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Abstract

A metabolic study revealed that 28-norcastasterone in Arabidopsis is synthesized from cholesterol via the late C-6

oxidation pathway. On the other hand, the early C-6 oxidation pathway was found to be interrupted because

cholestanol is converted to 6-oxocholestanol, but further metabolism to 28-norcathasterone was not observed. The

6-oxoBRs were found to have been produced from the respective 6-deoxoBRs administered to the enzyme solution,

thus indicating that these 6-oxoBRs are supplied from the late C-6 oxidation pathway. Heterologously expressed

CYP85A1 and CYP85A2 in yeast catalysed this C-6 oxidation, with CYP85A2 being much more efficient than

CYP85A1. Abnormal growth of det2 and dwf4 was restored via the application of 28-norcastasterone and closer
precursors. Furthermore, det2 and dwf4 could not convert cholesterol to cholestanol and cholestanol to 6-deoxo-28-

norcathasterone, respectively. It is, therefore, most likely that the same enzyme system is operant in the synthesis of

both 28-norcastasterone and castasterone. In the presence of S-adenosyl-L-methionine, the cell-free enzyme extract

catalysed the C-24 methylation of 28-norcastasterone to castasterone, although the conversion rates of 28-

norteasterone to teasterone and 28-nortyphasterol to typhasterol were much lower; this suggests that 28-

norcastasterone is the primary precursor for the generation of C28-BRs from C27-BRs.
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Introduction

The absence of brassinosteroids (BRs) in the Arabidopsis

mutants det2, cpd, and dwf4 (Li et al., 1996; Szekeres et al.,

1996; Choe et al., 1998; Noguchi et al., 1999), tomato dwarf

(Bishop et al., 1999), and pea lkb (Nomura et al., 1997,
1999) results in pleiotropic abnormalities, including reduced

shoot elongation, reduced fertility, delayed senescence, and

altered vasculature and photomorphogenesis. Mutants can

be restored to the wild-type phenotype via the application

of BRs. Similar abnormalities are also observed in the

Arabidopsis mutants bri1 (Li and Chory, 1997), bin2 (Li

et al., 2001; Li and Nam, 2002), and bak1 (Nam and Li,

2002), as well as in the tomato mutant curl-3 (Koka et al.,
2000). However, the mutant phenotype cannot be rescued

by the application of BRs because of disrupted BR signal-

ling. Therefore, BRs are currently regarded as essential

plant hormones whose endogenous levels must be properly

maintained in plant cells to facilitate normal growth and
development.

Naturally-occurring BRs, the number of which totals

over 50, can be classified into C27-, C28-, or C29-BRs based

on the nature of the alkyl groups occupying the C-24

position in the side chain of the 5a-cholestane carbon

skeleton. Among them, the C28-BRs that harbour a C-24

methyl group are major BRs in the plant kingdom.

Castasterone (CS) and brassinolide (BL) belonging to the
C28-BRs are biologically highly active and, therefore, have

ª 2011 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



been extensively investigated for their biosyntheses by

means of feeding experiments as well as molecular genetics

of BR-deficient mutants. According to the results, two

parallel pathways—namely the early and late C-6-oxidation

pathway in plant cells—have been proposed (Fujioka et al.,

1997; Yokota, 1997; Sakurai, 1999; Bishop and Yokota,

2001; Fujioka and Yokota, 2003; Fig. 1). The biosynthesis

of C28-BRs begins with the hydrogenation of campesterol to
campestanol. In the early C-6 oxidation pathway, campes-

tanol is then oxidized to 6-oxocampestanol, which under-

goes successive oxidation to cathasterone (CT), teasterone

(TE), 3-dehydroteasterone (3-DHT), typhasterol (TY),

and CS. In the late C-6 oxidation pathway, campestanol is

first oxidized at C-22 to generate 6-deoxocathasterone

(6-deoxoCT), which is then oxidized successively to

6-deoxoteasterone (6-deoxoTE), 6-deoxo-3-dehydroteaster-
one (6-deoxo-3-DHT), 6-deoxotyphasterol (6-deoxoTY),

6-deoxocastasterone (6-deoxoCS), and CS. Finally, CS is

oxidized to BL with a 7-oxalactone moiety.

28-Norcastasterone (28-norCS), a C27 counterpart of CS,

has also been identified from as many as 12 plant tissues,

although less frequently than CS (Fujioka, 1999; Fujioka

et al., 2000; Bajguz and Tretyn, 2003). 28-NorCS possesses

the same carbon skeleton as cholesterol, thus suggesting

that 28-norCS is synthesized from cholesterol in a fashion

similar to the synthesis of CS from campesterol. Tomato

seedlings were determined to contain cholesterol, cholestanol,

and several 6-deoxo-28-norBRs including 6-deoxo-28-

norcathasterone (6-deoxo-28-norCT), 6-deoxo-28-nortyphas-
terol (6-deoxo-28-norTY), and 6-deoxo-28-norcastasterone

(6-deoxo-28-norCS) (Yokota et al., 2001; Kim et al., 2004b).

In addition, the cell-free enzyme extract of tomato seedlings

catalysed the conversion of cholesterol to cholestanol and

6-deoxo-28-norTE to 28-norCS via 6-deoxo-28-nor-3-DHT,

6-deoxo-28-norTY, and 6-deoxo-28-norCS. These findings

demonstrate that the synthesis of 28-norCS is mediated by

late C-6 oxidation (Kim et al., 2004b). Furthermore, the
cell-free enzyme extract mediated the C-24 methylation of 28-

norCS to CS in the presence of NADPH and S-adenosyl-L-

methionine (SAM). It was also determined that exogenously

applied 28-norCS restores the abnormal growth of the

tomato dwarf mutant which is defective in a cytochrome

Fig. 1. Biosynthetic pathways for C27- and C28-BRs and their connection established in A. thaliana. The solid and dashed arrows

indicate verified and not verified biosynthetic steps, respectively. The names on arrows indicate genes or enzymes catalysing biosynthetic

reactions.
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P450, CYP85A, involved in the C-6 oxidation of 6-deoxoCS

and 6-deoxo-28-norCS to CS and 28-norCS, respectively.

Therefore, 28-norCS is biologically important per se and is

also important in the production of CS.

In Arabidopsis, C27-BRs including 28-norTY and 28-

norCS have been identified, in addition to the C28-BRs

(Fujioka et al., 2000). The conversion of cholestanol to

6-oxocholestanol, as a possible upstream step in C27-BRs
biosynthesis, has also been demonstrated (Lee et al., 2010),

although downstream steps for the generation of C27-BRs in

A. thaliana have yet to be clearly elucidated.

Despite our previous efforts, the biosynthesis of C27-BRs

via the early C-6 oxidation pathway remains to be clearly

characterized. Furthermore, the linkage of the early and late

C-6 oxidation pathways of C27-BRs, as well as the bio-

synthetic relationship between C27- and C28-BRs, is still not
completely understood. In this study, these subjects were

investigated using Arabidopsis enzyme extracts. The

enzymes and genes involved in C27-BRs biosynthesis have

also been addressed.

Materials and methods

Plant growth conditions

Cold-treated seeds of wild-type Arabidopsis (Col-0) were planted in
soil and grown for 3 weeks in an environmental growth chamber at
22 �C, under a 16 h light (120 lmol photons m�2 s�1)/20 �C, 8 h
dark cycle. When seeds were planted on 13 MS medium (Duchefa,
Haarlem, Netherlands) containing 0.8% (w/v) agar and 1% (w/v)
sucrose, the seeds were surface-sterilized with 70% ethanol and
a 30% (v/v) bleach solution containing 0.025% (v/v) Triton X-100.

Enzyme assays

3-week-old soil-grown Arabidopsis plants (20 g) were harvested and
ground with a mortar and pestle in cold 0.1 M sodium phosphate
(pH 7.4) buffer containing 15 mM 2-mercaptoethanol, 1 mM EDTA,
1 mM dithiothreitol, 0.1 mM phenylmethylsulphonyl fluoride,
40 mM ascorbate, 250 mM sucrose, and 10% (v/v) glycerol. The
homogenate was then centrifuged for 15 min at 8000 g to remove cell
debris. The supernatant was then centrifuged for an additional
30 min at 20 000 g. The resultant supernatant was precipitated via
the addition of cold acetone to a final concentration of 40% (v/v).
The supernatant–acetone mixture was maintained for 10 min at
–20 �C and centrifuged for an additional 10 min at 13 000 g. The
resultant precipitate was dissolved in assay buffer containing 0.1 M
sodium phosphate (pH 7.4) containing 1.5 mM 2-mercaptoethanol
and 20% (v/v) glycerol, and used as the cell-free enzyme solution. For
microsomal preparation, the supernatant obtained from centrifuga-
tion at 20 000 g was subjected to 1 h of ultra-centrifugation at
100 000 g. The resultant pellet was re-suspended with assay buffer.
The enzyme assay mixture was composed of 5 lg of substrate,

3–-5 mg of enzyme solution, and the appropriate co-factor
(NADP/NADPH) or co-substrate (S-adenosyl-L-methionine). The
reactions were initiated via the addition of substrate and the
incubation was conducted for 30 min at 37 �C. The metabolites of
the enzyme reactions were extracted with ethyl acetate (1.2 ml,
three times) and concentrated in vacuo. The ethyl acetate-soluble
fraction was loaded onto a Sep-Pak C18 cartridge column (Waters,
Milford, MA), and sequentially washed with 50% and 60%
methanol (5 ml each). The fraction eluted with 100% methanol
was concentrated in vacuo, dissolved in 50 ll of methanol, and
then subjected to reversed phase (RP)-HPLC (Senshu Pak C18,
103150 mm) eluted at a flow rate of 2.5 ml min�1 with 100%

methanol for the metabolites of cholesterol and cholestanol or
acetonitrile (MeCN)–water gradients (0–20 min, 45% MeCN;
20–40 min, 45–100% MeCN; 40–70 min, 100% MeCN) for
6-deoxo-28-norBRs, or a flow rate of 2 ml min�1 with 60% MeCN
for 28-norBRs. The fractions were collected every minute. The
fractions (cholestanol, 18–19 min; 6-oxo-cholestanol, 7–8 min;
6-deoxo-28-norCT, 58–61 min; 6-deoxo-28-norTE, 44–46 min;
6-deoxo-28-nor-3-DHT, 46–48 min; 6-deoxo-28-norTY, 49–51
min; 6-deoxo-28-norCS, 36–38 min, 28-norTE, 27–29 min; 28-nor-
3-DHT, 34–36 min; 28-norTY, 33–35 min; 28-norCS, 13–15 min) in
which authentic BRs were detected under the same RP-HPLC
conditions were analysed via GC-MS or GC-SIM after appropriate
derivatization.

C-6 oxidations of C27-and C28-BRs by CYP85A1 and CYP85A2

CYP85A1/V60/WAT21 and CYP85A2/V60/WAT21 yeast strains
were employed as previously described (Kim et al., 2005b).
6-Deoxo-28-norBR and its counterpart, 6-deoxo-BR, (5 lg each)
were fed to galactose-induced yeast cells and incubated for 6 h.
[26,28-2H6]BR was added to the cell culture as an internal standard
prior to extraction with ethyl acetate. Purification using a Sep-Pak
C18 cartridge column was conducted in accordance with the
method described above. The fraction eluted with 100% methanol
was subjected to RP-HPLC (Senshu Pak C18, 103150 mm) eluted
at a flow rate of 2.5 ml min�1 with MeCN–water gradients (0–20
min, 45% MeCN; 20–40 min, 45–100% MeCN; 40–60 min, 100%
MeCN). The fractions (28-norTE, 27–29 min; 28-nor-3-DHT,
34–36 min; 28-norTY, 33–35 min; 28-norCS, 13–15 min; TE,
31–34 min; 3-DHT, 37–39 min; TY, 37–39 min; CS, 19–21 min)
containing C27-BR and C28-BR were eluted and combined, and
then subjected to GC-MS analysis. The quantities of the C28-BRs
metabolites were initially calculated using [26,28-2H6]BRs as an
internal standard and the amounts of C27-BRs, the counterparts of
C28-BRs, were estimated by the area ratio relative to C28-BRs on
the total ion chromatogram.

Sterol analysis

3-week-old soil-grown Arabidopsis plants (2 g fresh weight) were
harvested and extracted with methanol:chloroform (4:1, v/v). The
extracts were concentrated in vacuo and solvent-partitioned
between chloroform and water. D7 cholesterol (0.5 lg) was added
to the chloroform-soluble fraction as an internal standard. The
fraction extracted with n-hexane after alkaline hydrolysis was
purified on a Sep-Pak silica cartridge column (Waters, Milford,
MA) and subjected to GC-MS analysis.

GC-MS/SIM analysis

The GC-MS or GC-SIM analyses were conducted as previously
described (Kim et al., 2005b). The samples were subjected to
methaneboronation or trimethylsilyation according to the struc-
tures of the expected metabolites. Methaneboronation was con-
ducted by heating the samples dissolved in pyridine containing
methaneboronic acid (2 mg ml�1) at 80 �C for 30 min and
N-methyl-N-TMS-trifluoroacetamide (MSTFA, Pierce, Rockford,
IL) was used for trimethylsilylation.

Rescue experiments of det2 and dwf4 mutants by C27-BRs

The det2, dwf4, and wild-type (Col-0 or En-2) seeds were surface-
sterilized and planted on 13 MS agar plates containing 1 lM of
various C27-BR biosynthetic intermediates or mock solution. After
5 d under continuous darkness, the seedlings (n >30) were
photographed with a digital camera and the lengths of the
hypocotyls were measured with Scion Image software (Scion
Corporation, Maryland, USA).
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Results

Arabidopsis enzymes were extracted with phosphate buffer

containing the appropriate additives prior to centrifugation,

and successive precipitation with acetone. The precipitates

were then dissolved in assay buffers and employed as crude

enzyme extracts for in vitro conversion experiments.
Unlabelled substrates were used for enzymatic incubation,

since isotope-labelled substrates were not available. The

absence of the expected products in the prepared enzyme

extracts was confirmed via GC-MS and GC-SIM prior to

incubation with the substrates. The enzyme products were

purified via RP-HPLC and then derivatized to trimethylsilyl

ethers (TMSi), bismethaneboronates (BMB) or methanebor-

onate-trimethylsilyl ethers (MB-TMSi). These derivatives
were rigorously characterized by GC-MS and/or GC-SIM

analyses.

Biosynthesis 6-deoxo C27-BRs in A. thaliana

The late C-6 oxidation pathway for 28-norCS proceeds

through the following sequence: cholesterol/cholestanol

/6-deoxo-28-norCT/6-deoxo-28-norTE/6-deoxo-28-nor-

3-DHT/6-deoxo-28-norTY/6-deoxo-28-norCS/28-nor-

CS. The presence of this pathway has been demonstrated,

although not fully clarified, in the tomato. By way of contrast,
no evidence has yet been obtained supporting the existence of

such a pathway in A. thaliana.

Our Arabidopsis enzyme extracts catalysed the conversion

of cholesterol to cholestanol, which is consistent with our

findings that cholesterol and cholestanol are endogenous in

Arabidopsis plants (Table 1). However, the incubation of

cholestanol and 6-deoxo-28-norCT in the crude Arabidopsis

enzyme extract did not result in any of the expected
metabolites. However, enzymes prepared from microsomes

catalysed the conversion of cholestanol to 6-deoxo-

28-norCT and 6-deoxo-28-norTE (Table 2). The enzymes

that convert cholestanol to 6-deoxo-28-norCT and 6-deoxo-

28-norTE do not appear to be abundant in A. thaliana. On

the other hand, the crude enzyme extract catalysed

the conversion of 6-deoxo-28-norTE to 6-deoxo-28-nor-3-

DHT and 6-deoxo-28-norTY, of 6-deoxo-28-nor-3-DHT to
6-deoxo-28-norTE and 6-deoxo-28-norTY, and of 6-deoxo-

28-norTY to 6-deoxo-28-nor-3-DHT and 6-deoxo-

28-norTE; these results indicate that the epimerization of

C-3 from 6-deoxo-28-norTE to 6-deoxo-28-norTY occurs

via 6-deoxo-28-nor-3-DHT, in a reversible fashion. The

metabolites of 6-deoxo-28-norTY also included 6-deoxo-

28-norCS, demonstrating that the enzyme extract harbours

C2 a-hydroxylase. Finally, 6-deoxo-28-norCS was metabo-
lized to 28-norCS by the same enzyme extract. It has also

been established that the late C-6 oxidation pathway, which

produces 28-norCS, is operant in A. thaliana, as anticipated.

Biosynthesis of 6-oxo C27-BRs in A. thaliana

If the early C-6-oxidation pathway of C27-BRs exists in

A. thaliana, 28-norCS will be synthesized according to the

following sequence: cholestanol/6-oxocholestanol/28-

norCT/28-norTE/28-nor-3-DHT/28-norTY/28-nor-

CS. It was determined that our Arabidopsis enzyme extracts

catalysed the conversion of cholestanol to 6-oxocholestanol

(Table 2). However, 28-norCT was not detected in the

cholestanol metabolites, and thus this metabolism was

investigated further using enzymes prepared from micro-
somes obtained via ultra-centrifugation. Nonetheless, 28-

norCT, as well as further metabolites including 28-norTE,

were not produced in the reaction mixture as shown by the

results of GC-SIM analysis. It appears most likely that the

pathway from 6-oxocampestanol to 28-norCT is blocked in

Arabidopsis.

The feeding of 28-norTE to the enzyme extract resulted in

the production of 28-nor-3-DHT and 28-norTY, whereas
the feeding of 28-norTY gave rise to 28-nor-3-DHT and 28-

norTE, thereby indicating that 28-norTE and 28-norTY are

interconvertible via 28-nor-3-DHT (Table 2). Furthermore,

28-norCS was identified as another metabolite of 28-norTY

(Table 2). Therefore, the pathway connecting 28-norTE to

28-noCS was determined to be present in A. thaliana.

Biosynthetic connection of 6-deoxo and 6-oxo C27-BRs
in A. thaliana

Two parallel pathways—the early and late C-6 oxidation
pathways of C28-BRs—are biosynthetically connected by

the C-6 oxidation of 6-deoxoTE, 6-deoxo-3-DHT, and

6-deoxoTY to TE, 3-DHT, and TY, respectively. In

Arabidopsis, AtBR6ox1 (CYP85A1) and AtBR6ox2

(CYP85A2) mediate these C-6 oxidations (Kim et al.,

2005b). An attempt was made to determine whether

CYP85A1 and CYP85A2 are involved in any possible

biosynthetic connection between the early and late C-6
oxidation pathways of C27-BRs. To this end, the cDNA of

Arabidopsis CYP85A1 and CYP85A2 were cloned into

a galactose-inducible expression vector, pYeDP60 (V60),

and transformed into the WAT21 yeast strain, wherein the

expression of Arabidopsis NADPH-Cyt P450 reductase is

inducible by galactose (Pompon et al., 1996; Urban et al.,

1997). After confirming that the C-6 oxidation of 6-deoxo-

28-norCS did not occur in the empty vector-transformed
yeast (V60/WAT21), 6-oxidations of C27- and C28-BRs were

evaluated by the transformed strains (CYP85A1/V60/

WAT21 and CYP85A2/V60/WAT21).

Both CYP85A1/V60/WAT21 and CYP85A2/V60/

WAT21 successfully catalysed the 6-oxidation of C27-BRs,

Table 1. Content of major 4-demethylasterols in A. thaliana

Amount (mg g�1 fresh weight)
1st experiment 2nd experiment

Cholesterol 6.60 7.94

Cholestanol 0.38 1.45

Campesterol 22.41 21.06

Campestanol 1.21 1.02

Stigmasterol 3.62 4.84

Sitosterol 107.13 99.45

Sitostanol 8.35 9.68
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6-deoxo-28-norTE, 6-deoxo-28-nor-3-DHT, 6-deoxo-28-nor
TY, and 6-deoxo-28-norCS to 28-norTE, 28-nor-3-DHT, 28-

norTY, and 28-norCS, respectively (Fig. 2A). The respective

conversion rates were 17, 14, 68, and 24 times higher in

CYP85A2/V60/WAT21 than in CYP85A1/V60/WAT21.

Similarly, when C28-BRs, 6-deoxoTE, 6-deoxo-3-DHT,

6-deoxoTY, and 6-deoxoCS were fed to the transformed

yeast strains, TE, 3-DHT, TY, and CS were detected as the

respective products (Fig. 2B). The rates of conversion by
CYP85A2/V60/WAT21 were also higher than the rates

of conversion by CYP85A1/V60/WAT21, although to lesser

extents than were noted in the 6-oxidations of C27-BRs.

No 6-oxidations occurred in the feedings of the biosynthet-

ically upstream intermediates, campestanol, cholestanol,

6-deoxoCT, and 6-deoxo-28-norCT.

An attempt was also made to determine whether Arabi-

dopsis enzyme extracts are capable of converting 6-deoxo
C27-BRs to 6-oxo C27-BRs. As shown in Table 2, 6-deoxo-

28-norTE, 6-deoxo-28-nor-3-DHT, 6-deoxo-28-norTY, and

6-deoxo-28-norCS were 6-oxidized to 28-norTE, 28-nor-

3-DHT, 28-norTY, and 28-norCS, respectively. However,

the 6-oxidation of 6-deoxo-28-norCT to 28-norCT was not

detected in the enzyme extracts. These findings are consistent

with those obtained using the transformed yeast strains.

Demethylation of 28-norCS

An attempt was made first to characterize the Arabidopsis

enzymatic activity that converts 28-norCS to 28-norBL.

However, we were unable to find any such an activity in the
enzyme extract. Rather, it was determined that 28-norCS was

converted to a compound with a molecular ion of m/z 484 as

a BMB derivative. The molecular ion was 14 mass units

smaller than that of the 28-norCS BMB derivative, which

suggests the loss of a methyl group (Table 2). A prominent

ion at m/z 127, which is derived from the side chain due to

the fission of the C20–C22 bond, is also 14 mass units smaller

than the corresponding ion of 28-norCS BMB. The presence
of ions at m/z 358, 328, and 287 shows the ring structure to

be identical to that of 28-norCS. It is, therefore, likely that

one of the methyls was lost in the side chain. The loss of C-26

has been reported in previous metabolic studies of BRs (Kim

et al., 2000, 2004a). Thus, the most probable structure of this

metabolite is 26,28-dinorCS (Fig. 3).

Conversion of C27-BRs to C28-BRs through C-24
methylation

C27-BRs were incubated with the Arabidopsis enzyme

extracts in the presence of S-adenosyl-L-methionine and

NADPH, and their conversion to C28-BRs was assessed.

The administration of 28-norCS yielded CS, as shown by

a full-scan mass spectrum (Table 2). The administration of
28-norTE, 28-nor-3-DHT, and 28-norTY generated TE,

3-DHT, and TY, respectively, as identified by GC-SIM.

Their conversion rates ranged from 0.2–0.3%, and were

approximately 20–30-fold lower than that of the C-24

methylation of 28-norCS to CS (Table 3).

Table 2. GC-MS data of metabolites obtained from A. thaliana cell-free conversion experiments

Substrate Metabolite RRta Prominent Ions

CHR CHNb 0.456 460(M+, 54), 445(73), 370(28), 355(43), 305(33), 215(100)

CHN 6-oxoCHNc 0.495 474 (M+, 19), 459(51), 445(100), 384(4), 159(8)

6-deoxo-28-norCT 0.542 533(M+-15, 1), 368(2), 255(8), 173(100)

6-deoxo-28-norTE 0.605 516(M+, 69), 501(55), 459(23), 426(26), 411(39), 305(35), 230(27), 215(100), 141(30)

28-norTE 28-nor-3-DHT 0.876 456(M+, 90), 399(3), 316(19), 286(13), 245(35), 141(100)

28-norTY 0.735 530(M+, 60), 515(35), 501(100), 440(56), 425(21), 229(16), 141(21)

TE 1.031 544(M+, 29), 529(53), 515(100), 454(5), 300(8), 155(39)

28-nor-3-DHT 3-DHT 1.013 470(M+, 63), 399(7), 357(5), 316(21), 298(10), 287(11), 245(11), 155(100)

28-norTY 28-nor-3-DHT 0.876 456(M+, 90), 399(2), 316(16), 286(11), 245(36), 141(100)

28-norTE 0.906 530(M+, 21), 515(53), 501(100), 440(3), 316(16), 141(11)

28-norCS 0.866 498(M+, 100), 483(8), 399(4), 358(12), 328(7), 287(36), 141(52)

TY 0.863 544(M+, 100), 529(81), 515(55), 454(72), 300(10), 155(60)

28-norCS CS 1.000 512(M+, 80), 358(33), 327(12), 287(32), 155(100)

6-deoxo-28-norTE 6-deoxo-28-nor-3-DHT 0.615 442(M+, 73), 427(10), 246(12), 231(100), 217(23), 163(20), 141(15)

6-deoxo-28-norTY 0.523 516(M+, 23), 501(6), 459(4), 426(62), 411(60), 305(11), 230(30), 215(100), 141(24)

28-norTE 0.906 530(M+, 21), 515(50), 501(100), 440(5), 316(18), 141(12)

6-deoxo-28-nor-3-DHT 6-deoxo-28-norTE 0.605 516(M+, 73), 501(65), 459(25), 426(23), 411(36), 305(38), 230(26), 215(100), 141(17)

6-deoxo-28-norTY 0.523 516(M+, 21), 501(5), 459(4), 426(60), 411(59), 305(10), 230(32), 215(100), 141(24)

28-nor-3-DHT 0.876 456(M+, 91), 399(3), 316(20), 286(13), 245(33), 141(100)

6-deoxo-28-norTY 6-deoxo-28-nor-3-DHT 0.615 442(M+, 74), 427(10), 246(12), 231(100), 217(22), 163(20), 141(14)

6-deoxo-28-norTE 0.605 516(M+, 71), 501(62), 459(25), 426(23), 411(35), 305(36), 230(26), 215(100), 141(23)

28-norTY 0.735 530(M+, 60), 515(34), 501(100), 440(55), 425(24), 229(15), 141(23)

6-deoxo-28-norCS 0.619 484(M+, 51), 469(16), 288(15), 273(100), 205(24), 141(21)

6-deoxo-28-norCS 28-norCS 0.866 498(M+, 100), 483(3), 399(4), 358(12), 328(7), 287(36), 141(54)

a RRt: relative retention time on GC.
b The sample was analysed as BMB.
c The sample was analysed as BMB-TMSi ether.
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Growth recovery by and biosyntheses of C28-BRs in the
Arabidopsis mutants det2 and dwf4

The restoration of growth in the BR-deficient mutants, det2

and dwf4, was evaluated in dark-grown seedlings via the

application of C27-sterols and C27-BRs.

The det2 mutant was rescued by biosynthetically down-

stream C27-BRs in the early and late C-6 oxidation

pathway, such as 6-deoxo-28-norCT, 6-deoxo-28-norTE,

6-deoxo-28-norTY, 28-norTE, 28-norTY, and 28-norCS,
with more downstream BRs being more biologically active

(Fig. 4A). A similar growth recovery rate was also observed

in the dwf4 mutant (Fig. 4B).

In an effort to investigate the role of the DET2 gene

encoding for steroid 5a-reductase in C27-BRs biosynthesis,

enzyme extracts were prepared from the wild-type Col-

0 and the mutant det2, and were fed on cholesterol. The

conversion of cholesterol to cholestanol was detected in

Col-0 (Fig. 5A) but not in det2 (Fig. 5B), thereby indicating

that the DET2 gene is involved in the conversion of

cholesterol to cholestanol, and hence in the biosynthesis of

C27-BRs.

The DWF4 gene encoding for steroid 22-hydroxylase

was also evaluated for the conversion of cholestanol to

6-deoxo-28-norCT using the enzyme extract prepared from

Fig. 2. Comparison of BR C-6 oxidase activity in CYP85A1/V60/WAT21 and CYP85A2/V60/WAT21 strains. (A) C-6 oxidation for C27-

BRs, (B) C-6 oxidation for C28-BRs.

Fig. 3. Metabolism of 28-norCS in Arabidopsis. 28-NorCS converted to 26,28-didemethyl-CS (tentative), but not to 28-norBL.

Table 3. GC-MS/SIM data for C24-methylation of 28-norTE, 28-

nor-3-DHT, 28-norTY, 28-norCS to TE, 3-DHT, TY, and CS in the

presence of SAM and NADPH

Substrate Metabolite Conversion rate (%)

28-norTE TE 0.2

28-nor-3-DHT 3-DHT 0.2

28-norTY TY 0.3

28-norCS CS 6.0
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the wild-type En-2 and the mutant dwf4. The enzyme

extract from En-2 successfully catalysed the conversion of

cholestanol to 6-deoxo-28-norCT (Fig. 5C), but that from

dwf4 did not (Fig. 5D), thereby indicating that the DWF4

gene is involved in the biosynthesis of C27-BRs.

Discussion

It was reported previously that the endogenous level of

28-norCS (0.24 ng g�1 fresh weight) in Arabidopsis reaches

a level approximately one-eighth that of CS (2.01 ng g�1

fresh weight) (Kim et al., 2005b). Furthermore, it has been

demonstrated that a change as small as 20% in the

endogenous level of CS can induce phenotypic alternations,

thereby suggesting that C27-BRs including 28-norCS must

play an important role in the growth and development of
Arabidopsis (Kim et al., 2005b; Kwon et al., 2005). In

seedlings of Arabidopsis, cholesterol, the parent sterol of

28-norCS, is contained at one-third the levels of campes-

terol, the parent sterol of CS (Table 1); this indicates that

Arabidopsis contains a sufficient reservoir of cholesterol for

use in the synthesis of 28-norCS.

Biosynthetic pathway of C27-BRs via late C-6 oxidation

In this study, it has been demonstrated, using Arabidopsis

seedlings, that the synthesis of 28-norCS from cholesterol

occurs via the late C-6 oxidation pathway: choles-

terol/cholestanol/6-deoxo-28-norCT/6-deoxo-28-
norTE46-deoxo-28-nor-3-DHT46-deoxo-28-norTY/6-

deoxo-28-norCS/28-norCS. The same biosynthetic path-

way has been tentatively proposed in the tomato plant

(Yokota et al., 2001).

Recent biochemical studies conducted by Ohnishi et al.

(2006, 2009) have demonstrated that the CYP90B1-

mediated 22-hydroxylation of campesterol is an important

first step in the synthesis of C28-BRs in Arabidopsis.
Campesterol and cholesterol were found to be favourable

substrates for this enzyme, when compared with campesta-

nol and cholestanol (Fujita et al., 2006). It is therefore

assumed that the formation of 22-hydroxycholesterol

from cholesterol is an important step in 28-norCS

Fig. 4. Growth recovery of det2 (A) and dwf4 (B) by C27-sterols and C27-BRs. (A) A, Col-0/B-L, det2; B, Control; C, det2+cholesterol;

D, det2+Cholest-4-en-3-one; E, det2+cholestanol; F, det2+6-deoxo-28-norCT; G, det2+6-deoxo-28-norTE; H, det2+6-deoxo-28-norTY;

I, det2+6-oxocholestanol; J, det2+28-norTE; K, det2+28-norTY; L, det2+28-norCS. (B) a, Wild-type (En-2); b, dwf4; c, dwf4+6-

oxocholestanol; d, dwf4+28-norTE; e, dwf4+28-norTY; f, dwf4+28-norCS. Error bars donate standard errors (n >30).
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biosynthesis. The biosynthesis of C27-BRs, starting with

the 22-hydroxylation of cholesterol, is currently being

investigated.

The early C-6 oxidation pathway of C27-BRs is blocked
and 6-oxoBRs is derived from respective 6-deoxoBRs

It was determined that the early C-6 oxidation pathway

halted at the stage of 6-oxocholestanol because its presumed

metabolite, 28-norCT, was not generated after incubation
with a microsomal enzyme preparation. In addition, endog-

enous 28-norCT we could not be identified, even using as

much as 30 kg fresh weight of Arabidopsis plants (data not

shown). However, Arabidopsis contained enzymes that

converted 28-norTE to 28-nor-3-DHT, 28-norTY, and 28-

norCS successively, thereby indicating that the BRs belong-

ing to the early C-6 oxidation pathway are supplied by

respective 6-deoxoBRs. Among the enzymes responsible for
C-6 oxidation of C27-BRs, CYP85A2 was determined to be

15 times as active as CYP85A1 in the C-6 oxidation of C27-

BRs, thereby indicating that CYP85A2 performs a central

function in the C-6 oxidation of C27-BRs (Fig. 2A).

CYP85A2 has been determined to be more powerful than

CYP85A1 in the C-6 oxidation of C28-BRs (Kim et al.,

2005b). CYP85A2 also exhibits BL synthase activity (Kim

et al., 2005b; Kwon et al., 2005; Nomura et al., 2005).

However, CYP85A2 did not catalyse the 7-oxalactonation

of 28-norCS to 28-norBL, thereby suggesting that
CYP85A2 is specific for the conversion of CS to BL.

Disproof against the early C-6 oxidation pathway of
C28-BRs

Some evidence has accumulated against the notion that

the early C-6 oxidation pathway plays a role in C28-BR

biosyntheses. The first step of this pathway is the

6-oxidation of campestanol to 6-oxocampestanol, which

has previously been identified from Catharanthus crown gall

cells (Fujioka and Sakurai, 1997). However, since that time,

the occurrence of 6-oxocampestanol in other plants has yet

to be confirmed. It has been determined that CYP85A1 and
CYP85A2, which are known as BR 6-oxidases, did not

catalyse this reaction, leaving the responsible enzyme to be

determined (Shimada et al., 2001; Kim et al., 2005b; Kwon

et al., 2005). Furthermore, the 22-hydroxylation of

6-oxocampestanol to CT has yet to be confirmed even in

Fig. 5. GC-SIM analysis conversion of cholesterol to cholestanol and cholestanol to 6-deoxo-28-norCT in det2 (B) and dwf4 (D),

respectively. (A) Conversion of cholesterol to cholestanol in Col-0, the wild type of det2. (C) Conversion of cholestanol to 6-deoxo-28-

norCT in En-2, the wild type of dwf4.
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Catharanthus crown gall cells, although CT was endogenous

in the cells (Fujioka et al., 1995). The conversion of

6-oxocampestanol to CT, as well as the presence of CT in

any other plants, has yet to be demonstrated (Fujioka et al.,
1995; Joo et al., 2002). Recently, Fujita et al. (2006)

demonstrated that DWF4 (CYP90B1) 22-hydroxylated

campestanol, but not 6-oxocampestanol. Altogether, our

results indicate that the early C-6 oxidation pathway is

commonly interrupted in plant tissues.

Biosyntheses of C27- and C28-BRs are catalysed by the
same enzymes

Biosynthetic reactions occurring in C27-BRs biosynthesis, in-

cluding 5a-reduction, C-22 hydroxylation, C-23 hydroxylation,
C-3 epimerization, C-2 a-hydroxylation, and C-6 oxidation, are

exactly the same as those occurring in C28-BRs biosynthesis.

This may suggest that the same enzymes mediate the same

reactions in the biosyntheses of both C28-BRs and C27-BRs. In

support of this notion, heterologously-expressed CYP85A1 and

CYP85A2 involved in the C-6 oxidation of C28-BRs exert the

same activity in the biosynthesis of C27-BRs. The det2 mutant

cannot 5a-hydrogenate campesterol, and also cannot
5a-hydrogenate cholesterol (Fig. 5B), whereas the dwf4 mutant

catalyses the 22R-hydroxylation of neither campestanol nor

cholestanol. Moreover, the abnormal growth of det2 and dwf4

mutants was successfully restored via the exogenous application

of downstream C27-BRs. Collectively, the findings of this study

suggest that C27-BRs and C28-BRs biosynthesis are most likely

controlled by the same biosynthetic enzymes.

CS synthesis from 28-norCS via methylation

It has been determined that Arabidopsis enzyme extract can
methylate 28-norCS to CS. This constitutes a supplement to

our earlier report demonstrating the presence of the same

enzymatic activity in the tomato (Kim et al., 2004b). It

appears that this methylation reaction may be a ubiquitous

event in the plant kingdom. As shown in Fig. 6, using the

tomato plant, it was determined that this reaction occurs via

the following three steps: (i) desaturation of 28-norCS to

form D24-28-norCS, (ii) SAM-dependent methylation of
D24-28-norCS to form dolichosterone (DS), and (iii)

NADPH-dependent reduction of DS by NADPH to form

CS (Kim et al., 2004b). The SAM-dependent methylation is

presumed to be catalysed by sterol methyltransferase

1 (SMT1). The NADPH-dependent reduction will be

controlled by the DWF1 gene in Arabidopsis or its orthologue

gene, OsDWF2, in rice. In support of this, the Osdwf2 rice

mutant accumulates DS (Hong et al., 2005). Additional
evidence was recently obtained, using a P. vulgaris enzyme

extract, that NADPH is required for the conversion of DS to

CS (Joo et al., 2009). It was found that 28-norCS is far more

readily methylated than 28-norTE and 28-norTY in Arabi-

dopsis, which indicates that C27-BRs and C28-BRs are

connected largely through the passage from 28-norCS to CS

(Fig. 1). In order to confirm the presence of these steps in

Arabidopsis, metabolic and molecular genetic studies using
relevant mutants are currently underway.

Deactivation of 28-norCS through demethylation

28-NorCS fed to the Arabidopsis enzyme extract was not

only methylated, but also demethylated. It has been

demonstrated previously in several plants that CS and BL

are deactivated via C-26 demethylation into 26-norCS and
26-norBL (Kim et al., 2000; 2004a). Therefore, the deme-

thylation product of 28-norCS is tentatively designated as

26,28-norCS. Such demethylation events appear to perform

a crucial role in regulating the levels of 28-norCS, which is

regarded as biologically active per se (Kim et al., 2005a).

Fig. 6. A proposed scheme for the three step C-24 methylation of 28-norCS to CS in the presence of SAM and NADPH in Arabidopsis.

S indicates the same ring structure as that of 28-norCS and CS.

Fig. 7. Biosynthetic connection of C27-BRs (28-norBRs), C28-BRs

(24-methylene BRs and 24-methyl BRs) and C29-BRs (24-ethyl

BRs) in plants. The multiple BRs biosynthetic pathways are

funneled into CS to show BR activity in plant growth and

development.
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In conclusion, it has been demonstrated here that multiple

biosynthetic pathways lead to CS. Recently, Joo et al. (2009)

determined that, in P. vulgaris, DS is hydrogenated to CS.

Our recent study (unpublished) revealed another biosyn-

thetic pathway from 28-homoCS to CS via C-28 demethyla-

tion. Thus, it is most conceivable that all the biosynthetic

pathways of BRs in plants are funnelled into CS to carry out

the relevant biological activities (Fig. 7).
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