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The yeast Saccharomyces cerevisiae senses glucose, its preferred carbon source, through multiple signal
transduction pathways. In one pathway, glucose represses the expression of many genes through the Mig1
transcriptional repressor, which is regulated by the Snf1 protein kinase. In another pathway, glucose induces
the expression of HXT genes encoding glucose transporters through two glucose sensors on the cell surface that
generate an intracellular signal that affects function of the Rgt1 transcription factor. We profiled the yeast
transcriptome to determine the range of genes targeted by this second pathway. Candidate target genes were
verified by testing for Rgt1 binding to their promoters by chromatin immunoprecipitation and by measuring
the regulation of the expression of promoter lacZ fusions. Relatively few genes could be validated as targets of
this pathway, suggesting that this pathway is primarily dedicated to regulating the expression of HXT genes.
Among the genes regulated by this glucose signaling pathway are several genes involved in the glucose
induction and glucose repression pathways. The Snf3/Rgt2-Rgt1 glucose induction pathway contributes to
glucose repression by inducing the transcription of MIG2, which encodes a repressor of glucose-repressed
genes, and regulates itself by inducing the expression of STD1, which encodes a regulator of the Rgt1
transcription factor. The Snf1-Mig1 glucose repression pathway contributes to glucose induction by repressing
the expression of SNF3 and MTH1, which encodes another regulator of Rgt1, and also regulates itself by
repressing the transcription of MIG1. Thus, these two glucose signaling pathways are intertwined in a
regulatory network that serves to integrate the different glucose signals operating in these two pathways.

The budding yeast Saccharomyces cerevisiae prefers glucose
as a carbon source. Glucose elicits broad changes in the yeast
cell that adapt it to use the sugar efficiently and exclusively of
other available carbon sources. These changes include regula-
tion of gene expression at the transcriptional (9, 20, 30), post-
transcriptional (37, 60), translational (1, 37), and posttransla-
tional (26, 27, 29) levels. For these adaptations to occur, the
cell must sense glucose and transmit a signal to the appropriate
effectors. Three glucose sensing systems are well documented
for the budding yeast. Each system detects and transmits the
glucose signal differently. One mechanism operates through
the Snf1 protein kinase to cause a repression of gene expres-
sion when glucose levels are high. Another mechanism works
through the Snf3 and Rgt2 glucose sensors to induce expres-
sion of genes encoding glucose transporters. A third glucose
sensing mechanism employs the Gpr1 G-protein-coupled re-
ceptor and cyclic AMP as a second messenger (for a review,
see reference 55). We have focused on the first two glucose
sensing pathways, which exert their effects primarily by regu-
lating gene expression.

The main player in the pathway through which glucose re-
presses the expression of many genes involved in the utilization
of alternative carbon sources and gluconeogenesis is the Snf1
protein kinase. When glucose is limiting, Snf1 is active and

regulates transcription by catalyzing phosphorylation of the
Mig1 transcriptional repressor and other repressors and acti-
vators (8, 34, 35, 68). The Snf1 protein kinase is activated
under these conditions by its phosphorylation, catalyzed by one
of three protein kinases (25, 46, 63). The addition of glucose
inactivates the Snf1 kinase by stimulating its dephosphoryla-
tion, catalyzed by the Glc7-Reg1 protein phosphatase (41, 57).
Transmission of the glucose signal to Snf1 involves Hxk2 (26),
a hexokinase that catalyzes glucose phosphorylation, the first
catalytic step of its metabolism (for a review, see reference 55).
The Mig1 paralogue Mig2, which has essentially the same
binding site as Mig1, also plays a role in glucose repression of
the expression of some genes (an additional paralogue, Mig3,
also binds to the same DNA sequence and contributes mod-
estly to glucose repression [43]). The mechanism of glucose
regulation of Mig2 function is unknown, but it is clear that the
Snf1 protein kinase does not regulate Mig2 activity (43).

A separate glucose sensing pathway mediates glucose induc-
tion of the expression of HXT genes encoding glucose trans-
porters (reviewed in references 30, 51, and 55). Glucose is
sensed by two glucose sensors in the cell membrane, Snf3 and
Rgt2, which generate an intracellular signal in the presence of
glucose that induces HXT gene expression. The ultimate target
of the pathway is Rgt1, a transcription factor that binds to and
represses the expression of HXT genes in the absence of glu-
cose. Two other proteins, the paralogues Mth1 and Std1, are
required for Rgt1 to repress HXT gene expression. Mth1 and
Std1 interact with the glucose sensors (38, 62) and with Rgt1
(V. Brachet, unpublished data). The glucose signal inhibits
Rgt1-mediated repression by stimulating the degradation of
Std1 and Mth1 (19, 39). Thus, activation of the Snf3 and Rgt2
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glucose sensors by extracellular glucose generates an intracel-
lular signal that derepresses the expression of HXT genes by
inhibiting the function of the Rgt1 repressor.

The Snf1-Mig1 glucose repression pathway affects the ex-
pression of many genes (43, 70), but only six genes are known
to be targets of the Snf3/Rgt2-Rgt1 glucose induction pathway,
and all of them are HXT genes coding for glucose transporters
(5, 16, 40, 52). While profiling the yeast genome to identify
other genes regulated by the Snf3/Rgt2-Rgt1 pathway, we dis-
covered that the glucose repression and glucose induction
pathways are interlocked in an elaborate network of autoreg-
ulatory and cross-pathway-regulatory circuits.

MATERIALS AND METHODS

Media. Yeast strains were grown on standard rich medium (2% Bacto Peptone
[Difco], 1% yeast extract) or synthetic yeast nitrogen base media (0.17% yeast
nitrogen base without ammonium sulfate [Difco] and with 0.5% ammonium
sulfate), supplemented with appropriate amino acids, nitrogenous bases, and 2 or
4% glucose (high-glucose media), 2% galactose, or 2% raffinose, or as indicated
in the tables.

Strains and plasmids. Yeast strains used in this study are listed in Table 1. The
dominant RGT2-1 and SNF3-1 alleles were introduced into the chromosome by
the transplacement method of Lundblad et al. (42). RGT2-1 (pBM3946) was
inserted into pRS306 as a 3.3-kb EcoRI-BamHI fragment (from the pBM3270
plasmid [49]); SNF3-1 (pBM3948) was inserted into pRS306 as a 3.8-kb HindIII-
SalI fragment (from the pBM3259 plasmid [50]). RGT2-1 was integrated into
RGT2 by transforming yeast cells (FM391) to Ura� with pBM3946 cut with SphI
(cuts 712 bp upstream of RGT2); SNF3-1 was integrated into SNF3 by trans-
forming cells to Ura� with pBM3948 cut with ClaI (cuts 490 bp upstream of
SNF3). The SNF3 and RGT2 duplications were resolved by selecting for Ura�

segregants on 5-fluoroorotic acid plates, and segregants that had retained the
dominant RGT2-1 and SNF3-1 mutations were identified based on their consti-
tutive expression of HXT1 (recognized as blue colonies on galactose media
containing X-Gal [5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside] after
transformation with an HXT1-lacZ reporter, pBM2636 [52]). Gene promoters
were fused to lacZ in either the 2�m plasmids YEp357R and YEp367R (45) or
the centromere plasmid pBM4088 (S.-W. Ho, unpublished data) by the gap
repair technique (48). Promoters were amplified from genomic DNA extracted
from YM4127 or FM391 according to the method described by Hoffman and

Winston (23). The resulting plasmids are listed in Table 2. We constructed
lexA-MIG2 expressed from the MIG2 promoter (pBM4258) by replacing by the
gap repair technique the ADH1 promoter in pBM3091 (44) with the MIG2
promoter amplified with the primers OM2703 and OM2704 (cutting at the
unique PacI site in the ADH1 promoter). The repressor activity of lexA-Mig2 was
assayed by using two CYC1-lacZ reporters: lexO-less upstream activation se-
quence (UAS) (CYC1)-lacZ (pLG312s) (22) and 4xlexO-UAS (CYC1)-lacZ
(JK1621) (31). The latter is identical to the former except for four lexA-binding
operator sites inserted upstream of the CYC1 UAS. Yeast transformations were
performed by using the method of Schiestl and Gietz (61), when high frequencies
of transformation were required, or by using the one-step method of Chen et al.
(11).

�-Galactosidase assay. �-Galactosidase assays were performed according to
the method of Rose et al. (56), with minor modifications. The reported lacZ
activities (in nanomoles of hydrolyzed o-nitrophenyl-�-D-galactopyranoside
[ONPG] per milligram of protein per minute) are averages of results from
triplicate or duplicate assays of usually four different transformants. Standard
deviations did not exceed the mean values by more than 10 to 25% for values
higher than 100 U.

Expression profiling using DNA microarrays. Detailed protocols for the iso-
lation of mRNA, the generation of Cy dye-labeled cDNA, and their hybridiza-
tion to a microarray, have been described previously (28). Briefly, cells were
grown in synthetic complete (SC) medium to an optical density at 600 nm
(OD600) of 1.2, harvested by centrifugation, and broken with a Mini Beadbeater
(BioSpec Products, Inc., Bartlesville, Okla.). Total RNA and poly(A)� RNA
were isolated with an RNeasy midi kit and an Oligotex kit from QIAGEN
according to protocols provided by the manufacturer. cDNA samples labeled
with Cy3 or Cy5 dye (Amersham Pharmacia Biotech Inc., Piscataway, N.J.) were
generated with Superscript reverse transcriptase (Gibco BRL, Rockville, Md.).
Corning CMT S288C yeast gene arrays (Corning Incorporated Life Sciences,
Acton, Mass.) were used for hybridization, according to the manufacturer’s
instructions. For each experiment, four arrays were used. On two of the arrays,
the control sample labeled with Cy3 was mixed with the test sample labeled with
Cy5 and the hybridization mixture. On the other two arrays, the control sample
labeled with Cy5 was mixed with the test sample labeled with Cy3. A Molecular
Dynamics GenIII laser scanner was used to acquire hybridization signals, ac-
cording to the manufacturer’s procedures. Array images were analyzed with
ArrayVision software (versions 4 and 5; Imaging Research, Toronto, Canada) to
obtain fluorescence signal intensities corresponding to each spotted open read-
ing frame (ORF). The absolute intensity of each spot was then normalized by
using the default parameters of the software.

For hybridizations with microarrays, RNAs were isolated from (i) diploid

TABLE 1. S. cerevisiae strains used in this study

Strain Genotype Reference

YM4127 MATa ura3-52 his3-200 ade2-101 lys2-801 leu2 trp1-903 tyr1-501 52
YM4509 MATa ura3-52 his3-200 ade2-101 lys2-801 leu2 trp1-903 tyr1-501 rgtI�::hisG 52
BY4741 (FM391) MATa his3�1 leu2�0 ura3�0 met15�0 6
BY4742 (FM392) MAT� his3�1 leu2�0 ura3�0 lys2�0 6
BY4743 (FM393) MATa/MAT� his3�1/his3�1 leu2�0/leu2�0 ura3�0/ura3�0 met15�0/MET15 lys2�0/LYS2 6
FM557 BY4741 rgt1�::kanMX 21
YM6440 BY4743 rgt1�::kanMX/rgt1�::kanMX 21
YM6545 BY4741 RGT2-1 This study
YM6546 BY4741 RGT2-1 This study
YM6548 BY4741 SNF3-1 This study
YM6554 BY4743 RGT2-1/� (cross: YM6546 � FM392) This study
YM6557 BY4743 SNF3-1/� (cross: YM6548 � FM392) This study
YM6247 BY4742 rgt2::kanMX 21
YM6329 BY4742 snf3::kanMX 21
YM6370 BY4742 rgt2::kanMX snf3::kanMX This study
FM558 BY4741 trp1�::kanMX 21
YM6833 BY4741 trp1�::kanMX MIG2-6HA-klTRP1 This study
YM6835 BY4741 trp1�::kanMX MIG3-6HA-klTRP1 This study
YM6843 BY4741 trp1�::kanMX MIG1-6HA-klTRP1 This study
FM573 BY4741 gal4�::kanMX 21
FM612 BY4743 mig1�::kanMX/mig1�::kanMX 21
YM6682 BY4743 mig1�::kanMX/mig1�::kanMX mig2�::kanMX/mig2�::kanMX This study
YM6683 BY4743 mig2�::kanMX/mig2�::kanMX mig3�::kanMX/mig3�::kanMX This study
YM6684 BY4743 mig1�::kanMX/mig1�::kanMX mig2�::kanMX/mig2�::kanMX mig3�::kanMX/mig3�::kanMX This study
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strains, namely, heterozygous RGT2-1/� (YM6554) and SNF3-1/� (YM6557)
strains, a homozygous rgt1� strain (YM6440), and the wild-type BY4743
(FM393) grown in 2% galactose-SC medium to an OD600 of 1.2; and (ii) haploid
strains, namely, snf3� (YM6329), rgt2� (YM6247), and snf3� rgt2� (YM6370)
strains and the reference haploid BY4742 (FM392), all shifted to 2% glucose-SC
medium for 4 h after growth in 2% galactose-SC medium to an OD600 of 1.2.

Expression profiling with high-density oligonucleotide arrays. RNA was iso-
lated from three separate cultures of YM4509 (rgt1�) and YM4127 (wild-type
haploid strain) grown in rich 3% glycerol plus 3% lactate medium to an OD600

of 0.8 by the acidic hot phenol method described previously (24) (a detailed
protocol is provided at R. Young’s laboratory website [http://web.wi.mit.edu/
young/expression/]) and pooled after enrichment fractionation with an Oligotex
kit (Qiagen) to obtain a final concentration between 1 and 2 �g/�l. RNA was
labeled (target synthesis) and hybridized at the GeneChip Core Facility in the
Siteman Cancer Center, Washington University, St. Louis, Mo. (detailed proto-
cols can be found at the institution website [http://pathbox.wustl.edu/�mgacore
/genechip.htm]). Data were analyzed by using expression analysis software from
Affymetrix. Target RNA was hybridized to the yeast S98 Affymetrix oligoarrays.

Chromatin immunoprecipitation assays. Chromatin immunoprecipitation as-
says of Rgt1 binding in vivo to the promoters of candidate target genes were
carried out as described previously (32).

Western analysis of tagged Mig1, Mig2, and Mig3. Mig1, Mig2, and Mig3 were
tagged at their C termini with six copies of the influenza virus hemagglutinin
(HA) epitope tag in the genome of strain BY4741 trp1� (FM558; background,
FM391 [Table 1]) as described by Knop et al. (33). Correct tagging of the genes
was confirmed by the PCR verification assay (using corresponding primers C
from the Saccharomyces Genome Deletion Project [SGD] website [http://www-
sequence.stanford.edu/group/yeast_deletion_project/] and the primer KAN & HIS
[33]). Strains YM6843 (MIG1-6HA), YM6833 (MIG2-6HA), and YM6835
(MIG3-6HA) (Table 1) were precultured in SC medium with 5% glycerol and
0.5% galactose and inoculated (at an OD600 of 0.1 to 0.2) into the same medium
and into media containing 5% glycerol and 0.05% glucose (low-glucose medium)
or 4% glucose (high-glucose medium). The cultures were grown until they
reached an OD600 of approximately 1.0, and proteins were extracted as described
by Knop et al. (33). Protein extracts were resolved through sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (polyacrylamide gradient of 4 to
15%), blotted to a polyvinylidene difluoride membrane (Immobilon; Millipore),
and detected with the use of a primary polyclonal antibody against hemagglutinin
(Sigma), a secondary antibody against rabbit immunoglobulin G (IgG) conju-
gated to hydroxyperoxidase, and an enhanced chemiluminescence detection sys-
tem (Pierce).

RESULTS

Identification of target genes of the glucose induction path-
way. To search for targets of the Snf3/Rgt2 glucose sensing
pathway, we performed gene expression profiling of the yeast
genome using mutants with different defects in the signal trans-
duction pathway. RGT2-1 and SNF3-1 are dominant mutations
that cause the glucose sensors to always generate a signal,
leading to constitutive expression of the HXT genes (49). The
HXT genes are also constitutively expressed in a mutant lack-
ing the Rgt1 repressor (52). Thus, we looked for genes whose
expression is increased in the absence of glucose in RGT2-1,
SNF3-1, and rgt1� mutants relative to that of the wild-type
strain. Conversely, expression of the HXT genes cannot be
induced by glucose in an snf3 rgt2 mutant, which lacks glucose
sensors (52). We therefore looked for genes whose level of
expression is decreased in snf3 rgt2 cells growing on glucose
relative to that in wild-type cells.

The expression of 43 genes was increased at least 1.8-fold
relative to that in the wild type in an rgt1� mutant growing on
galactose (Table 3). Twenty-nine of these genes (Table 3) are
particularly good candidates for Rgt1 targets because they
have at least one of three additional features: (i) their levels of
expression in one or both dominant mutants (RGT2-1 and
SNF3-1) growing on galactose are increased at least 1.7-fold
relative to that in the wild type, (ii) their expression is de-
creased at least twofold relative to that of the wild type in an
snf3 rgt2 null mutant grown on glucose, or (iii) the increase in
their transcript level can be reproduced by a different detection
method (oligonucleotide arrays). The promoters of most of
these genes have apparent Rgt1 binding sites (32) that are
conserved in the orthologous promoters of other Saccharomy-
ces species, suggesting that they are functional (13). It is reas-
suring that the well-known Rgt1 targets, HXT1 to HXT4, have

TABLE 2. Promoter lacZ fusions constructed for this studya

Plasmid lacZ vector Promoter Length of the cloned
upstream region (bp) Primer pair

pBM4270 YEp357R MIG2 1,459 OM2392-OM2458
pBM4270 YEp357R STD1 996 OM2799-OM2800
pBM4273 YEp357R YOR062C 1,180 OM2717-OM2718
pBM4379 YEp357R MIG3 713 OM2563-OM2564
pBM4381 YEp357R YGL157W 646 OM3534-OM2566
pBM4381 YEp357R YNL234W 418 OM3446-OM3447
pBM4515 YEp357R YGL039W 756 OM3633-OM3634
pBM4522 YEp357R HSF1 813 OM3676-OM3677
pBM4487 YEp367R SNF3 832 OM3882-OM3883
pBM4510 YEp367R PHM8 934 OM3089-OM3090
pBM4511 YEp367R AQR1 1,087 OM4065-OM4066
pBM4292 pBM4088 MTH1 1,476 OM2812-OM3191
pBM4296 pBM4088 MRK1 626 OM2844-OM3190
pBM4346 pBM4088 MIG2 1,459 OM2875-OM2458
pBM4500 pBM4088 VID24 686 OM3448-OM3449
pBM4501 pBM4088 HXT5 1,500 OM3318-OM3441
pBM4502 pBM4088 AHP1 967 OM3088-OM3981
pBM4512 pBM4088 CIT2 1,024 OM4067-OM4068
pBM4513 pBM4088 HOR2 1,092 OM4069-OM4070
pBM4514 pBM4088 PFK27 1,021 OM3979-OM4071
pBM4516 pBM4088 SKS1 1,340 OM4072-OM4073

a The gap repair procedure used for construction of the lacZ fusions is described in Materials and Methods. We also tested a YKR075C-lacZ fusion plasmid,
pBM3469, and an MIG1-lacZ fusion plasmid, pBM3091, as described previously (43). Sequences of the primers are available upon request.
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all three features (except for HXT2, which for unknown rea-
sons did not show induction in oligonucleotide array experi-
ments) and are among the genes with the largest increases in
expression of the rgt1� mutant growing on galactose. Two
other HXT genes coding for glucose transporters, HXT5 and
HXT8, seem to be targets of this glucose induction pathway
(Table 3).

We attempted to verify the most promising candidate Rgt1
target genes using two experimental approaches. First, we
characterized the transcriptional regulation of several of these
genes by fusing their promoters to lacZ and measuring the
amount of �-galactosidase activity produced (Tables 4 to 6).
For analysis, we mostly selected promoters containing at least
two potential Rgt1 binding sites, at least one of which is evo-

TABLE 3. Known and potential targets of Rgt1a

ORF Gene
name Protein function or characteristic

Ratio of spot intensity of the mutant to that of the wild typeb No. of
Rgt1 sites/

no. of
conserved

sitescrgt1� Gal RGT2-1
Gal

SNF3-1
Gal

snf3� rgt2�
Glu

YHR092C HXT4 Glucose transporter 123.1 (110.5) 12.4 110.6 20.2 5/2
YDR345C HXT3 Glucose transporter 113.3 (116.9) 12.8 15.3 20.2 11/7
YMR011W HXT2 Glucose transporter 113.0 (NC) 11.9 15.2 20.3 3/2
YKR075C Similarity to N terminus of Reg1 112.6 (12.1) 12.0 18.1 20.2 7/5
YGL157W Similarity to dihydroflavonol 4-reductase 17.9 (16.6) 12.5 14.6 20.1 2/1
YHR094C HXT1 Glucose transporter 17.2 (151.4) 12.4 13.8 20.1 11/4
YOR047C STD1 Regulator of Rgt1 14.5 (13.5) NC 12.7 20.4 2/2
YHR096C HXT5 Glucose transporter 14.0 (NC) NC 12.1 20.3 4/0
YGL209W MIG2 Glucose-dependent repressor 13.4 (112.5) 12.0 16.8 NC 9/4
YNL234W Heme-binding globin-like protein 13.1 (NC) NC 11.8 20.5 2/1
YOR062C Similarity to N terminus of Reg1 13.0 (15) NC 11.7 20.2 4/1
YNL065W AQR1 MFSg transporter; resistance to monocarboxylic acids 12.6 (NC) NC 11.7 NC 5/4
YLR109W AHP1 Alkyl hydroperoxide reductase; redox homeostasis 12.5 (NC) NC 11.7 20.1 2/2
YER037W PHM8 Involved in phosphate metabolism? 12.4 (NC) 12.2 12.3 20.2 1/1
YOR338W Uncharacterized ORF (SGD) 12.2 (NC) NC NC NC 0
YKL036C Dubious ORF (SGD) 12.1 (A) NC NC NC 2
YCR005C CIT2 Peroxisomal citrate synthase 12.1 (14) 11.7 NC 20.5 3/2d

YER028C MIG3 Possible glucose-dependent repressor 12.0 (14.6) NC NC NC 4/2
YGL039W Similarity to dihydroflavonol 4-reductase 12.0 (NC) NC NC 20.5 2/0
YKL035W UGP1 UDP-glucose pyrophosphorylase 12.0 (NC) NC NC NC 1/0
YOL016C CMK2 Calmodulin-dependent protein kinase 12.0 (13.4) 11.7 NC NC 1/0
YHR087W Uncharacterized ORF (SGD) 12.0 (NC) NC NC 20.2 1/0
YMR316W DIA1 Regulation of invasive growth? 11.9 (NC) 11.7 NC NC 3/0
YER062C HOR2 Glycerol-1-phosphatase 11.9 (NC) NC NC 20.3 2/1
YJL214W HXT8 Glucose transporter 11.9 (11.8) NC 12.9 NC 5/0
YBR105C VID24 Vacuolar protein targeting 11.9 (12.6) NC NC NC 4/3
YDR423C CAD1 Jun family of transcription factors 11.9 (NC) NC NC NC 0
YHR097C Uncharacterized ORF (SGD) 11.9 (NC) NC NC 20.5 0
YOL046C Dubious ORF (SGD) 11.9 (A) NC NC NC 2
YBR067C TIP1 Cell wall mannoprotein 11.9 (NC) NC NC 13.8 5/1
YDR277C MTH1 Regulator of Rgt1 11.8 (12.1) NC 12.0 NC 4/2
YOL136C PFK2 6-Phosphofructo-2-kinase; regulation of glycolysis 11.8 (NC) NC 11.8 NC 2/2
YFL054C Glycerol transporter 11.8 (13.5) NC 12.0 NC 3/2
YDR001C NTH1 Neutral trehalase; stress response 11.8 (NC) NC NC NC 2/2
YPL026C SKS1 Protein kinase; multicopy suppressor of snf3 11.8 (NC) NC NC NC 6/3e

YLR413W Uncharacterized ORF (SGD) 11.8 (NC) NC NC NC 1/0
YDL062W Dubious ORF (SGD) 11.8 (A) NC NC NC 1
YMR136W GAT2 GATA zinc finger toxin factor 11.8 (NC) NC NC NC 2/1
YFR016C Uncharacterized ORF (SGD) 11.8 (NC) NC NC NC 0
YKR098C UBP11 Ubiquitin-specific protease 11.8 (NC) NC NC NC 4/3
YKR076W ECM4 Cell wall organization 11.8 (NC) NC NC NC 7/5f

YLR194C Uncharacterized ORF (SGD) 11.8 (11.8) NC NC 20.3 1/0
YAL061W Putative polyol dehydrogenase 11.8 (11.7) NC NC NC 1/0

a Genes whose transcript levels were induced to increase at least 1.8-fold on galactose in a homozygous rgt1�/rgt1� strain (YM6440) in microarray hybridizations
(averages of ratios of mutant spot intensities to wild-type intensities are shown). Boldface type indicates that the ORF or gene was a good candidate for an Rgt1 target
(see the text).

b The ratio of gene transcript levels, determined from hybridization of cellular RNA probes to DNA microarrays, of heterozygous RGT2-1 (YM6554) and SNF3-1
(YM6557) strains grown on galactose and a haploid snf3� rgt2� strain (YM6370) grown on glucose (Glu) to the gene transcript levels of wild-type (diploid and haploid)
strains. The same data from the hybridization of RNA (from an rgt1� haploid strain [YM4509] compared to that in the wild type [YM4127] grown in rich 3% glycerol
plus 3% lactate medium) to an oligonucleotide array (Affymetrix) are in parentheses. A, Affymetrix hybridization analysis software designated the transcript as being
absent; NC, transcript levels that were not changed significantly in the mutant relative to those in the wild type. Symbols: 1, increased transcript level (�1.7-fold) in
the mutant compared to that in the wild type; 2, decreased transcript level (�0.5-fold) in the mutant compared to that in the wild type.

c Ratio of the number of potential Rgt1 binding sites (CGGANNA) (33) in the promoter to the number of these sites that are conserved in the orthologous promoters
of other Saccharomyces species, as described in reference 14.

d No Rgt1 binding sites lie in the 201 bp between CIT2 and YCR006C (classified as dubious in the SGD), but three potential Rgt1 binding sites lie within 1,200 bp
upstream of the CIT2 ATG.

e Only one Rgt1 binding site is in the intergenic region, but five additional sites lie in the upstream 558-bp ORF (YPL025C, a likely gene since a two-hybrid interaction
has been reported between YPL025C and MIG1 [65]).

f ECM4 and YKR075C are divergently transcribed and so share upstream sequences. These conserved potential Rgt1 binding sites are rather remote from the ECM4
ATG, and the closest three sites are not conserved, so it is doubtful that Rgt1 regulates ECM4 expression.

g MFS, major facilitator superfamily.

224 KANIAK ET AL. EUKARYOT. CELL



lutionarily conserved. Second, we assessed the ability of Rgt1
to bind to the same set of promoters in vivo by using chromatin
immunoprecipitation (ChIP) assays (Fig. 1). Fifteen of the
genes that we tested bind Rgt1 in cells grown on galactose but
not glucose (Fig. 1), suggesting that Rgt1 directly regulates
their expression.

The newly identified targets of Rgt1 include several genes
without assigned functions (Table 4). Two of the genes,
YKR075C and YOR062C, are paralogues that have modest
similarity to the N-terminal part of Reg1, the regulatory sub-
unit of the Glc7 protein phosphatase that inactivates Snf1
protein kinase in response to high levels of glucose (41). The
expression of YOR062C is regulated by Rgt1 and induced by
glucose (Table 4); the expression of YKR075C is induced by
raffinose (equivalent to low levels of glucose) due to regulation
by Rgt1 and repressed by high levels of glucose through the
action of the Mig1 and Mig2 repressors (43). The regulation of
these two genes by glucose and their similarity to Reg1, which
acts in glucose signaling pathways, suggest that they may be
involved in glucose metabolism or regulation. It is not obvious
how the proteins encoded by the two other newly identified
Rgt1 targets—Ygl157, which is similar to oxidoreductases with
dihydroflavanol 4-reductase activity (Gene Ontology Consor-
tium, SGD; http://www.geneontology.org/), and Ynl234, which
is similar to the globins and has a functional heme-binding
domain (59)—might be involved in glucose signaling or me-

tabolism. It is likely that Rgt1 directly regulates these genes
because it binds to their promoters in vivo (Fig. 1A).

Several of the remaining genes that are candidates for reg-
ulation by Rgt1 have been reported to be induced by glucose:
AQR1 (7, 67), HOR2 (7), VID24 (12), and PFK27 (2, 4, 7). We
observed relatively modest induction of expression of most of

FIG. 1. ChIP assay using an antibody against native Rgt1. PCR
products amplified with primers specific for sequences upstream of the
indicated genes are shown. Panels A, B, and C show results of ChIP
experiments for genes presented in Tables 4, 5, and 6, respectively.
Rgt1 levels have been shown to be similar in cells growing on galactose
and glucose (33). IP, immunoprecipitate.

TABLE 4. Newly identified targets of Rgt1 with unknown functionsa

Promoter fusion

Activity of lacZ reporter

Wild type rgt1� strain RGT2-1 strain SNF3-1 strain

Gal Raf Glu Gal Glu Gal Glu Gal Glu

YKR075c-lacZ 612.8 2,985.6 183.5 10,324.8 1,925.5 1,434.3 532.0 4,877.2 1,215.5
YOR062c-lacZ 44.7 88.8 305.0 540.2 200.8 139.3 258.4 307.1 208.2
YGL157w-lacZ 98.4 181.9 704.9 1,094.0 456.6 200.8 569.7 589.6 592.7
YNL234w-lacZ 2.5 5.3 12.9 19.4 12.3 6.4 NT 14.7 NT

a Strains transformed with plasmids carrying the indicated lacZ fusions (Table 1) were pregrown in galactose medium selective for the plasmid, inoculated into media
with the indicated carbon source at an OD600 of approximately 0.1, and grown until mid-log phase (usually 5 to 6 h). Activities of lacZ reporters (in nanomoles of ONPG
per milligram of protein per minute) were measured in cellular extracts prepared from the following cultures: BY4741 (FM391) (wild type), FM557 (rgt1�), YM6546
(RGT2-1), and YM6549 (SNF3-1). Plasmids used were pBM3469 (43) (pYKR075C-lacZ), pBM4273 (pYOR062C-lacZ), pBM4381 (pYGL157W-lacZ), and pBM4458
(pYNL234W-lacZ). All plasmids carry the 2-micron origin of replication. Raf, raffinose; Glu, glucose; NT, not tested.

TABLE 5. Potential Rgt1 target genesa

Promoter fused
to lacZ

�-Galactosidase activity of cells grown on galactose

Wild type rgt1� strain Repression
(fold)

AQR1 362.8 1,605.7 4.4
AHP1 278.0 1,329.0 4.8
PHM8 401.3 574.5 1.4
CIT2 79.1 134.7 1.7
YGL039W 216.3 244.4 1.1
HOR2 162.5 591.5 3.6
VID24 54.2 119.9 2.2
PFK27 84.8 239.6 2.8
SKS1 109.1 1,069.1 9.8

a Analysis was done as described for Table 4 (footnote a). Strains used were
BY4741 (FM391) (wild type) and FM557 (rgt1�). Plasmids used were pBM4511
(pAQR1-lacZ), pBM4502 (pAHP1-lacZ), pBM4510 (pPHM8-lacZ), pBM4512
(pCIT2-lacZ), pBM4515 (pYGL039W-lacZ), pBM4513 (pHOR2-lacZ), pBM4514
(pPFK27-lacZ), and pBM4516 (pSKS1-lacZ).
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these genes due to the deletion of RGT1 (Tables 3 and 5). Rgt1
clearly binds in vivo to the promoters of these genes (Fig. 1B),
so they are likely its direct targets. Independent evidence that
SKS1 is a direct target of Rgt1 comes from the observation that
its promoter derepresses HXT gene expression when it is
present in high copy, probably by titrating Rgt1 (69).

Many genes exhibit an increased level of expression in the
snf3� rgt2� double mutant compared to that in the wild type
(see Table S1 in the supplemental material). Most of these
genes are known to be repressed by glucose and/or are induced
in the diauxic phase of growth (i.e., after glucose depletion)
(15). An increased expression of glucose-repressed genes in
the snf3� rgt2� mutant growing on glucose was expected (51)
and is almost certainly an indirect effect of reduced glucose
metabolism as a result of the severely reduced glucose trans-
port capacity of this mutant, which weakens or abolishes the
glucose signal that regulates the Snf1 protein kinase (18). This
increased expression is also a direct effect of the reduction of
MIG2 (and possibly MIG3) expression (see below).

The glucose repression and glucose induction pathways are
intertwined in a regulatory network. Some of the most notable
targets of the Snf3/Rgt2-Rgt1 glucose induction pathway en-
code components of the glucose repression and glucose induc-
tion pathways. These results, together with findings from pre-
vious studies (43, 47, 52, 71), reveal that these two glucose
signal transduction pathways are intertwined in a regulatory
network (Fig. 2). We can recognize four inter- and intrapath-
way controls (Fig. 2, circled numbers 1 to 4): (i) the regulation
of glucose repression by the glucose induction pathway
through Snf3/Rgt2-mediated induction of MIG2 expression,
(ii) the autoregulation of the glucose induction pathway
through Snf3/Rgt2-mediated glucose induction of STD1 ex-
pression, (iii) the regulation of glucose induction by the glu-
cose repression pathway through Mig1- and Mig2-mediated
repression of MTH1 and SNF3 expression, and (iv) the auto-
regulation of the glucose repression pathway through Mig1-
mediated repression of MIG1 expression. Each of these
branches of the regulatory network is described below.

FIG. 2. Interwoven regulatory network of glucose sensing pathways. The components shown in green respond to the glucose signal generated
by the Rgt2 and Snf3 glucose sensors, and the components shown in red respond to the glucose signal that affects the function of the Snf1 kinase.
The genes shown with black lines are the ultimate targets of these two glucose signaling pathways. Lines ending in arrows denote activation, and
lines ending in bars denote inhibition. Circled numbers refer to the four types of control described in the text.

TABLE 6. Newly identified targets of Rgt1: transcriptional regulatorsa

Promoter fusion

Activity of lacZ reporter

Wild type rgt1� strain RGT2-1 strain SNF3-1 strain

Gal Glu Gal Glu Gal Glu Gal Glu

STD1-lacZ 2�m 113.1 2,302.0 2,216.0 1,825.4 380.8 2,007.3 1,184.8 2,100.3
MTH1-lacZ CEN 635.7 117.3 1,396.0 449.3 1,118.0 286.2 1,780.8 450.5
MIG2-lacZ 2�m 150.8 3,702.7 3,803.9 2,446.3 1,724.1 2,689.9 3,422.7 NT
MIG3-lacZ 2�m 	0.2 152.4 51.2 42.3 3.2 155.6 14.6 134.9

a Expression of the Rgt1 target genes in the indicated mutants. Assays were done as described in Table 4, footnote a. Strains used were BY4741 (FM391) (wild type),
FM557 (rgt1�), YM6546 (RGT2-1), and YM6549 (SNF3-1). Plasmids used were pBM4270 (pSTD1-lacZ), pBM4292 (pMTH1-lacZ), pBM4268 (pMIG2-lacZ), and
pBM4379 (pMI63-lacZ). Glu, glucose; NT, not tested; CEN, centromere-containing plasmid.
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Regulation of the Mig2 (and Mig3) glucose repressors by
the glucose induction pathway. The Snf3/Rgt2 glucose induc-
tion pathway contributes to glucose repression by regulating
expression of MIG2 and MIG3 (Tables 6 and 7), which encode
glucose-activated repressors that collaborate with Mig1 to re-
press expression of many glucose-repressed genes (Table 8)
(43). Rgt1 is likely a direct regulator of these genes because it
binds to their promoters in vivo (Fig. 1C). MIG2 (and MIG3)
expression is induced by high levels of glucose and is constitu-
tively induced in SNF3-1 and RGT2-1 mutants (Table 6). This
regulation is also apparent in the levels of these two proteins:
Mig2 (and Mig3) is detectable only in extracts of cultures
grown on glucose (with Mig3 being less abundant than Mig2)
(Fig. 3). We conclude that one of the outputs of the glucose
signal that is generated by the Rgt2 and Snf3 glucose sensors is
glucose repression of expression of genes that are targets of
Mig2 (and Mig3).

Glucose induction of MIG2 expression seems to account for
all of the glucose regulation of Mig2 function, because when
MIG2 expression is rendered constitutive by the deletion of
RGT1, Mig2 repressor activity in cells growing on galactose or
raffinose is virtually equal to its activity in glucose-grown wild-
type cells (Table 9). Regulation of MIG2 expression by the
Snf3/Rgt2-Rgt1 pathway explains why the Snf1 protein kinase,
which regulates the function of Mig1, plays no role in regulat-
ing Mig2 (43).

If glucose induction of MIG2 (and MIG3) expression is
largely responsible for glucose activation of Mig2 (and Mig3)
repressor function, then glucose-repressed genes that are Mig2
(and Mig3) targets should exhibit reduced expression in an rgt1

mutant (due to increased levels of Mig2). Indeed, the expres-
sion of some glucose-repressed genes is reduced in an rgt1�
mutant growing on galactose (see Table S2 in the supplemental
material). One of these genes, JEN1, is known to be regulated
by Mig1 and Mig2 (3). The gene whose expression was most
strongly and reproducibly reduced in our gene expression pro-
filing experiments of an rgt1 mutant, MRK1, is regulated by all
three Mig repressors (Table 8).

Feedback regulation of the glucose induction pathway. Ex-
pression of STD1, which encodes a regulator of Rgt1, is in-
duced by high levels of glucose due to regulation by Rgt1
(Table 6). It is likely that Rgt1 directly represses STD1 expres-
sion, because it binds to the STD1 promoter in vivo (Fig. 1C).
Since Std1 promotes transcriptional repression by Rgt1 (38,
62), this process constitutes a feedback loop whose effect
should be to dampen the glucose induction of HXT gene ex-
pression, since it should act to counteract the glucose-induced
degradation of Std1.

MTH1 expression is not induced by glucose but is neverthe-
less modestly repressed by Rgt1 (Table 6). In addition, MTH1
expression is modestly induced by galactose due to the regu-
lation by the Gal4 transcriptional activator (54). Thus, Gal4
sustains and Rgt1 attenuates MTH1 expression in galactose-
grown cells. Activation of MTH1 expression by galactose would
reinforce Rgt1-mediated repression of HXT genes encoding
glucose transporters. However, the level of regulation of
MTH1 expression by Gal4 and Rgt1 is modest, so this regula-
tion probably serves only to fine-tune the glucose induction
pathway.

Mig1 and Mig2 (and Mig3) mediate glucose repression of
MTH1 and MIG1. MTH1 expression is repressed by glucose
(62) due to the combined action of Mig1 and Mig2 (and Mig3
to a lesser extent) (Table 8). Thus, Mig2 (and Mig3) regulates
expression of a protein (Mth1) that collaborates with Rgt1 to
repress their expression in the absence of glucose. This is a
feedforward regulatory loop in the glucose induction pathway,
the effect of which is to reinforce the effect of glucose on Mth1
function; the addition of glucose inhibits Mth1 function by
inducing its degradation (19) and reduces MTH1 transcription
through Mig2 (and Mig3)-mediated glucose repression. Fi-
nally, Mig1 and Mig2 (and Mig3) repress expression of MIG1
(43, 71). This process constitutes a feedback loop of the glu-
cose repression pathway, the effect of which is to dampen
Mig1-mediated glucose repression.

TABLE 7. MIG2 expression is regulated by the
Snf3/Rgt2-Rgt1 pathwaya

Relevant genotype

�-Galactosidase levels in
MIG2-lacZ cells

Gal Glu

Wild type 7.0 468.6
rgt1� 1,201.8 536.7
rgt2� 3.8 301.1
snf3� 0.2 328.1
rgt2� snf3� 0.2 4.2

a Assays were done as described in Table 4, footnote a. Strains used were
BY4741 (FM391) wild type, FM557 (rgt1�), YM6247 (rgt2�), YM6329 (snf3�),
YM6370 (rgt2� snf3�). The plasmid used was pBM4346 (pMIG2-lacZ [CEN]).
Glu, glucose.

TABLE 8. MTH1, MIG1, SNF3, HXT2, and MRK1 expression is glucose repressed by Mig1, Mig2, and Mig3a

Relevant genotypeb
�-Galactosidase activity in glucose-grown (and raffinose-grown) cells

MTH1-lacZ MIG1-lacZ SNF3-lacZ HXT2-lacZ MRK1-lacZ

Wild type 24.1 (216.0) 238 (311.4) 8.2 (143.0) 22.1 (176.4) 1.1 (18.8)
mig1� 85.1 287.2 11.0 28.5 1.8
mig1� mig2� 248.0 771.4 60.1 298.7 4.6
mig2� mig3� 40.6 302.8 11.6 51.9 1.6
mig1� mig2� mig3� 381.9 1,088.5 104.0 447.0 12.5

a Analysis was done as described for Table 4 (footnote a). Strains used were BY4743 (wild type), YM6430 (mig1�/mig1�), YM6682 (mig1� mig2�/mig1� mig2�),
YM6683 (mig2� mig3�/mig2� mig3�), and YM668 (mig1� mig2� mig3�/mig1�mig2�mig3�). Plasmids used were pBM4292 (pMTH1-lacZ [CEN]), pBM3190
(pMIG1-lacZ [2�m]), pBM4487 (pSNF3-lacZ [2�m]), pBM4440 (pHXT2-lacZ [CEN]), and pBM4296 (pMRK1-lacZ [CEN]).

b All strains are homozygous diploids.
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DISCUSSION

Our results suggest that a surprisingly small number of genes
are targets of the glucose signaling pathway that operates
through the Snf3 and Rgt2 glucose sensors and the Rgt1 re-
pressor. In addition to the several HXT genes that are well-
established targets of this signal transduction pathway (5, 16,
52), we could validate only seven other genes (MIG2, MIG3,
STD1, YGL157W, YKR075C, YOR062C, and YNL234W) as
significant targets of Rgt1. These results are consistent with
those from other recent global profilings of the yeast transcrip-
tome (2, 7). While the expression of several other genes
changes when RGT1 is inactivated (Tables 3 and 5), the role of
Rgt1 in regulating the expression of these genes is modest at
best (Tables 3 and 5). We conclude that the Rgt2/Snf3-Rgt1
glucose signal transduction pathway is primarily dedicated to
regulating the expression of HXT genes.

We can only speculate about the possible functions of the
proteins encoded by the few newly discovered Rgt1 targets

(YKR075C, YOR062C, YGL157W, and YNL234W). Because
Ykr075 and Yor062 have similarity to Reg1, a regulatory sub-
unit of the Glc7 PP1 protein phosphatase known to be involved
in the Snf1 glucose signaling pathway, we suspect that they are
involved in glucose sensing or metabolism. However, we have
not been able to detect any defects in glucose induction or
glucose repression of gene expression caused by deleting these
genes (either singly, doubly, or in combination with a reg1
mutation). The function of the N terminus of Reg1, the portion
that is similar to Ykr075 and Yor062, is not known. This part
of Reg1 is required neither for interaction with the Glc7 phos-
phatase nor for interaction with Snf1 (57), though it is required
for the full repression of SUC2 (but not ADH2) expression
(17). The pattern of transcriptional regulation of YKR075C
(repression by Rgt1 in the absence of glucose and repression
by Mig1 and Mig2 at high levels of glucose) is similar to those
of HXT2 and HXT4, which encode high- and intermediate-
affinity glucose transporters, respectively, leaving a relatively
narrow window of glucose concentrations within which these
genes are maximally expressed (43, 53). By contrast, the YKR075c
paralogue YOR062c is expressed mainly in the presence of high
levels of glucose (Table 4). This pattern of regulation suggests
that Ykr075 operates under conditions of low levels of glucose
and that Yor062 operates when glucose levels are high.

The protein encoded by YGL157W is similar to oxi-
doreductases with dihydroflavanol 4-reductase activity
(Gene Ontology Consortium, SGD; http://www.geneontolo-
gy.org/). A yeast mutant lacking all four dihydroflavanol
4-reductase-like proteins (Ygl157, Ygl039, Gre2/Yol151w,
and Ydr541) has been constructed (14), but no phenotype of
the mutant was reported. The substrate(s) of Ygl157 is un-
known, but its ortholog, Gre2, catalyzes the reduction of
methylglyoxal (10), a by-product of glycolysis. Another Rgt1
target, YNL234W, encodes a protein that is similar to the
globins and contains a functional heme-binding domain
(59). Other transcription factors in addition to Rgt1 must
control the expression of YNL234W, since the gene is also
activated by stress (e.g., nitrogen shortage and heat shock)
(59). The role of these two proteins, if any, in glucose
signaling or metabolism remains to be determined.

FIG. 3. Western blot analysis of tagged Mig1, Mig2, and Mig3.
Strains YM6843 (MIG1-6HA), YM6833 (MIG2-6HA), and YM6835
(MIG3-6HA) were pregrown in 5% glycerol plus 0.5% galactose (no
glu) and inoculated into the same medium and into a medium con-
taining 5% glycerol plus 0.05% glucose (low glu) or 4% glucose (high
glu) at an OD600 of 0.1 to 0.2. Protein extracts were prepared after the
cultures reached an OD600 of approximately 1.0. For the MIG1-6HA
strain, each lane was loaded with extract in a volume equivalent to a
cell OD600 of 0.25. For MIG2-6HA, cells with an OD600 of 0.5 were
loaded; for MIG3-6HA, cells with an OD600 of 1.0 were loaded. Pro-
teins were resolved by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (4 to 15% polyacrylamide gradient) and detected by im-
munoblotting. Loading of the lanes with expected amounts of protein
was subsequently confirmed by staining the membrane with Ponceau
Red (data not shown).

TABLE 9. Gene expressed from the MIG2-lexA-MIG2 promotera

Strain Carbon source

Expression of UAS (CYC1)-lacZ (units of �-galactosidase)

Repression
(fold)

Wild type Galactose 476.6 216.0 2.2
rgt1� strain 224.3 16.2 13.8

Wild type Raffinose 1,033.8 258.6 4.0
rgt1� strain 594.4 30.4 19.6

Wild type Glucose 263.8 29.8 8.8
rgt1� strain 206.7 13.9 14.9

a The function of lexA-MIG2 expressed from the MIG2 promoter is regulated by Rgt1. Cells were pregrown in a 2% raffinose–0.05% glucose medium selective for
the plasmids and inoculated at an OD600 of approximately 0.1 into fresh medium with the indicated carbon sources. After 5 to 6 h of growth, cellular extracts were
prepared from the cultures, and �-galactosidase activity (in nanomoles of ONPG per milligram of protein per minute) was measured in the extracts. Strains used were
BY4743 (FM393) (wild type [diploid]) and YM6440 (rgt1�/rgt1�). Plasmids used were pBM4258 (pMIG2-lexA-MIG2), pLG312s (lexO-less UAS-lacZ reporter) (22),
and JK1621 (4x lexO-UAS-lacZ reporter) (31). The amount of repression caused by LexA (not attached to Mig2) in the wild-type strain was as follows: with raffinose,
2.9-fold; with galactose, 1.7-fold; and with glucose, 2.2-fold.
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Perhaps the most significant insight gained from our gene
expression profiling results is the revelation of an intricate
intra- and interpathway regulatory circuit connecting two glu-
cose sensing and signaling pathways that cause glucose repres-
sion and glucose induction of gene expression (Fig. 2). There
are feedback components as well as feedforward components
of this regulatory circuit. In the glucose induction pathway,
STD1 expression is feedback regulated by Rgt1; glucose inhib-
its Std1 function by stimulating its degradation (44a; V. Bra-
chet, unpublished), and glucose induces STD1 expression
through the Rgt2/Snf3-Rgt1 signaling pathway (Table 6 and
Fig. 2). Thus, STD1 expression is increased at the same time
that Std1 levels are decreasing in response to glucose. This
regulation should serve to dampen glucose induction of gene
expression. It should also provide for a rapid reestablishment
of repression when glucose is depleted. Std1 may also play a
role in the glucose repression pathway, because it interacts
with and regulates Snf1 (36).

In contrast to STD1, its paralogue MTH1, which has an
overlapping function, is feedforward regulated; glucose stimu-
lates the proteasome-mediated degradation of Mth1 (19) while
also reducing MTH1 expression via repression mediated by
Mig1 and Mig2 (and Mig3) (Table 6) (62). This regulation
should reinforce the inhibitory effect of glucose on Mth1 func-
tion and ensure maximal glucose induction of Rgt1-repressed
genes. MTH1 expression is also activated on galactose by Gal4
(54). As a result, in the absence of glucose (when Rgt1 is
repressing HXT expression), Mth1 seems to be the major pro-
moter of Rgt1 repression function.

The expression of a third component of the glucose induc-
tion pathway, SNF3, is repressed by high levels of glucose
through the action of Mig1 and Mig2 (and Mig3) (47, 52). This
finding reflects the likely function of Snf3 as a high-affinity
glucose sensor (a sensor of low levels of glucose). Glucose
repression of MIG1 expression mediated by Mig1 itself (43,
71), in collaboration with Mig2 (and Mig3) (Table 8), consti-
tutes a feedback regulatory circuit, whereby synthesis of the
repressor is decreased under conditions in which it is active.
The effect of this regulation is to dampen Mig1-mediated glu-
cose repression, possibly to avoid overrepression, and conceiv-
ably to enable a more rapid recovery from repression when
glucose becomes depleted from the medium.

Our observation that the expression of the Mig2 repressor,
which collaborates with Mig1, is induced by glucose through
the Rgt2/Snf3-Rgt1 signaling pathway (Tables 6 and 7) pro-
vides a satisfying explanation for the fact that Mig2 function is
not regulated by Snf1 (43). Indeed, glucose induction of MIG2
expression is sufficient to account for the glucose activation of
Mig2 function (Table 9). The two main glucose repressors,
Mig1 and Mig2, are mostly redundant (43, 66) but are regu-
lated in different ways by different signaling pathways respond-
ing to different glucose signals, one of which operates through
Snf1, is dependent on the Glc7 phosphatase and hexokinase
(58, 64), and is probably based on glucose metabolism and the
other of which operates through the glucose sensors to sense
extracellular glucose by receptor-mediated signaling. Thus, the
phenomenon of the glucose repression of gene expression is a
result of outputs from two glucose signal transduction path-
ways: the Mig1 component regulated by the Snf1 kinase and
the Mig2 (and the ancillary Mig3) component regulated at the

level of their transcription by the Snf3/Rgt2-Rgt1 signaling
pathway. The cross talk between the two glucose signaling
pathways and the redundancy of the two main glucose repres-
sors probably serve to integrate cellular responses to different
glucose signals. Apparently, it is advantageous for the cell to
employ two signaling systems to respond to its preferred sugar,
but by locking the signaling pathways in a cross talking net-
work, they respond coordinately. The dynamic structure of this
glucose sensing regulatory network may serve to determine the
range of its response to glucose, its robustness, and its sensi-
tivity to environmental changes in glucose availability.
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