- Craig WA, Gudmundsson S. 2006. Postantibiotic effect, p 296–329. In Lorian V (ed), Antibiotics in laboratory medicine, 4th ed. Lippincott Williams and Wilkins, Baltimore, MD.

- Fischbach MA, Walsh CT. 2009. Antibiotics for emerging pathogens. Science 325:1089–1093.
- 7. Hegde SS, et al. 2012. Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Grampositive bacteria, in a neutropenic murine thigh model. Antimicrob. Agents Chemother. 56:1578–1583.
- Kernodle DS, McGraw PA, Stratton CW, Kaiser AB. 1990. Use of extracts versus whole-cell bacterial suspensions in the identification of *Staphylococcus aureus* β-lactamase variants. Antimicrob. Agents Chemother. 34:420–425.
- 9. Kernodle DS, Stratton CW, McMurray LW, Chipley JR, McGraw PA. 1989. Differentiation of beta-lactamase variants of *Staphylococcus aureus* by substrate hydrolysis profiles. J. Infect. Dis. **159**:103–108.
- Leuthner KD, Vidaillac C, Cheung CM, Rybak MJ. 2010. In vitro activity of the new multivalent glycopeptide-cephalosporin antibiotic TD-1792 against vancomycin-nonsusceptible *Staphylococcus* isolates. Antimicrob. Agents Chemother. 54:3799–3803.
- 11. Lewis SR, et al. 2009. Abstr. 49th Intersci. Conf. Antimicrob. Agents Chemother., San Francisco, CA, 12 to 15 September 2009, abstr C2-143. American Society for Microbiology, Washington, DC.
- 12. Long DD, et al. Exploring the positional attachment of glycopeptide/ beta-lactam heterodimers. J. Antibiot. (Tokyo) 61:603-614.
- 13. National Committee for Clinical Laboratory Standards. 1999. Methods for determining bactericidal activity of antimicrobial agents; approved guideline. NCCLS document M26-A. NCCLS, Wayne, PA.
- 14. **Štryjewski M, et al.** 2007. Abstr. 47th Intersci. Conf. Antimicrob. Agents Chemother., 17 to 20 September 2007, abstr L-1147a. American Society for Microbiology, Washington, DC.
- Wong SL, et al. 2007. Abstr. 47th Intersci. Conf. Antimicrob. Agents Chemother., 17. to 20 September 2007, abstr A-44. American Society for Microbiology, Washington, DC.