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People differ in their ability to perform novel perceptual tasks, both
during initial exposure and in the rate of improvement with prac-
tice. It is also known that regions of the brain recruited by particular
tasks change their activity during learning. Here we investigate
neural signals predictive of individual variability in performance.
We used resting-state functional MRI to assess functional connec-
tivity before training on a novel visual discrimination task. Sub-
sequent task performance was related to functional connectivity
measures within portions of visual cortex and between visual cor-
tex and prefrontal association areas. Our results indicate that
individual differences in performing novel perceptual tasks can be
related to individual differences in spontaneous cortical activity.

predisposition | visual learning | spontaneous activity

Healthy observers differ in their ability to perform a variety of
visual tasks (1). Individuals also differ in their ability to

improve with training (2–6), i.e., perceptual learning (7, 8). Ini-
tial performance and rate of learning tend to be inversely related
(3, 9). Thus, individuals who perform better initially tend to
exhibit slower improvement. Although the physiological corre-
lates of perceptual learning have been well documented at the
level of individual synapses (10), neurons (11, 12), and large-
scale networks (6, 13–16), it is largely unknown whether the state
of the brain before training influences future performance or the
rate of acquisition of a novel task. Here we investigate the extent
to which performance of a novel perceptual task can be pre-
dicted on the basis of physiological measures evaluated before
training. Our measure of performance takes into account both
early and late features of the psychophysical learning curve.
Intrinsic neural activity is temporally correlated within widely

distributed networks that recapitulate the topography of task-re-
lated functional responses (17–21). Hence, resting-state func-
tional connectivity offers a plausible neural correlate of behavioral
predisposition to perform a novel task. Moreover, resting-state
measures have been correlated with individual performance var-
iability in several cognitive domains (22–26). However, to our
knowledge, no study to date has shown that functional connec-
tivity, measured before training, within cortical circuits later
recruited by a novel task, is predictive of future performance.
In previous work (15), we showed that resting-state blood

oxygenation level-dependent signal functional connectivity (FC)
changes in task-relevant cortical networks after extensive prac-
tice on a novel orientation discrimination task. Critically, post-
learning modulations in FC correlated with individual measures
of improvement.
Here, we analyze the same dataset to test the hypothesis that

FC in task-relevant circuits, measured before training, is pre-
dictive of subsequent performance.

Results
Behavior.Healthy observers (n = 14, seven male) were trained to
report the presence/absence of a target shape (an inverted letter

T) (14) always presented in the lower left visual quadrant (15)
(Fig. 1A, Methods, and SI Methods). Targets and distractors
(letter Ts of different orientation) were presented together in
a circular array at 5° of eccentricity. The criterion for successful
acquisition of the task was a normalized accuracy equal to or
greater than 80% over 10 consecutive blocks of trials, with each
block including 45 trials (14, 15, 27):

Normalized accuracy ¼ ðhits ½%� þ correct rejections ½%�Þ
− false alarms ½%�=1− false alarms ½%�Þ

[1]

On average, observers took approximately 5,600 trials or 118
blocks (∼4 d of 2–3 h practice per day) to reach the criterion
(Fig. 1B). We observed a high degree of individual variability at
the beginning of training. Accuracy on the first 10 blocks, the
minimum number of blocks performed on the first day, was 41%
with large interindividual variability (range, 13–69%). Psycho-
physical performance curves were fit by using the following
empirical two-parameter expression:

a ¼ a0 þ slogðkÞ [2]

where a is accuracy, k indexes block, a0 is initial accuracy on the
first block, and s is a scaling parameter numerically equal to the
initial slope. Fits of the analytic expression to the individual
performance data were expressed in terms of variance explained
(r2): median r2 was 0.68, with a range of 0.29 to 0.93 (Fig. 1B and
Fig. S1). In addition to a0 and s, we evaluated the number blocks
needed to achieve the criterion (performance ≥80%; kc). The
three measures were correlated (SI Methods and Fig. S2) in a
manner consistent with previous studies of perceptual learning
(3, 9). Thus, subjects with high initial accuracy learned the task
in fewer blocks but at a lower rate of improvement. Conversely,
subjects with lower initial accuracy took longer to reach criterion
but their rate of improvement was higher. Because of these rela-
tions and the relatively small size of the study group, it was not
possible to derive independent measures of initial performance
and rate of learning. To obtain individual quantitative indices of
performance, a0, s, and kc were entered into a principal compo-
nent analysis (Fig. S3). The first component (PC1) explained 75%
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of the variance. The second component accounted for 15% of the
variance, but its eigenvalue was less than 1 (scree plot in Fig. S3)
and it was therefore not further considered (28). Accordingly, PC1
was used to compute individual measures of performance, which
we here define as task fitness (f) by using the following expression:

f ¼ ½a0 s kc� ·w [3]

where w is the vector of factor weights (SI Methods). In the rest
of the analysis, we use task fitness to examine the relationship
between performance and pretraining resting-state FC.

Pretraining FC in Visual Cortex and Task Fitness. Resting-state
functional MRI (fMRI) and visuotopic localizer fMRI were ac-
quired 24 to 48 h before first exposure to the task (Methods and
SI Methods). During the visuotopic localizer scans, subjects were
asked to maintain central fixation while quarter-field stimulus
arrays were passively presented in a blocked design (Fig. 1C).
Regions of interest (ROIs) for the computation of FC were
identified in the ventral and dorsal portions of visual cortex in
each hemisphere. At the group level, two ROIs were identified
in each quadrant as showing the strongest visuotopic localizer
responses (e.g., in right dorsal cortex for left lower field stimu-
lation) compared with the average response to stimuli in the
other quadrants [group-level voxel-wise random-effect ANOVAs,
multiple comparison corrected over the entire brain (P < 0.05)].
These regions are shown in Fig. 1D on a flattened representation
of visual cortex in the Population Average Landmark and Surface
(PALS) atlas (29) and labeled according to their location with
respect to the probabilistic borders of visual areas in the same
atlas (Table S1). In general, for each quarter-field representation
in visual cortex, one ROI is “early” in the visual hierarchy (near/
at V1–V2), whereas the other is “intermediate” (near/at V4–V8
or V3A; Fig. 1D; Table S1 shows coordinates).
To examine the relationship between pretraining FC and the

ability to perform the discrimination task, we computed group-
level voxel-wise maps of the Pearson correlation coefficient be-
tween task fitness and the strength of FC for each visuotopic

ROI (defined as FC–PC1 correlation maps; Methods, SI Meth-
ods, and Fig. S4). Fig. 2A shows that the strength of FC between
a representative ROI in right ventral visual cortex (near/at V1–
V2) and large swaths of ventral and dorsal peripheral visual
cortex in both hemispheres is strongly correlated with task fitness
(all voxels Z > 2; P < 0.05, Monte Carlo corrected). Observers
with stronger pretraining FC between visual regions displayed
greater task fitness (Fig. 2B). This relationship was consistent
across different ROIs in left and right visual cortex (Fig. S5). To
quantify this consistency, a conjunction map was computed that
shows the portions of visual cortex with behaviorally predictive
FC across multiple ROIs (Fig. 2C). The most consistent regions
encompassed both early and intermediate retinotopic areas, in-
cluding a band outside the foveal region in the near periphery
(based on the PALS borders).
To examine whether the regions exhibiting behaviorally signifi-

cant pretraining FC coded for the stimuli, we quantified the per-
centage of voxels in the FC–PC1 conjunction map that overlapped
with the regions in visual cortex selectively activated by the stim-
ulus array (i.e., the sum of the quadrant maps). At a threshold of
four of eight ROIs, 72% of the behaviorally predictive voxels from
the FC–PC1 conjunction map fell within the borders of the region
activated by the stimulus (Fig. 2D). This proportion increased to
86% when the threshold was increased to five of eight ROIs.
Computing pairwise correlations for all ROIs and calculating

the correlation with task fitness confirmed these findings. The
range of FC–PC1 correlations varied between an r of 0.1 and an r
of 0.8; 13 of 28 (or 8 * 7/2) possible ROI pairs showed a significant
correlation with task fitness [false discovery rate (FDR), q < 0.05
after random permutation test]. Thus, voxel-wise and regional
analyses confirmed a significant relationship between task fitness
and pretraining FC in portions of visual cortex activated by the
visuotopic localizer stimuli. Fig. 3A shows the group average
strength of FC between ROI pairs arranged by visual quadrant
(i.e., dorsal, ventral). Fig. 3B shows behaviorally significant FC.
Behaviorally predictive correlations (FC–PC1) were observed
predominantly in heterotopic region pairs, i.e., region pairs in
different quadrants within the same (e.g., left dorsal to ventral

Fig. 1. Behavioral training, psychophys-
ics results, visuotopic localizer, and ROIs.
(A) Experimental paradigm. (B) x axis,
number of blocks; y axis, accuracy (i.e.,
percentage of correct response corrected
for percentage of false alarms). Black
dots display the group average perfor-
mance block by block; solid red line
indicates the psychophysical fitting
model a = a0 + slog(k) with prediction
bounds at 95% of confidence level (dot-
ted lines). (C) Design of visuotopic local-
izer. Squares of different colors (not
shown in real display) indicate a visual
quadrant. (D) Visual ROIs/seeds. Eight vi-
sual regions (seeds) defined on the basis
of the visuotopic localizer scan are dis-
played on the flattened representation
of posterior occipital cortex using the
PALS atlas (29). Blue lines are approxi-
mate borders between retinotopic visual
areas based on a standard atlas (29) L.H.,
left hemisphere; R.H., right hemisphere.
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cortex) or different hemispheres (e.g., left dorsal to right ventral
cortex; Fig. 3 B and C), rather than homotopic region pairs (e.g.,
right dorsal to left dorsal cortex; Fig. 3B andD) or local connectivity
(e.g., right dorsal V1–V3 to right dorsal V3A–LO; permutation test
on the entire correlation matrix, FDR q < 0.05; Fig. 3 B and E).

Pretraining FC Between Visual and Frontoparietal Regions and Task
Fitness. Behaviorally predictive FC with visuotopic areas ex-
tended also to a small number of regions in higher-order frontal
and posterior parietal cortex (Fig. S6A). Fig. 4A shows FC
between a right dorsal visual ROI and left anterior insula, be-
longing to the “control network” (30, 31), which was negatively
correlated with task fitness. Observers who performed better on
the orientation discrimination task tended to have stronger
negative correlation (i.e., antiphase coherence) between spon-
taneous activity in visual cortex and anterior insula (Fig. 4B). This
result is representative of multiple visual ROIs (four of eight visual
ROIs; Fig. 4C). Interestingly, this region overlaps with an insular
region activated by the orientation discrimination task (Fig. 4D
and SI Methods). A similar pattern was detected in the right
medial prefrontal cortex, a part of the default mode network (32,
33) (Fig. 4 E–H). Again, more negative FC corresponded to
greater task fitness (Fig. 4F). This region overlaps with a larger
medial prefrontal region deactivated by task performance (Fig.
4H and SI Methods). Similar negative FC–PC1 correlations, i.e.,
more negative FC corresponding to better performance, were
detected in other default mode regions, in left middle temporal
cortex and right/left angular gyrus (Fig. S6A and Table S2). All
regions in higher-order cortex that showed predictive FC with
visual cortex overlapped regions recruited by the orientation
discrimination task (Fig. S6 B and C), albeit in a small proportion
of the total extent of cortex recruited by the task.

Control Analyses: Auditory Cortex. To examine the modality spec-
ificity of these effects, and rule out the possibility that FC–per-
formance correlations merely reflected a high level of FC in
neighboring areas, a set of control analyses was run on primary
and secondary auditory regions (SI Methods; Table S1 shows
coordinates). The auditory regions were selected based on two
criteria: anatomical location and task deactivation during the

orientation discrimination task. In fact, primary and secondary
auditory regions are typically deactivated during visual tasks (32).
From the auditory regions, we computed baseline FC and FC–
PC1 correlation maps, which were compared with the visual
regions. Both neighboring visual (Fig. S7A) and auditory regions
(Fig. S7C) showed strong FC. However, auditory regions (Fig.
S7D), in contrast to visual regions (Fig. S7B), did not show
a predictive relationship with task fitness. We conclude that the
behaviorally predictive pretraining FC is modality specific, and is
not driven by local connectivity.

Discussion
We show that certain patterns of resting state FC within visual
cortex, and between visual cortex and higher-order cortical
regions, represent neural predictors of observer predisposition to
perform a novel orientation discrimination task. Several previous
studies have reported correlations between performance meas-
ures and fMRI FC (22–26). However, this study, as far as we are
aware, is the first to demonstrate that FC, before any exposure, is
predictive of performance and acquisition on a novel task. In
addition, its topography coincides with the areas subsequently
recruited by task performance.

Task Fitness: Initial Performance, Rate, and Duration of Learning. The
behavioral component identified by the factor analysis (i.e., PC1)
combined aspects of initial performance (i.e., predisposition), the
rate of performance improvement, and the quantity of practice
required to reach criterion. Our observers were highly variable in
their initial performance, a finding concordant with previous
studies of complex visual tasks (1) as well as perceptual learning
(2–4, 6). Interestingly, task fitness was positively correlated with
initial performance, and negatively correlated with the rate of
learning and the number of blocks to criterion. Hence, subjects
with high initial performance reached criterion earlier but at
a slower rate, consistent with early reports on perceptual learning
(3, 9). Our results therefore suggest that the state of the system at
the beginning of training may influence the way the observers
learn when the task requires extensive cortical processing.

Fig. 2. Task fitness and pretraining FC to/from visual cortex.
(A) Voxel-wise FC–PC1 correlation map starting from a seed
region in the right ventral visual seed (V1–V2; black border),
corresponding to the left upper visual quadrant. The map is
projected onto a flattened representation of the posterior
occipital cortex using the PALS atlas (29). Color scale: yellow/
orange indicates positive correlation (Z-statistic of Pearson r)
thresholded at Z > 2, P < 0.05, and Monte Carlo corrected. Blue
color indicates negative correlation. Blue lines are the same as
in Fig. 1D. L.H., left hemisphere; R.H., right hemisphere. (B) x
axis, task fitness, i.e., principal component scores of PC1; y axis,
FC (Fisher Z-transformed) between a right ventral visual seed
V1–V2 (green, Inset; same as in A) and a left dorsal visual re-
gion (red) extracted from the FC–PC1 correlation map in A
(Talairach coordinates, −06 −96 +08; 185 voxels). Each di-
amond represents an observer. (C) Conjunction of eight voxel-
wise FC–PC1 correlation maps, one for each visual seed shown
in Fig. 1D (Table S1 provides coordinates). Color scale: yellow/
orange indicates overlap of positive correlations (range, 1–8);
cyan/blue indicates overlap of negative correlations. (D) Con-
junction map between visuotopic localizer activations (Z sta-
tistic > 3, P < 0.05, Monte Carlo corrected; Methods; red) and
FC-PC1 conjunction map thresholded four of eight (green).
Overlapped voxels are in yellow.
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Predictive Intrinsic FC. Predictive FC was observed in region pairs
including visual cortex as well as prefrontal and insular areas in-
volved in cognitive control. All predictive regions were a subset of
the cortical regions driven by the orientation discrimination task.
Two patterns of FC were predictive of task fitness. In visual cortex,
observers with stronger heterotopic functional connections, i.e.,
linking cortex representing dorsal and ventral quadrants within or
between hemispheres, exhibited higher task fitness. In contrast, the
strength of homotopic connections, i.e., linking dorsal or ventral
quadrants across hemispheres, or of local connections, i.e., linking
adjacent regions in visual cortex, was not predictive of perfor-
mance. This result is noteworthy because local and homotopic FC
typically is stronger than heterotopic FC (34, 35).
A possible interpretation is that heterotopic connections

linking different quadrants in visual cortex are more important
for the dynamic reweighting of functional connections that occur
in the course of learning. The orientation discrimination task
required subjects to direct spatial attention to the left lower
quadrant. Important processes for acquisition of the task include
filtering of distracters at multiple unattended locations (36), as
well as coding of the locus of attention by gradients of activity
across spatial maps (37, 38). Hence, a high degree of coherence
between stimulus-specific regions in visual cortex, before any
experience, may facilitate the subsequent parsing of relevant
from irrelevant information, and facilitate the reweighting of
functional connections among different quadrants in visual

cortex. At the end of learning, in agreement with this hypothesis,
stronger responses to target shapes were recorded only in the
trained visual quadrant, and FC was differentially modulated in
trained and untrained quadrants (15).
The second predictive pattern of FC was an inverse correlation

between spontaneous activity in visual cortex and regions of the
default mode (32, 33) and control (30) networks. This finding is
also consistent with learning-related changes reported in our
previous study (15), and in the work of Sigman et al. (14). We
previously found that FC between unattended quadrants in visual
cortex and default mode regions decreased (i.e., became less
negative) after learning, and that these decrements correlated
with measures of perceptual learning. Sigman et al. reported that
decreases in task-evoked deactivation in the default mode net-
work correlated with learning on the same task (14). Observers
with stronger negative correlation between visual cortex and de-
fault mode regions at baseline may find it easier to filter out dis-
tracters at unattended locations early in training, which becomes
less important as target selection becomes more automatic. This
interpretation is consistent with a role of the default mode net-
work in filtering out unattended stimuli, as suggested by other
studies (39–41). Behaviorally significant negative correlations in
FC between visual cortex and default mode regions have also been
reported in relation to reading skills in children and adults,
a competency closely related to orientation discrimination (25).

Fig. 3. Task fitness and pretraining FC within visual cortex. (A) Correlation matrix (Fisher Z-transformed Pearson coefficient) of all ROI pairs in visual cortex.
Yellow/orange color indicates positive correlations, white color indicates nonsignificant correlations (permutation test on the entire correlation matrix; FDR
q < 0.05). Dorsal visual regions are highlighted by light pink, ventral visual regions by light purple. (B) Correlation matrix (Pearson coefficient r) of PC1 and FC
between all possible ROI pairs in visual cortex. Red/yellow cells indicate positive FC–PC1 correlations, white cells indicate nonsignificant correlations (per-
mutation test on the entire correlation matrix; FDR q < 0.05). (C–E) x axis, task fitness, i.e., principal component scores of PC1; y axis, FC (Fisher Z-transformed)
between two heterotopic (C), homotopic (D), and neighboring (E) visual regions. Each diamond represents an observer. For Pearson correlation coefficient,
permutation test was performed on the entire correlation matrix (FDR q < 0.05).
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Putative Underlying Mechanisms. One possible substrate for the
predictive relationship between task fitness and FC is individual
variability in structural connectivity. The strength of structural
connections has been correlated with the strength of FC at the
level of both large-scale networks (42) and local microcircuitry
(43), and has also been shown to exhibit experience-dependent
plasticity (44). However, in our study, regions exhibiting pre-
dictive FC (i.e., heterotopic connections in visual cortex, and
visual, default, and control) showed weaker baseline FC. The
logical inference would be that these areas are less well anatom-
ically connected (42). Moreover, in primate studies, subdivisions
of visual cortex with behaviorally predictive (i.e., heterotopic)
functional coupling tend to have weaker anatomical connectivity
than nonpredictive (i.e., homotopic) regions (45).
Another mechanism that could be related to our results is the

recent observation that fMRI FC is related to slow cortical
potentials and band-limited fluctuations of power in higher fre-
quencies (46–48). These relatively slow fluctuations in neural ex-
citability may facilitate synchronization of high-frequency activity
through a variety of mechanisms (49, 50), and enable the coordi-
nation of task-relevant circuits. This could explain why observers
with stronger FC within visual cortex, or between visual and other
task-relevant areas in prefrontal and insular cortex, can recruit
those regions more efficiently when performing a novel task.
We conclude that individual variability of FC within visual

cortex, and between visual and higher-order regions, is related to
the predisposition to perform a novel visual discrimination task.

These findings suggest a potential role of intrinsic brain activity
as a neural predictor of perceptual skill acquisition. This result
has general implications for the functional significance of spon-
taneous activity, and the neural bases of individual behavioral
variability. In addition, our findings emphasize the importance of
spontaneous activity, and the state of FC, as a possible “neural”
prior for biasing task-evoked activity and behavior (51–53).

Methods
Participants.Healthy right-handedobservers (N=14)providedwritten informed
consent approved by the Research Ethics Board of the University of Chieti.

Behavioral Training.Observerswere instructed to attend to the left lower visual
quadrant and report with a key press the presence/absence of a target shape
(an inverted letter T) in a briefly presented radial display of randomly oriented
letter-T distracters. Central fixation was monitored with an eye tracker. Cri-
terion for learning was 10 blocks of trials with accuracy of at least 80%.

fMRI Scanning. Functional images (gradient-echo sequence, repetition time of
2.163 s, echo time of 50 ms, flip angle 90°, slice thickness of 8 mm, 3.75 × 3.75
mm in-plane resolution) were acquired during passive stimulation of each
visual quadrant with the same display used for perceptual learning (i.e.,
localizer). Localizer scans were used to define ROIs/seeds for the FC analysis
of resting-state data obtained before any exposure to the task.

Behavioral Score. Task fitness was defined as the first factor (i.e., PC1) of a
principal component analysis on the parameters of a natural logarithmic
function, plus the number of blocks to criterion, used to quantify observer
learning curves. This component accounted for 75% of the behavioral

Fig. 4. Task fitness and pretraining FC to/from visual cortex and frontal regions. (A) Lateral view of the voxel-wise FC–PC1 correlationmap starting from a right
dorsal visual seed (V3A–LO), corresponding to the left lower visual quadrant. Color scale is the same as in Fig. 2. L.H., left hemisphere. (B) x axis, task fitness; y
axis, FC (Fisher Z-transformed) between a right dorsal visual seed V3A–LO (green, Inset; same as inA) and left anterior insula (LaI; red) extracted from the FC–PC1
correlation map in A (Talairach coordinates, −38 +18 −07; 171 voxels). Each diamond represents an observer. (C) Conjunction map of FC–PC1 correlation maps
from eight visual seeds. Color scale is the same as in Fig. 2. (D) Conjunction map between activation map of orientation discrimination task (trained plus
untrained shape greater than fixation, Z-statistic >3, P < 0.05, Monte Carlo corrected;Methods) and FC–PC1 conjunction map thresholded at negative three of
eight (green). Overlapped voxels are in yellow. (E) Medial view of the voxel-wise FC–PC1 correlation map starting from a right ventral visual seed (V1–V2),
corresponding to the left upper visual quadrant. Color scale is the same as in A. R.H., right hemisphere. (F) x axis as in B; y axis is FC (Fisher Z-transformed)
between a right ventral visual seed V1–V2 (green, Inset) and a right ventral medial prefrontal cortex (RvmPFC; red) extracted from the FC–PC1 correlation map
in A (Talairach coordinates, +04 +38 −18; 120 voxels). Each diamond represents an observer. (G) Medial view of the same conjunction map in B, with the same
color scale. (H) Conjunction map between deactivation map of orientation discrimination task (trained plus untrained shape less than fixation, Z-statistic > 3,
P < 0.05, Monte Carlo corrected; Methods) and FC–PC1 conjunction map thresholded negative three of eight (green). Overlapped voxels are in yellow.
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variance and was correlated with initial performance, rate of learning, and
number of blocks to criterion.

FC–PC1 Correlation. Voxel-wise or ROI pair FC–PC1 correlations were com-
puted as the Pearson correlation coefficient r between FC measures and task
fitness (Results). FC was conventionally computed as the Pearson correlation
between the time series extracted from a predefined ROI (e.g., left ventral
visual cortex) and the rest of the brain (to obtain voxel-wise maps) or an-
other ROI (to obtain ROI–ROI FC; SI Methods provides detailed information).
Voxel-wise statistical significance in correlation maps was evaluated by first
expressing the result as equi-probable Z score maps, which were then cor-
rected for multiple comparisons. Significance thresholds for ROI pair FC were

computed by permutation simulations. Presently reported ROI pair results
are FDR corrected with a q-value lower than 0.05.

ACKNOWLEDGMENTS. We thank Drs. Annalisa Tosoni and Valentina
Sebastiani for data collection; Dr. Francesco de Pasquale for discussion on
data analysis; Dr. Gordon Shulman for reading and commenting on a draft
of the manuscript; Dr. Mariano Sigman, one of the reviewers, for suggesting
the principal component analysis on the behavioral data; and the other
anonymous reviewer for constructive criticisms on the earlier draft. This
work was supported by European Union (EU) Grants FP6-MEXC-CT-2004–
006783 (Ibsen) and FP7 200728 (Brain-Synch), National Institute of Mental
Health Grant 1R01MH096482, National Institutes of Health Grant NS48013,
and the Third PhD Internationalization Program of the Italian Ministry of
University and Research.

1. Halpern SD, Andrews TJ, Purves D (1999) Interindividual variation in human visual
performance. J Cogn Neurosci 11:521–534.

2. Fahle M, Edelman S, Poggio T (1995) Fast perceptual learning in hyperacuity. Vision
Res 35:3003–3013.

3. Fahle M, Henke-Fahle S (1996) Interobserver variance in perceptual performance and
learning. Invest Ophthalmol Vis Sci 37:869–877.

4. Schmitt C, Kromeier M, Bach M, Kommerell G (2002) Interindividual variability of
learning in stereoacuity. Graefes Arch Clin Exp Ophthalmol 240:704–709.

5. Fahle M (2004) Perceptual learning: A case for early selection. J Vis 4:879–890.
6. Mukai I, et al. (2007) Activations in visual and attention-related areas predict and

correlate with the degree of perceptual learning. J Neurosci 27:11401–11411.
7. Gilbert CD, Sigman M, Crist RE (2001) The neural basis of perceptual learning. Neuron

31:681–697.
8. Sasaki Y, Nanez JE, Watanabe T (2010) Advances in visual perceptual learning and

plasticity. Nat Rev Neurosci 11:53–60.
9. Fahle M (1997) Specificity of learning curvature, orientation, and vernier discrim-

inations. Vision Res 37:1885–1895.
10. Gilbert CD, Sigman M (2007) Brain states: Top-down influences in sensory processing.

Neuron 54:677–696.
11. Schoups A, Vogels R, Qian N, Orban G (2001) Practising orientation identification

improves orientation coding in V1 neurons. Nature 412:549–553.
12. Raiguel S, Vogels R, Mysore SG, Orban GA (2006) Learning to see the difference

specifically alters the most informative V4 neurons. J Neurosci 26:6589–6602.
13. Schwartz S, Maquet P, Frith C (2002) Neural correlates of perceptual learning:

a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA 99:
17137–17142.

14. Sigman M, et al. (2005) Top-down reorganization of activity in the visual pathway
after learning a shape identification task. Neuron 46:823–835.

15. Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning
sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci USA
106:17558–17563.

16. Li W, Piëch V, Gilbert CD (2004) Perceptual learning and top-down influences in
primary visual cortex. Nat Neurosci 7:651–657.

17. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the
motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:
537–541.

18. Fox MD, et al. (2005) The human brain is intrinsically organized into dynamic, anti-
correlated functional networks. Proc Natl Acad Sci USA 102:9673–9678.

19. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal
activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci
USA 103:10046–10051.

20. Vincent JL, et al. (2006) Coherent spontaneous activity identifies a hippocampal-pa-
rietal memory network. J Neurophysiol 96:3517–3531.

21. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the
resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci
USA 100:253–258.

22. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity
related to working memory performance. J Neurosci 26:13338–13343.

23. Seeley WW, et al. (2007) Dissociable intrinsic connectivity networks for salience pro-
cessing and executive control. J Neurosci 27:2349–2356.

24. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional
brain networks and intellectual performance. J Neurosci 29:7619–7624.

25. Koyama MS, et al. (2011) Resting-state functional connectivity indexes reading
competence in children and adults. J Neurosci 31:8617–8624.

26. Zhu Q, Zhang J, Luo YL, Dilks DD, Liu J (2011) Resting-state neural activity across face-
selective cortical regions is behaviorally relevant. J Neurosci 31:10323–10330.

27. Sigman M, Gilbert CD (2000) Learning to find a shape. Nat Neurosci 3:264–269.

28. Abdi H, Valentin D (2007) Multiple factor analysis (MFA). Encyclopedia of Measure-
ment and Statistics, ed Salkind N (Sage Publications, Thousand Oaks, CA).

29. Van Essen DC (2005) A Population-Average, Landmark- and Surface-based (PALS)
atlas of human cerebral cortex. Neuroimage 28:635–662.

30. Dosenbach NU, et al. (2006) A core system for the implementation of task sets.
Neuron 50:799–812.

31. Dosenbach NU, et al. (2007) Distinct brain networks for adaptive and stable task
control in humans. Proc Natl Acad Sci USA 104:11073–11078.

32. Shulman GL, et al. (1997) Common blood flow changes across visual tasks: II. De-
creases in cerebral cortex. J Cogn Neurosci 9:648–663.

33. Raichle ME, et al. (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:
676–682.

34. Vincent JL, et al. (2007) Intrinsic functional architecture in the anaesthetized monkey
brain. Nature 447:83–86.

35. Stark DE, et al. (2008) Regional variation in interhemispheric coordination of intrinsic
hemodynamic fluctuations. J Neurosci 28:13754–13764.

36. Gál V, et al. (2009) Learning to filter out visual distractors. Eur J Neurosci 29:
1723–1731.

37. Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and
spatial attention. Science 299:81–86.

38. Sylvester CM, Shulman GL, Jack AI, Corbetta M (2007) Asymmetry of anticipatory
activity in visual cortex predicts the locus of attention and perception. J Neurosci 27:
14424–14433.

39. Shulman GL, et al. (2003) Quantitative analysis of attention and detection signals
during visual search. J Neurophysiol 90:3384–3397.

40. Shulman GL, Astafiev SV, McAvoy MP, d’Avossa G, Corbetta M (2007) Right TPJ de-
activation during visual search: Functional significance and support for a filter hy-
pothesis. Cereb Cortex 17:2625–2633.

41. Weissman DH, Woldorff MG (2005) Hemispheric asymmetries for different compo-
nents of global/local attention occur in distinct temporo-parietal loci. Cereb Cortex
15:870–876.

42. Honey CJ, et al. (2009) Predicting human resting-state functional connectivity from
structural connectivity. Proc Natl Acad Sci USA 106:2035–2040.

43. Ko H, et al. (2011) Functional specificity of local synaptic connections in neocortical
networks. Nature 473:87–91.

44. Johansen-Berg H (2007) Structural plasticity: Rewiring the brain. Curr Biol 17:
R141–R144.

45. Gattas R, Sousa AP, Mishkin M, Ungerleider LG (1997) Cortical projections of area V2
in the macaque. Cereb Cortex 7:110–129.

46. Nir Y, et al. (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD
fMRI is related to interneuronal correlations. Curr Biol 17:1275–1285.

47. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME (2008) Electrophysiological
correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci
USA 105:16039–16044.

48. de Pasquale F, et al. (2010) Temporal dynamics of spontaneous MEG activity in brain
networks. Proc Natl Acad Sci USA 107:6040–6045.

49. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:
1926–1929.

50. Fries P (2005) A mechanism for cognitive dynamics: Neuronal communication through
neuronal coherence. Trends Cogn Sci 9:474–480.

51. Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: Ex-
planation of the large variability in evoked cortical responses. Science 273:1868–1871.

52. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging
cortical representations of visual attributes. Nature 425:954–956.

53. Sadaghiani S, Hesselmann G, Friston KJ, Kleinschmidt A (2010) The relation of on-
going brain activity, evoked neural responses, and cognition. Front Syst Neurosci 4:20.

Baldassarre et al. PNAS | February 28, 2012 | vol. 109 | no. 9 | 3521

N
EU

RO
SC

IE
N
CE

SE
E
CO

M
M
EN

TA
RY

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113148109/-/DCSupplemental/pnas.201113148SI.pdf?targetid=nameddest=STXT

