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ABSTRACT: Stochastic damage to cellular macromolecules and organelles is thought to be a driving force 

behind aging and associated degenerative changes. However, stress response pathways activated by this 

damage may also contribute to aging.  The IKK/NF-B signaling pathway has been proposed to be one of 

the key mediators of aging. It is activated by genotoxic, oxidative, and inflammatory stresses and regulates 

expression of cytokines, growth factors, and genes that regulate apoptosis, cell cycle progression, cell 

senescence, and inflammation. Transcriptional activity of NF-B is increased in a variety of tissues with 

aging and is associated with numerous age-related degenerative diseases including Alzheimer’s, diabetes 

and osteoporosis. In mouse models, inhibition of NF-B leads to delayed onset of age-related symptoms and 

pathologies. In addition, NF-B activation is linked with many of the known lifespan regulators including 

insulin/IGF-1, FOXO, SIRT, mTOR, and DNA damage.  Thus NF-B represents a possible therapeutic 

target for extending mammalian healthspan. 
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With aging there is an inevitable loss of tissue 

homeostasis leading to an impaired ability of an 

organism to respond to stress and as a consequence 

dramatically increased risk of morbidity and mortality.  

The cause of aging and its sequelae are hotly debated.  

The primary debate is whether aging is determined 

genetically or is a consequence of time-dependent 

accumulation of stochastic damage [1]. In fact, there is 

abundant evidence, in particular from Caenorhabditis 
elegans, that mutation of single genes can extend 

lifespan as much as six-fold. Likewise, rare diseases 

called progerias reveal that DNA damage can drive rapid 

aging in humans. Yet these two theories are not mutually 

exclusive and in fact converge if one considers that the 

cellular response to damage is dictated by intricate 

signaling networks, which are genetically determined. 

Many types of cellular damage may contribute to aging 

including DNA damage, mitochondrial damage, 

telomere attrition and accumulation of macromolecular 

waste [2].  These various types of damage promote aging 

by driving cellular senescence, apoptosis, or dysfunction. 

Given the variety of types damage that can promote 

aging and the relatively limited number of outcomes to 

these numerous insults, this argues strongly that 

damage/stress response pathways play an important role 

in mediating aging.  

Genotoxic, inflammatory, and oxidative stresses all 

stimulate the NF-B family of transcription factors. 

Thus, as a common responder to varied stress stimuli, 

NF-B is well positioned to play a key role in driving 

aging.  Indeed, NF-B has been directly implicated in 

the aging process. For example, using motif mapping, 

NF-B was determined to be the transcription factor 

most associated with aging [3]. Furthermore, biologic 

pathways implicated in aging, including immune 

responses, cell senescence, apoptosis and metabolism are 

all regulated at least in part by NF-B. Additionally, 

other cellular processes implicated in regulating lifespan, 

including insulin/IGF-1 and growth hormone pathways, 

SIRT, FoxO and mTOR, are all interconnected with NF-

B signaling.  Finally, the role of aberrant NF-B 

signaling is well documented in numerous age-

associated diseases including neurodegeneration, 

osteoporosis, diabetes, sarcopenia and atherosclerosis.  
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Figure 1.  Schematic Diagram of the NF-κB family members. The NF-κB family members are defined by the n-

terminal, Rel Homology Domain (RHD) responsible for DNA binding and dimerization.  The p65, c-rel, and RelB family 

members contain a Transactivation Domain (TAD) which confers positive regulation of gene expression.  The 

transcriptional suppressor family members p52 and p50 contain glycine rich regions (GRR) which are necessary for their 

proteolytic cleavage and ankyrin repeats similar to those found with IκB proteins, thus acting as cytoplasmic inhibitors of 

NF-κB.  Additionally RelB contains a leucine zipper motif (LZ). 

 

Here we will review NF-B signaling and the evidence 

that it is linked to aging. 

 

The NF-κB transcription factor 
 

NF-κB refers to the Rel family of transcription factors 

consisting of five family members: p65/relA, relB, c-rel, 

p50, and p52 (Figure 1).  NF-κB was discovered in 1980 

as the pro-inflammatory factor that confers LPS 

signaling [4, 5].  Thus, NF-κB traditionally has been 

considered as an immunologic transcription factor, 

involved in the activation of inflammatory cells and gene 

expression regulation of numerous cytokines and 

chemokines.  However, more recently, NF-κB activity 

has been implicated in diverse disease pathologies and 

biologic processes [6, 7].   

NF-κB family members are defined by a short rel-

homology domain (RHD), which is responsible for 

dimerization as well as DNA binding to the NF-κB 

consensus sequence (GGGRNNYYCC).  Additionally 

there are two subgroups within the NF-κB family, three 

of the subunits, p65, relB, and c-rel, contain transcription 

activation domains (TAD) at the c-terminus.  The p50 

and p52 family members are proteolytically cleaved 

from larger proteins p105 and p100, respectively, and do 

not contain TADs, acting instead as transcriptional 

suppressors (Figure 1) [8].  These two different roles are 

exemplified by p65/p50 heterodimer, the prototypical 

NF-κB dimer, which is known to lead to the transcription 

of a variety of genes, and the p50/p50 homodimer, which 

also binds to the NF-κB consensus sequence with a 

higher affinity than p65/p50 [9], that inhibits 

transcription.   

 

Activation of NF-κB  

 

There are a large number of activators of NF-κB.  The 

toll like receptor (TLR) ligands, a subgroup of pattern 

recognition receptors (PRR) that recognize conserved 

attributes found in bacterial, viral and parasitic 

pathogens, are potent NF-κB activators. TLR ligands 

signal through several PRR, for example, 

lipopolysaccaride (LPS) via TLR4 [10], CPG via TLR9 

[11], Flagellin via TLR2 [12] and muramyl dipeptides 

(MDP) via NOD2 [13].  Additionally, tumor necrosis 

factors (TNF) and interleukin-1 (IL-1), two major 

proinflammatory cytokines, are both activators as well as 

transcriptional targets of NF-κB.  Other NF-κB 

activators include the antigen receptors found on the 

adaptive immune cells, specifically the T-cell receptor 

and B-cell receptor (TCR and BCR) and receptors found 

on antigen presenting cells TLRs and CD40R.  

Additionally, growth factors such as hepatocyte growth 

factor (HGF), follicle stimulating hormone (FSH), 

granulocyte macrophage-colony stimulating factor (GM-

CSF), and nerve growth factor (NGF) activate NF-κB 

[7]. 
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Figure 2.  Signaling via the IKK/NF-κB Classical Pathway. The IKK complex (NEMO, IKK1 (IKKα), and 

IKK2 (IKKβ)) can be activated by numerous stimuli and via shared signaling components. Extracellular receptors 

bind to their ligands and signal via TRAF/RIP/NIK molecules leading to phosphorylation of IKK subunits, which 

subsequently phosphorylate IκBα and lead to its ubiquitination and proteosomal degredation.  This then releases 

NF-κB into the nucleus where it acts as a transcription factor.  In addition, ATM responds to DNA damage and can 

also activate the IKK complex.  (Figure adapted from [8, 146, 147]) 

 

 

 

Of specific relevance to the stochastic model of 

aging, NF-κB can be activated secondary to DNA 

damage via the DNA response protein ataxia 

telangiectasia mutated (ATM) [14, 15].  The regulation 

of NF-κB by ATM is mediated by a pathway involving 

NEMO (see below), PARP-1 and PIASy that activates 

cytoplasmic IKK.  Additionally, numerous studies 

suggest that ROS can activate and/or suppress NF-κB 

[16], depending upon the cell type and conditions 

evaluated.  

 

Activation of NF-κB through the IKK complex 

 

NF-κB is activated through two different routes: the 

canonical/activated and non-canonical pathways.  

However, damage/stress-mediated stimulation of NF-κB, 

as described above, likely contributes to aging via the 

canonical pathway.  The IKK complex lies at the 

confluence of the different NF-κB signaling cascades: 

TLRs, TCR or ATM.  It is composed of two catalytic 

subunits, IKKα and IKKβ, as well as a regulatory 

subunit IKKγ also known as the NF-κB essential 

modulator (NEMO) [17].  Many of the signaling 

cascades, which activate NF-κB share signaling 

molecules upstream of the IKK complex. In particular, 

LPS activated TLR4 binds MyD88 and IRAK, which 

then signal through TRAF6, leading to activation of the 

IKK complex.  Other common signaling proteins 

involved in TLR, IL-1, TNF, and TCR signaling 
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pathways include MyD88, RIP, NIK and TRAF [8] 

(Figure 2).  

IKKγ interacts with the upstream RIP, NIK or TRAF 

proteins, which results in the oligomerization of IKKγ.  

IKKγ then induces phosphorylation or possible auto-

phosphorylation of the IKKα and β subunits.  The 

catalytic subunits are then released from IKKγ and act to 

phosphorylate IκB at Ser32 and Ser36.  After 

phosphorylation, IκBα is poly-ubiquitinated at Lys22 

and degraded by the 26S proteosome.  This degradation 

leads to the loss of the nuclear export signal provided by 

IκB and reveals the nuclear localization signals on the 

NF-κB subunits. NF-κB can then migrate to the nucleus 

[18] where it functions to promote gene expression of 

various pro-inflammatory, cell growth and other 

regulated genes (Figure 2/3). 

 

Non-canonical NF-κB signaling 

 

The non-canonical NF-κB signaling pathway is largely 

involved in lymphoid organ development, which is 

required for B and T-cell development via activation of 

the p52/RelB heterodimer.  This signaling pathway is 

activated by a limited number of receptors (Lymphotoxin 

B, B-cell activating factor, and CD40), which 

subsequently stimulate an IKKα homodimer.  This 

complex then phosphorylates p100, leading to its 

subsequent processing to p52, and translocation of the 

p52/RelB complex to the nucleus [19].  In addition to 

lymphoid organ development, studies evaluating IKKα
-/-

 

mice suggest a role of the non-canonical pathway in 

epidermal and skeletal development [20].  Whereas the 

role of the non-canonical pathway appears to be 

important during development, it is the canonical 

pathway that appears to be the most relevant in the 

pathogenesis of mammalian disease and aging. 

 

IKK and IκB signaling components 
 

The IκB and IKK proteins are the central regulators of 

activated NF-κB signaling. The IKK complex is 

comprised of a trimer of IKKα/β/γ, but may be found as 

a higher order complex with numerous IKK trimers.  The 

IKK kinases α and β share a 52% sequence homology 

[21] with even greater homology in their catalytic and 

kinase domains.  However, genetic knockout studies 

suggest differential and non-redundant roles for these 

two proteins [22, 23]. For example, IKKα has been 

implicated in both canonical and non-canonical 

signaling.  

The major targets of the IKK proteins are the IκB 

cytoplasmic inhibitors.  The common component of the 

IκB proteins is the ankyrin repeats, which are found on 

IκBα, β, γ, δ, ε, bcl-3 and the uncleaved p50 and p52 

subunits p100 and p105 proteins.  These ankyrin repeats 

act to bind to the Rel portion of NF-κB to block their 

nuclear localization signal (NLS). IκBα is the best 

characterized of the typical IκBs proteins, α, β and ε, and 

is the predominant inhibitor of the canonically activated 

p65/p50 NF-κB heterodimer.  In contrast, the non-typical 

IκBs, bcl-3 and IκBδ are thought to inhibit NF-κB 

transcription by binding to NF-κB in the nucleus.  For 

instance, Bcl-3 stabilizes p50 homodimers on DNA, 

blocking the NF-κB promoter regions from other NF-κB 

subunits and preventing TAD positive NF-κB subunits 

from binding the consensus sequence [24].  

 

Genes under NF-κB transcriptional control 

 

Hundreds of genes have been shown to be 

transcriptionally regulated by NF-κB [7].  These include 

genes encoding cytokines, chemokines, and 

immunoreceptors, as well as proteins involved in antigen 

presentation, cell adhesion, the acute phase and stress 

responses, growth factors and their receptors, early 

response genes, and other transcription factors (www.nf-

kb.org) [7] (Figure 3).   

The majority of the genes under NF-κB 

transcriptional control are involved in immune signaling 

and inflammatory responses. Indeed, transcriptional 

control of cytokine expression by NF-κB is likely one of 

the most important factors when evaluating the role of 

NF-κB in pathologic states.  Some of these cytokines 

include TNFα, IL-1α/β, IL-2, 3, 6, 12, GM-CSF, M-CSF, 

and G-CSF.  NF-κB also regulates expression of 

chemokines (MCP-1, KC, MIP-1 and several CCLs) and 

adhesion molecules (ICAM-1, E-selectin, and VCAM-

1), which allow for the recruitment and attachment of 

immune cells to sites of inflammation. Furthermore, NF-

κB upregulates the expression of receptors (CD80/81, 

IL-2Rα chain, TLR-2) and proteins involved in antigen 

presentation (MHC class I and β2 microglobulin) on 

immune cells, allowing for proper innate and adaptive 

immune responses.  

In addition to regulating immune response genes, NF-

B regulates several additional biologic processes.  

Interestingly, NF-κB transcriptionally regulates both pro-

apoptotic (Bim, Bax, Fas and Fas-ligand, and caspase 

11) and anti-apoptotic (XIAP, bcl-2, A1/bfl-1, and c-

Flip) genes.  NF-κB blocks apoptosis in a number of 

inflammatory cells including macrophages, DC, T-cells, 

B-cells, and neutrophils and is a pro-survival factor in 

several types of malignancies especially lymphomas.  In 

contrast, the inflammatory response can induce apoptotic 

cell death.  This inflammatory cell death response is 

initiated by the production of cell death receptors (Fas 

and FasL) and intracellular apoptosis inducing proteins.  

This apoptotic death is further assisted by activated  

http://www.nf-kb.org/
http://www.nf-kb.org/
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Figure 3.  NF-κB is a central regulator in stress response.  The NF-κB signaling pathway can be activated by 

numerous stimuli as listed in the blue boxes (summarized in Subsection entitled: Activation of NF-κB).  In 

response to these different stimuli NF-κB transcriptionally regulates hundreds of genes, the generalized 

categories of which are listed in the red circles (summarized in subsection entitled: Genes under NF-κB 

transcriptional control).  A compilation of citations with regards to NF-B activators and transcriptionally 

regulated genes can be found at (www.nf-kb.org) [7]. 

 

 

immune cells, which secrete granzyme, perforin and 

nitric oxide, all apoptosis inducing factors, which are 

regulated by NF-κB.   

Another category of NF-κB transcriptionally 

regulated genes includes growth factors such as nerve 

growth factor (NGF), vascular endothelial growth factor 

(VEGF), insulin-like growth factor binding protein 

(IGFBP), bone morphogenic protein (BMP), and 

fibroblast growth factor (FGF).  Many of the receptors 

for these growth factors are involved in the expansion 

and maturation of varying cell types.  Of note, many 

other pathways associated with aging phenotypes are 

also cellular growth and expansion mediators including 

insulin/IGF-1, mTOR, and SIRT and will be discussed in 

more detail below.  Thus, the majority NF-κB controlled 

genes are considered cell stress responders and lead to 

inflammation, apoptosis, and cellular growth/expansion. 

 

Additional IKK substrates  

 

While it is likely that the actions attributed to IKK exert 

the majority of their effects due to suppression of the 

NF-κB canonical signaling pathway, there are number of 

other IKK substrates including Bcl-10, β-catenin, 

cyclinD1, FOXO3a, p53, and ERα.  These proteins are 

known to affect cell growth and proliferation [25-27].  

NEMO also promotes transcriptional activity of HIF1α 

and HIF2α, two anti-oxidant proteins [25, 28].  Thus, 

while the majority of the effects observed after IKK 

inhibition are likely mediated by NF-κB suppression, it 

is important to note that other pathways also are affected 

http://www.nf-kb.org/
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by IKK suppression, specifically those regarding cell 

growth and proliferation. 

 

NF-κB and Aging 
 

The NF-κB signaling pathway is one of several signaling 

response pathways implicated in aging, which include 

IGF-1, mTOR, SIRT1 and p53 [29].  A cross species 

study, using motif mapping in promoters of genes 

upregulated with aging, suggested that NF-κB is the 

transcription factor most associated with aging [30].  In 

addition, overexpression of either of two NF-κB 

subunits, c-rel and RelA/p65, induced a senescent 

phenotype in cultured cells [31-33]. Furthermore, loss of 

p65, but not p50, gives mouse embryonic fibroblasts the 

ability to escape senescence, in part due to its role in 

DNA repair [34].  Consistent with these findings, 

evaluation of skin-derived human fibroblasts from aged 

individuals (aged 72-93), and HGPS progeria patients (8-

14) showed increased levels of NF-κB activation and 

increased inflammatory gene expression when compared 

with cells derived from young individuals (aged 22-33 

and 8-14 respectively) [3, 35].  In addition, NF-κB/p65 

DNA binding increases with chronologic age in several 

tissues including skin, liver, kidney, cerebellum, cardiac 

muscle, and gastric mucosa [36-41].  Genetic reduction 

of NF-κB in aged mouse skin reversed age-related 

pathology and gene expression changes, suggesting a 

beneficial role for NF-κB inhibition in reversing age-

related degeneration [30]. In sirt6
-/-

 mice, which exhibit 

degenerative changes and an accelerated aging 

phenotype, haploinsufficiency of p65/relA resulted in 

40% of the sirt6
-/-

p65
+/-

 mice exhibiting improved 

growth and longer lifespan than their sirt6
-/-

 littermates 

[42].  However, it is important to note that the sirt6
-/-

 

mouse model exhibits a severe colitis phenotype, 

suggesting that these mice may have chronic colonic 

infection leading to NF-κB activation and a degenerative 

rather than aging phenotype [43]. 

Recently, we have demonstrated that NF-κB 

transcriptional activity is up-regulated in an increased 

percentage of cells within a variety of tissues with both 

natural aging, and in a progeroid mouse model of a 

human progeroid syndrome caused by defective repair of 

DNA damage (ERCC1-deficient mice).  Genetic 

reduction in the level of the NF-κB subunit p65(RelA) in 

Ercc1
-/-

 and Ercc1
-/∆

 mice, with lifespans of 1 and 7 

months respectively, delayed the onset of age-related 

pathology including muscle wasting, osteoporosis, and 

intervertebral disc degeneration.  These results directly 

demonstrate that NF-B is upregulated in response to 

accumulated DNA damage which drives tissue 

degeneration.   Further, we have elucidated a role of NF-

B in stem cells and aging where stem cells 

haploinsuffient for p65 have improved self renewal as 

well as differentiation proficiency.  These results suggest 

multiple mechanisms through which NF-B could 

regulate the aging process. 

Another component contributing to increased NF-κB 

activity associated with aging is the altered 

transcriptional phenotype, which occurs in senescent 

cells. A specific Senescence-associated secretory 

phenotype (SASP) has been defined in senescent cells, 

consisting of increased expression of IL-6, IL-8, IL-7, 

MCP-2, MIP-3, ICAM, Il-1α, and Il-β [44].  While 

senescence is initially a tumor-suppressive mechanism 

[45], there likely are  numerous deleterious side effects 

of this anti-growth, pro-inflammatory senescent 

phenotype.  It is important to note that the vast majority 

of these SASP profile cytokines and chemokines are 

transcriptionally regulated by NF-κB [46], again 

implicating this signaling pathway in aging on a cellular 

level. Our recent results also suggest that NF-κB drives 

senescence as well as SASP.  

 

Caloric restriction and NF-κB  
 

Caloric restriction (CR) is the most widely recognized 

and first reproducible mechanism by which life 

extension was mediated [47, 48].  CR not only extends 

longevity, but also ameliorates age-associated pathology 

including diabetes, cardiovascular disease, sarcopenia as 

well as autoimmune diseases [48].  While CR is 

efficacious in numerous mouse models and more 

recently in primates [49], the beneficial effects have been 

attributed to numerous mechanisms, including 

suppression of NF-κB and immune response [50].  CR 

inhibits NF-κB signaling at the level of the IKK 

complex, possibly through a ROS dependent mechanism 

[50].  Additionally, CR downregulates expression of 56 

inflammatory genes, many of which are transcriptionally 

regulated by NF-κB [51]. Even short term CR (10 days) 

resulted in decreased NF-κB activity in kidneys of aged 

mice [52]. Therefore, CR, a known mediator of 

improved life and healthspan, functions, at least in part, 

via NF-κB and inflammatory suppression.  In addition to 

the direct implication of NF-κB as a mediator of caloric 

restriction, several other pathways integral to the aging 

process, including SIRT, IGF-1, DNA damage, and 

mTOR, all interact with NF-κB to a significant degree 

(Figure 4), and will be discussed individually below. 

 

Insulin/IGF-1 signaling and NF-κB 

 

The insulin/IGF-1 signaling pathway was the first 

cellular signaling mechanism clearly shown to influence 

aging [53].  IGF-1 is a mitogenic peptide produced in 

response to growth hormone, which binds to its receptor  
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Figure 4. Schematic illustration depicting NF-κB as a central factor in pro-aging and longevity pathways.  
Pro-growth survival pathways known to promote aging phenotypes, specifically Insulin/IGF-1 and mTOR are 

known to stimulate NF-κB as described.  Insulin/IGF-1 acts via two mechanisms, AKT and mTOR signaling, to 

activate NF-κB.  However, through AKT, Insulin/IGF-1 signaling also interacts with known longevity processes by 

inhibiting FOXO.  As with the other known longevity factors and signaling components, SIRT and CR, FOXO 

inhibits NF-κB signaling as described.  Additionally stress/damage pathways known promote age-associated 

changes including genotoxic stress, ROS, and inflammation also activate NF-κB.  Secondary to activation of NF-

κB by pro-aging pathways, NF-κB then acts to promote aging related changes by contributing to cellular 

senescence, SASP, apoptotoic signals and inflammatory responses. 

 

 

(IGF-1R) to activate pro-survival, proliferation and 

differentiation signaling cascades. The role of 

insulin/IGF-1 in aging was initially documented via the 

analogous Daf2 signaling pathway in C. elegans [54].  

Subsequently, the growth hormone (GH) pathway, which 

signals via IGF1/insulin, has been implicated in 

mammalian aging.  The Ames, Snell, and GHRKO mice 

all exhibit low levels of IGF-1 and dwarfed growth, but 

show lifespan extension of 20-70% [55].  Additionally, 

lifespan extension achieved via CR is associated with 

reduced levels of IGF-1 and insulin in serum [56].  

Given the roles of NF-κB in the stress response and cell 

survival and proliferation, it is not surprising that the 

insulin/IGF-1 and NF-κB signaling pathways are linked. 

The insulin/IGF-1 activates PI-3K/AKT, which in turn 

stimulates NF-κB signaling via the IKK complex [57, 

58].  This upregulation of NF-κB signaling occurs 

through several mechanisms including stimulating p65 

transactivation, as well as phosphorylation and activation 

of IKKβ.  Further studies show that GH, IGF-1 and 

insulin activate anti-apoptotic responses through NF-κB 

[59, 60], and that IGF-1R can activate immune responses 

via NF-κB [61, 62].  These interactions are seen in 

addition to the interaction between FOXO, a downstream 

mediator of the IGF-1/insulin pathway, and NF-κB (see 

below).   

 

SIRT signaling and NF-κB 

 

SIRT1 is a class III histone deacetylase and a member of 

the sirtuin family, shown in several studies to regulate 

lifespan. SIRT1 acts, in part, via deacetylation of FOXO,  
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Table 1.  Summary of studies conducted with primary cells or cell lines 

 

 

Disease 

 

 

Studies in primary cells 

 

 

Studies with cell lines 

 

Alzheimer’s Disease Primary rat neurons [97] 

Primary rat cerebral granule cells [98] 

 

C6 rat glioma cells [95] 

THP-1 cells [96] 

Microglial BV2 cells [97] 

SH-SY5Y cells [98] 

 

Parkinsons’s 

Disease 

Primary ventral mesencephalic neuron-glia cultures 

(mouse and rat) [105, 108, 110, 114, 116]  

Primary ventral mesencephalic neuron-enriched cultures 

(mouse and rat) [110, 114, 116] 

Microglia-enriched cultures (mouse and rat) [110, 114] 

Primary mouse neuron-astroglia cocultures [110] 

Primary parkin
-/-

 neuronal-enriched mesencephalic 

primary cultures [115] 

Primary gp91phox
–/–

 mouse mesencephalic neuron-glia 

cultures [116] 

 

Microglial BV2 cells [113] 

U937 cells [114] 

PC-12 cells [119] 

 

Type II Diabetes  3T3-L1 adipocytes [123] 

Fao hepatoma cells [123] 

 

Atherosclerosis Monocyte-derived human macrophages [87] 

Mouse peripheral blood mononuclear cells [87] 

Mouse peritoneal macrophages [87] 

Human atherosclerotic plaque cells [130] 

Rat artery organoid culture [132] 

Primary rat coronary arterial endothelial cells [132] 

Primary rat aortic smooth muscle cells [132] 

 

 

Sarcopenia  C2C12 cells [136] 

 

Osteoporosis  C2C12 cells [136] 
 

 

 

another known longevity factor [55].  Lifespan extension 

has been achieved through overexpression of SIRT1 in 

worms and flies [63]. Additionally sirt6
-/-

mice have an 

accelerated-aging phenotype, but with the caveats of this 

finding discussed above.  SIRT1 activators, such as 

resveratrol, are considered cutting edge therapies for 

treating age-associated diseases.  Resveratrol increases 

healthspan [64], protects against neurodegeneration in 

models of Alzheimer’s Disease and amyotrophic lateral 

sclerosis [65], improves osteoporotic changes [66] and 

reduces health defects occurring secondary to high fat 

diets [67].   SIRT1 likely acts via numerous mechanisms 

to alter age-associated changes including: increased 

mitocondriogenesis through PGC1α deacetylation, 

improved oxidative stress survival response via 

FOXO1/4, altered apoptosis and proliferation mediated 

by p53 deacetylation, and decreased inflammatory 

response via NF-κB suppression [68].  The specific 

impact of these varying mechanisms by which SIRT 

promotes its anti-aging effects is unknown; however, its 

interaction with the NF-κB signaling pathway has been 

well documented.  SIRT1 interacts directly with p65, 

leading to deacetylation at lysine 310, culminating in 

decreased NF-κB associated transcription [69].  SIRT1 

further inhibits NF-κB by interacting with TLE1, a 

transcriptional co-repressor of NF-κB [70].  SIRT6 and 

p65/RelA interact at the site of the NF-κB promoter 

region and led to repressed transcriptional activity.  

While it is difficult to distinguish which beneficial 

effects of SIRT1 therapy are due to what specific 

mechanism of action, it is interesting to note the SIRT1 

activators and NF-κB inhibitory therapies have been 

efficacious in the same disease pathologies including 

diabetes, osteoporosis, neurodegeneration, and 

inflammatory diseases. 
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Table 2.  Summary of studies conduected with model animal systems or human patients 

 

Disease Animal models used Human patients studied 

 

Alzheimer’s Disease apoE
-/-

 mice [94] 

Sprague-Dawley rat [95] 

APOE-TR mice [99] 

 

[93, 101] 

Parkinsons’s 

Disease 

SIV-infected rhesus monkey [107] 

MPTP treatment in mice [105, 118] 

MPTP treatment in cynomolgus monkey [111] 

Paraquat treatment in mice [112] 

 

[103, 104, 106, 109, 117, 118] 

Type II Diabetes Zucker fa/fa rats [123] 

ob/ob mice [123, 125, 126, 128] 

Ikkβ
+/-

 ob/ob mice [123] 

Hepatocyte-specific constitutive IKKβ mice [124] 

db/db; agouti; tubby  mice [125] 

CXCL
-/-

; KKA
y 

mice [126] 

TNFα
-/-

; ob/ob p55
-/-

 p75
-/-

 mice [128] 

 

[122, 127] 

Atherosclerosis apoE
-/-

; IL-1Ra
-/-

; IL-1α
-/-

; IL-1β
-/-

; IL-4
-/-

; IL-6
-/-

; IL-10
-/-

; IL-12
-/-

; IL-18
-/-

; TNFα
-/-

; IFNγ
-/-

; Mif
-/-

; GM-CSF
-/-

 

mice  reviewed in [131] 

Fisher 344 rats [132] 

 

[130] 

Sarcopenia MIKK, MISR mice [136] 

Wistar rats [137] 

nfkb1
-/-

; bcl3
-/-

 mice [139] 

mdx, mdx p65
+/-

, mdx p50
+/-

 mdx IKKβ
F/F

 mice [140] 

 

[134, 135] 

Osteoporosis IKKβ 
Δ
; IKKα

-/-
; NIK

-/-
; p50

-/-
 p52

-/-
; p65

-/-
 TNFR-1

-/-
; 

RelB
-/-

; cRel
-/-

 mice reviewed in: [142] 

IKKγ dominant-negative mice [145] 

[143, 144] 

 

 

 

FoxO/Daf16 and NF-κB 

 

FOXO/Daf16 lies downstream of both the Insulin/IGF1 

signaling pathway and SIRT signaling [54, 55].  Daf16 

and its mammalian homologue FOXO are well 

documented transcription factors regulating lifespan.  

Daf-16 has been observed to regulate lifespan extension 

in C. elegans [71, 72].  In C. elegans, daf16 (-) and daf2 
(-) are short lived, however, expression of DAF16 in 

other tissues can lead to the rescue of this phenotype.  

Genetic studies show that FOXO3A and certain FOXO1 

variants are associated with longevity.  The FOXO3A 

variant associated with longevity in humans was found 

to inhibit NF-κB activation [73, 74] and FOXO3A 

deficient mice have overactive NF-κB activation 

particularly in T-cell populations [74].  In addition, 

FOXO transciptionally regulates the IκB cytoplasmic 

inhibitors of NF-κB, thus leading to further suppression 

of NF-κB. 

 

 

 

TOR signaling and NF-κB 

 

The mammalian target of rapamcin (mTOR) kinase, like 

IGF-1/insulin, is a mediator of stress response.  The TOR 

pathway is responsible for stimulating growth and 

inhibiting salvage pathways during periods of plentiful 

food production.  mTOR is a PI3-K related kinase which 

phosphorylates Ser-Thr residues and signals via Raptor, 

and relies on transcriptional changes as well as 

translational changes mediated by S6K1 inhibition of 

4EBP1 [53].  There is evidence that mTOR is activated 

via the IGF-1/insulin pathway [75], but acts 

independently of FOXO/Daf16 [76, 77].  TOR signaling 

suppression confers lifespan extension in many species.  

For example, dominant negative forms of TOR and 

S6K1 lead to lifespan extension in drosophila [78] and 

deletion of e1F4e which is regulated by TOR/4EBP 

increases lifespan in C. elegans [79].  Rapamycin, a 
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well-known mTOR inhibitor, conferred increased 

longevity in mice, thus further supporting the role of 

mTOR in aging [77].  As with the other aging related 

pathways discussed, mTOR and NF-κB signaling are 

associated.  IKKα and IKKγ are known to interact 

directly with mTOR, and additionally, suppression of 

mTOR and Raptor by siRNA decreased NF-κB binding 

activity [80].  This mTOR/NF-κB signaling occurs 

downstream of Akt [80].  In addition to the regulation of 

NF-κB by mTOR, IKKα/β acts via two mechanisms to 

regulate mTOR.  IKKα/β directly activates mTOR while 

suppressing TSC1, an mTOR inhibitor [81-83].  These 

findings suggest that there is an amount of co-regulation 

between mTOR and NF-κB.  

 

DNA damage, ATM and NF-κB 

 

Transcriptional studies evaluating the aging process 

show that mice exposed to chronic genotoxic stress, 

either due to genetic mutation or gamma irradiation, 

have changes that mimic those observed in natural aging 

[84].  Similar to naturally aged mammals, DNA repair 

deficient mice with a progeroid-like syndrome have a 

suppressed IGF-1/insulin pathway.  Although the 

suppression of insulin/IGF-1 signaling in the progeria 

mice with accelerated aging appears counterintuitive, it 

is likely the organism’s response to frailty and an attempt 

to extend lifespan [85].  Thus factors other than 

insulin/IGF-1 may play a role in accelerated aging seen 

in these progeria mice.  It was speculated that ATM, a 

P1-3K kinase, activated in response to stress is a 

contributing factor to this aging phenotype secondary to 

DNA damage.  ATM is activated by double strand 

breaks and γ-irradiation and subsequently phosphorylates 

several proteins including p53 and IKKγ.  ATM activates 

NF-κB via phosphorylation of the ser-85 of IKKγ, and 

there exists a linked cytoplasmic shuttling of the 

ATM/IKKγ after genotoxic stress [15].  Additional 

studies have shown that inducers of replicative stress, 

hydroxyurea and aphidicolin, also activate ATM/NF-κB 

signaling. NF-κB signaling after gamma irradiation also 

can be inhibited completely using the ATM specific 

inhibitor KU55933 [86] 

 

NF-κB in Age-Associated Disease 

 

Aging is widely considered a physiologic condition; 

however the majority of aging research focuses on age-

associated diseases, which are treated as pathologic 

conditions.  These age-associated diseases include 

Alzheimer’s, Parkinson’s, type II diabetes, 

atherosclerosis, sarcopenia, and osteoporosis.  One 

feature that these diseases share is increased 

inflammation.   For example, NF-κB signaling and 

cytokine secretion are upregulated in atherosclerosis 

[87], osteoarthritis [88], neurodegeneration (Alzheimer’s 

and Parkinson’s) [89], osteoporosis [90], and 

cardiovascular disease [91] as discussed below. The 

studies conducted using primary cells or cell lines and 

results from animal model systems or from human 

patient samples are summarized in Tables 1 and 2.   

 

Alzheimer’s disease 

 

Alzheimer’s disease (AD) is the most common cause of 

age-associated dementia, characterized by fibrillary 

tangles and β-amyloid plaques [92]. AD affects only 

0.6% of patients 65-69 years of age, but increases with 

age to 8.4% of 85+ aged patients.  While the causes of 

AD remain poorly defined, one common characteristic is 

the increased inflammatory state observed in patients.  

While an overt inflammatory infiltration is not evident in 

AD, the NF-κB  regulated cytokines IL-1β and TNFα are 

present at increased levels in the brains of AD patients 

[92, 93].  Murine studies have confirmed the role of 

cytokines such as IL-6 and IL-1β in AD [94] and mice 

that received brain injections of IL-1α or β exhibited 

increased AD associated plaque formation [95].   

A possible mechanism for this increase in cytokines 

seen in AD is via Aβ stimulation of NF-κB activity in 

microglia [96].  Suppression of NF-κB in microglia 

results in decreased neurotoxicity [97] and NF-κB 

regulatory elements lie upstream of the APP protein, 

which is necessary for plaque formation [98].  The 

hypothesis that inflammation and NF-κB activation is 

the underlying cause of AD is further supported by 

observations that chronic LPS injections accelerate AD 

progression [99, 100] and patients with systemic 

infection exhibit increased rates of cognitive decline 

[101]. Taken together, the evidence suggests NF-κB 

plays a role in plaque formation and even a more 

important role in inflammation and cytokine signaling in 

AD progression.   

 

Parkinson’s Disease 
 

Parkinson’s disease (PD) is a neurodegenerative disease 

that results in a movement disorder that is observed in 

patients over the age of 55 years [102].  Similar to the 

neurodegeneration in AD patients, there is an increase in 

inflammatory and cytokine signaling in Parkinson’s 

patients.  TNFα levels are increased in both brain tissue 

and CSF [103] and IL-1β, IL-2, IL-6 and other cytokines 

are increased in the CSF of Parkinson’s patients [104].  

Furthermore, microglia, the innate immune cells of the 

brain, are highly active in vitro, in animal models of PD 

and in PD patients and their suppression in mouse 

models of PD results in reduced disease [105-116]. 
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There is a 70 fold increase in p65/RelA activation in 

dopaminergic neurons, the neurons which are central to 

disease pathology, from PD patients compared with age-

matched controls [117].  Further, treatment with a 

peptide inhibitor of IKK/NF-B improved motor 

function and pathologic changes in a murine model of 

PD [118].  MPP, a chemical compound known to induce 

a Parkinson-like disease, activated NF-κB signaling in 

neurons [119].  Also, chronic NF-κB activation 

contributes either directly or indirectly to neuronal cell 

death in both PD and AD [120, 121]. 

 

Type II Diabetes  

 

Type II Diabetes (T2D) or non insulin-dependent 

diabetes, is defined by insulin resistance, and is often 

accompanied by numerous sequela or co-morbidities 

including dyslipidemia, hypertension, atherosclerosis, 

central obesity, blindness, end-stage renal disease and 

non-traumatic loss of limb [122].  NF-κB has been 

implicated in obesity-induced insulin resistance and 

glucose metabolism by both pharmacologic and genetic 

suppression approaches [123].  Upregulation of NF-κB 

signaling in hepatocytes results in a type II diabetes 

phenotype[124].  It is further hypothesized that innate 

immune activation and inflammatory response underlie 

T2D and its associated features [122].  Macrophages or 

dendritic cells that reside in adipose tissue and secrete 

cytokines can contribute to insulin resistance and 

mediate disease progression [125].  Recent data suggests 

that mice deficient in DC/macrophage chemoattractant 

CXCL14 have reduced body mass and are not 

susceptible to Type II diabetes [126]. As with AD, 

systemic inflammation and cytokine secretion likely play 

a significant role in the onset and progression of T2D.  

IL-1β can induce β-cell cytotoxicity and inhibit β-cell 

function [127].  Mice deficient in TNFα signaling are 

resistant to obesity induced insulin resistance [128].  

Additionally, IL-6 as well as MCP-1, IL-1β and TNFα 

levels are found to be increased in T2D patients [129]. 

Thus aberrant NF-κB activation in numerous tissues 

including adipose, pancreas, and liver contribute to 

disease pathology observed in patients with T2D. 

 

Atherosclerosis 
 

Atherosclerosis is a disease of arterial wall thickening 

and plaque formation associated with increased age and 

is the leading cause of coronary artery disease.  

Atherosclerosis results from a combination of 

endothelial, hematopoietic, T-cell and macrophage 

dysfunction. Of note, atherosclerotic lesions, specifically 

unstable coronary plaques have increased levels of NF-

κB activity and increased release of cytokines [130].  In 

an LPS induced model of atherosclerosis, using apoE
-/-

 

mice, genetic suppression of NF-κB signaling led to a 

reduction in the size of atherosclerotic lesions [87].  As 

with other diseases associated with aging, NF-κB 

upregulation was accompanied by an increase in 

cytokine release and inflammatory signaling [131].  

TNFα, both an inducer and target of NF-κB, increased 

ROS formation, apoptosis and endothelial dysfunction in 

rat carotid arteries, mimicking changes seen in aging 

arteries [132].  Inhibition of TNFα also has 

vasculoprotective effects [132], providing additional 

support for the role of NF-κB activation as a negative 

regulator of aging associated atherosclerosis.   

 

Sarcopenia 
 

Sarcopenia, defined as the loss of skeletal muscle mass 

and strength, is highly correlated with advancing age 

[133].  In hospitalized geriatric patients with increased 

inflammation, indicated by elevated CRP and IL-6, there 

was a correlative decrease in grip strength, shoulder 

extension strength, and an exhibited increase in muscle 

fatigue [134].  TNFα and IL-6 are inversely related to 

muscle mass and strength in elderly patients [135].  

While there is little research evaluating NF-κB activation 

in sarcopenia, numerous studies show a significant 

causal role for NF-κB activation in muscle atrophy.  

Mice transgenic for an active form of IKKβ exhibit a 

muscle wasting phenotype [136].  Muscle unloading or 

loss of muscle innervation led to an 8-fold increase in 

NF-κB signaling [137-139].  Additionally NF-κB is 

implicated in the pathology associated with murine 

muscular dystrophy (mdx mice), a disease of muscle 

degeneration. Specific suppression of NF-κB activity in 

macrophages reduced muscle degeneration and systemic 

treatment with an IKK inhibitor reduced pathologies 

associated with muscular dystrophy [140].  

 

Osteoporosis 

 

Osteoporosis, another age-associated pathology, is 

defined by decreased bone density and increased fragility 

leading to bone breaks [141].  It is known that 

inflammatory cytokines IL-6, TNFα, and IL-1 [141] 

signaling via NF-κB are mediators of osteoclastogenesis 

and osteoclast function [142].  Mice transgenic for a 

dominant negative IKK expressed in osteoblasts had 

reduced bone loss after ovariectomy (12%) compared 

with wild-type mice, which exhibited 40% bone loss.  

Additionally, the fact that IL-6 and TNFα levels are 

markers of osteoporotic changes further implicate NF-κB 

and inflammation in this disease process [143].  

Interestingly, patients with overactive inflammatory and 

NF-κB signaling exhibit increased risk of developing 
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osteoporosis when suffering from diseases, including 

HIV infection, hyper-IgE syndrome, rheumatoid 

arthritis, myeloma, and inflammatory bowel disease 

[144]. Thus it is likely that, as with many age-associated 

disease, NF-κB acts through numerous mechanisms to 

promote osteoporotic degeneration [145].  Recent data 

by our group further supports the notion that NF-B is 

directly implicated in osteoporosis, having observed that 

suppression of NF-B improves bone density in 

accelerated aging mice as well as improves the integrity 

of intervertebral discs. 

 

Concluding Remarks 
 

It appears as if aging is driven, at least in part, by 

stochastic damage to cells that activates signaling 

pathways that contribute to age-associated degenerative 

changes.  The NF-κB pathway is well positioned to play 

a key role in aging as it is activated by genotoxic, 

oxidative, and inflammatory stresses. The NF-κB 

pathway is not only activated during aging, but 

contributes directly to age-related pathologies.  This 

holds true at the cellular level with cells overexpressing 

NF-κB subunits and also in mouse models where 

inhibition of NF-κB leads to reversal of skin aging and 

onset of age-associated pathologies. In addition to the 

direct evidence for a role of NF-κB in aging, the 

transcription factor has been linked with many of the 

pathways linked to lifespan and healthspan 

determination, including insulin/IGF-1, FOXO, SIRT, 

mTOR, and DNA repair.  Finally there is convincing 

evidence that aberrant NF-κB is a central feature in many 

age-associated diseases from Alzheimer’s to diabetes 

and osteoporosis. 

Therefore NF-κB represents a possible therapeutic 

target for attenuating the sequelae of aging.  Currently, 

the US Federal Drug Administration does not view aging 

as an indication for treatment. However, as discussed, 

there are numerous age-associated degenerative diseases, 

multiple of which commonly occur in a single elderly 

patient that could potentially be treated with NF-κB 

inhibitors.  In addition there are numerous progeroid 

syndromes, which may also benefit from similar 

therapeutics.   
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