Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):o645. doi: 10.1107/S1600536812004667

{2-[(3-Bromo­benzyl­idene)amino]-5-chloro­phen­yl}(phen­yl)methanone

M Aslam a,b,, I Anis b, N Afza a, M Safder c, S Yousuf c,*
PMCID: PMC3295437  PMID: 22412548

Abstract

In the title compound, C20H13BrClNO, the azomethine double bond [C=N = 1.246 (4) Å] adopts an E conformation. The bromo- and chlorophenyl rings are inclined to one another by 13.70 (11)°, and form dihedral angles of 76.68 (10) and 74.24 (7)°, respectively, with the phenyl ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds to form double stranded chains propagating along the b-axis direction.

Related literature  

For background information and preparation of Schiff bases, see: Khan et al. (2009); Aslam et al. (2011a ,b ); Zeb & Yousuf (2011). For the crystal structures of related Schiff bases, see: Aslam et al. (2011a ,b ); Cox et al. (2008).graphic file with name e-68-0o645-scheme1.jpg

Experimental  

Crystal data  

  • C20H13BrClNO

  • M r = 398.67

  • Orthorhombic, Inline graphic

  • a = 16.2068 (12) Å

  • b = 7.8839 (6) Å

  • c = 27.262 (2) Å

  • V = 3483.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 273 K

  • 0.52 × 0.21 × 0.15 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.354, T max = 0.704

  • 19261 measured reflections

  • 3243 independent reflections

  • 1931 reflections with I > 2σ(I)

  • R int = 0.056

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.115

  • S = 1.01

  • 3243 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004667/pv2506sup1.cif

e-68-0o645-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004667/pv2506Isup2.hkl

e-68-0o645-Isup2.hkl (159.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004667/pv2506Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.93 2.44 3.346 (4) 166
C17—H17A⋯O1ii 0.93 2.51 3.428 (5) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MA express his gratitude to the Pakistan Council of Scientific and Industrial Research Laboratories, Karachi, the Department of Chemistry, University of Karachi, and the HEJ Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing financial support, research facilities and X-ray diffraction facilities, respectively.

supplementary crystallographic information

Comment

The title compound was prepared as a part of our ongoing reasearch on schiff bases (Khan et al., 2009; Aslam et al., 2011a,b; Zeb & Yousuf, 2011).

In the title compound (Fig. 1), the azomethine double bond (C═N, 1.246 (4) Å) adopts an E configuration with torsion angle C6—C7—N1—C8 174.9 (3)°. The bond lengths and angle are similar as in other structurally realted compounds (Aslam et al., 2011a,b; Cox et al., 2008). In the crystal structure the molecules are arranged in parallel sheets along the b-axis via C—H···O type intermolecular hydrogen bonds (Fig. 2).

Experimental

A mixture of 3-bromobenzaldehyde (1 mol) and 2-amino-5-chlorobenzophenone (1 mol) in ethanol (50 ml) along with 3 drops of conc. H2SO4 was refluxed for 5 h at 343 K. After cooling, the mixture was concentrated to one third under reduced pressure. The concentrated reaction mixture was kept at room temperature and orange red crystals were obtained after five days. The crystalline product was collected, washed with methanol and dried to afford the title compound in 87% yield. Slow evaporation of a methanol solution afforded yellow crystals suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma-Aldrich.

Refinement

H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.

Crystal data

C20H13BrClNO F(000) = 1600
Mr = 398.67 Dx = 1.520 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2145 reflections
a = 16.2068 (12) Å θ = 2.5–20.5°
b = 7.8839 (6) Å µ = 2.52 mm1
c = 27.262 (2) Å T = 273 K
V = 3483.4 (5) Å3 Block, yellow
Z = 8 0.52 × 0.21 × 0.15 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1931 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.056
ω scan θmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −19→19
Tmin = 0.354, Tmax = 0.704 k = −9→9
19261 measured reflections l = −33→33
3243 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0377P)2 + 3.0254P] where P = (Fo2 + 2Fc2)/3
3243 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.08907 (4) 0.01989 (9) 0.238025 (19) 0.1197 (3)
Cl1 0.20842 (7) −0.43108 (16) 0.61666 (4) 0.0784 (4)
O1 0.04701 (14) −0.5034 (3) 0.44146 (10) 0.0608 (7)
N1 0.21723 (16) −0.2133 (4) 0.40923 (10) 0.0480 (7)
C1 0.1977 (2) −0.0784 (5) 0.31387 (12) 0.0564 (10)
H1B 0.1496 −0.1092 0.3302 0.068*
C2 0.1939 (3) −0.0077 (5) 0.26789 (13) 0.0657 (11)
C3 0.2627 (3) 0.0425 (5) 0.24302 (14) 0.0756 (13)
H3A 0.2585 0.0912 0.2121 0.091*
C4 0.3383 (3) 0.0196 (6) 0.26466 (15) 0.0806 (14)
H4A 0.3859 0.0535 0.2484 0.097*
C5 0.3439 (2) −0.0533 (6) 0.31041 (14) 0.0720 (12)
H5A 0.3955 −0.0691 0.3246 0.086*
C6 0.2739 (2) −0.1034 (5) 0.33568 (12) 0.0508 (9)
C7 0.2795 (2) −0.1732 (5) 0.38504 (12) 0.0517 (9)
H7A 0.3314 −0.1883 0.3990 0.062*
C8 0.22119 (19) −0.2687 (4) 0.45845 (11) 0.0421 (8)
C9 0.2910 (2) −0.2620 (5) 0.48817 (12) 0.0501 (9)
H9A 0.3406 −0.2225 0.4753 0.060*
C10 0.2873 (2) −0.3135 (5) 0.53632 (12) 0.0534 (9)
H10A 0.3342 −0.3089 0.5559 0.064*
C11 0.2143 (2) −0.3715 (5) 0.55527 (12) 0.0508 (9)
C12 0.1447 (2) −0.3843 (4) 0.52657 (12) 0.0485 (9)
H12A 0.0960 −0.4277 0.5396 0.058*
C13 0.14765 (18) −0.3321 (4) 0.47808 (11) 0.0400 (8)
C14 0.07325 (18) −0.3588 (5) 0.44606 (11) 0.0431 (8)
C15 0.03203 (19) −0.2139 (4) 0.42183 (11) 0.0427 (8)
C16 0.0429 (2) −0.0504 (5) 0.43778 (14) 0.0581 (10)
H16A 0.0776 −0.0286 0.4642 0.070*
C18 −0.0479 (3) 0.0481 (6) 0.37522 (18) 0.0799 (13)
H18A −0.0746 0.1369 0.3593 0.096*
C19 −0.0588 (2) −0.1138 (6) 0.35928 (15) 0.0706 (12)
H19A −0.0930 −0.1352 0.3326 0.085*
C17 0.0027 (2) 0.0814 (6) 0.41493 (17) 0.0750 (12)
H17A 0.0096 0.1920 0.4261 0.090*
C20 −0.0199 (2) −0.2447 (5) 0.38228 (13) 0.0553 (9)
H20A −0.0281 −0.3553 0.3714 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1021 (4) 0.1846 (7) 0.0725 (4) 0.0117 (4) −0.0213 (3) 0.0344 (4)
Cl1 0.0843 (7) 0.0996 (9) 0.0513 (5) −0.0078 (6) −0.0055 (5) 0.0208 (6)
O1 0.0485 (14) 0.0481 (16) 0.0857 (19) −0.0091 (13) −0.0129 (13) −0.0014 (13)
N1 0.0384 (15) 0.059 (2) 0.0470 (16) −0.0057 (14) 0.0019 (13) 0.0018 (14)
C1 0.060 (2) 0.066 (3) 0.043 (2) −0.005 (2) 0.0067 (17) −0.0031 (18)
C2 0.081 (3) 0.072 (3) 0.044 (2) −0.002 (2) −0.0013 (19) −0.003 (2)
C3 0.109 (4) 0.077 (3) 0.041 (2) −0.012 (3) 0.012 (2) −0.001 (2)
C4 0.087 (4) 0.100 (4) 0.055 (2) −0.028 (3) 0.024 (2) −0.005 (2)
C5 0.060 (2) 0.099 (3) 0.056 (2) −0.016 (2) 0.0112 (19) −0.006 (2)
C6 0.054 (2) 0.056 (2) 0.0417 (18) −0.0070 (18) 0.0043 (16) −0.0089 (17)
C7 0.042 (2) 0.065 (3) 0.048 (2) −0.0048 (18) −0.0032 (17) −0.0059 (18)
C8 0.0406 (18) 0.041 (2) 0.0442 (18) −0.0010 (16) −0.0002 (15) −0.0022 (15)
C9 0.0437 (19) 0.056 (2) 0.051 (2) −0.0079 (18) −0.0024 (17) 0.0021 (17)
C10 0.046 (2) 0.063 (3) 0.051 (2) −0.0029 (18) −0.0121 (17) 0.0017 (18)
C11 0.055 (2) 0.051 (2) 0.0462 (19) −0.0017 (19) −0.0016 (17) 0.0047 (17)
C12 0.0436 (19) 0.049 (2) 0.053 (2) −0.0058 (17) 0.0027 (16) 0.0057 (17)
C13 0.0356 (18) 0.0359 (19) 0.0483 (19) −0.0002 (15) −0.0017 (14) 0.0002 (15)
C14 0.0329 (17) 0.048 (2) 0.0480 (19) −0.0035 (17) 0.0048 (14) −0.0056 (17)
C15 0.0356 (17) 0.042 (2) 0.0503 (19) 0.0025 (16) 0.0022 (15) −0.0020 (16)
C16 0.046 (2) 0.052 (3) 0.077 (3) 0.0043 (19) −0.0056 (19) −0.007 (2)
C18 0.066 (3) 0.076 (3) 0.098 (3) 0.016 (3) −0.003 (3) 0.026 (3)
C19 0.059 (3) 0.084 (3) 0.069 (3) 0.007 (2) −0.015 (2) 0.011 (2)
C17 0.065 (3) 0.052 (3) 0.109 (3) 0.006 (2) 0.002 (3) −0.001 (2)
C20 0.050 (2) 0.061 (2) 0.055 (2) 0.0024 (19) −0.0054 (18) −0.0049 (19)

Geometric parameters (Å, º)

Br1—C2 1.896 (4) C9—H9A 0.9300
Cl1—C11 1.741 (3) C10—C11 1.369 (5)
O1—C14 1.223 (4) C10—H10A 0.9300
N1—C7 1.246 (4) C11—C12 1.377 (4)
N1—C8 1.412 (4) C12—C13 1.385 (4)
C1—C2 1.373 (5) C12—H12A 0.9300
C1—C6 1.384 (5) C13—C14 1.503 (4)
C1—H1B 0.9300 C14—C15 1.479 (5)
C2—C3 1.365 (6) C15—C16 1.372 (5)
C3—C4 1.371 (6) C15—C20 1.389 (4)
C3—H3A 0.9300 C16—C17 1.376 (5)
C4—C5 1.376 (6) C16—H16A 0.9300
C4—H4A 0.9300 C18—C19 1.360 (6)
C5—C6 1.385 (5) C18—C17 1.383 (6)
C5—H5A 0.9300 C18—H18A 0.9300
C6—C7 1.457 (5) C19—C20 1.363 (5)
C7—H7A 0.9300 C19—H19A 0.9300
C8—C9 1.393 (4) C17—H17A 0.9300
C8—C13 1.399 (4) C20—H20A 0.9300
C9—C10 1.375 (4)
C7—N1—C8 123.0 (3) C10—C11—C12 121.2 (3)
C2—C1—C6 119.4 (4) C10—C11—Cl1 120.0 (3)
C2—C1—H1B 120.3 C12—C11—Cl1 118.8 (3)
C6—C1—H1B 120.3 C11—C12—C13 119.4 (3)
C3—C2—C1 122.3 (4) C11—C12—H12A 120.3
C3—C2—Br1 119.1 (3) C13—C12—H12A 120.3
C1—C2—Br1 118.6 (3) C12—C13—C8 120.1 (3)
C2—C3—C4 118.6 (4) C12—C13—C14 119.0 (3)
C2—C3—H3A 120.7 C8—C13—C14 120.7 (3)
C4—C3—H3A 120.7 O1—C14—C15 121.1 (3)
C3—C4—C5 120.2 (4) O1—C14—C13 118.0 (3)
C3—C4—H4A 119.9 C15—C14—C13 120.9 (3)
C5—C4—H4A 119.9 C16—C15—C20 119.3 (3)
C4—C5—C6 121.1 (4) C16—C15—C14 121.7 (3)
C4—C5—H5A 119.5 C20—C15—C14 119.0 (3)
C6—C5—H5A 119.5 C15—C16—C17 120.4 (4)
C1—C6—C5 118.4 (3) C15—C16—H16A 119.8
C1—C6—C7 120.4 (3) C17—C16—H16A 119.8
C5—C6—C7 121.1 (3) C19—C18—C17 120.4 (4)
N1—C7—C6 122.3 (3) C19—C18—H18A 119.8
N1—C7—H7A 118.9 C17—C18—H18A 119.8
C6—C7—H7A 118.9 C18—C19—C20 120.2 (4)
C9—C8—C13 118.9 (3) C18—C19—H19A 119.9
C9—C8—N1 125.3 (3) C20—C19—H19A 119.9
C13—C8—N1 115.8 (3) C16—C17—C18 119.4 (4)
C10—C9—C8 120.6 (3) C16—C17—H17A 120.3
C10—C9—H9A 119.7 C18—C17—H17A 120.3
C8—C9—H9A 119.7 C19—C20—C15 120.3 (4)
C11—C10—C9 119.8 (3) C19—C20—H20A 119.8
C11—C10—H10A 120.1 C15—C20—H20A 119.8
C9—C10—H10A 120.1
C6—C1—C2—C3 −1.4 (6) C11—C12—C13—C8 0.7 (5)
C6—C1—C2—Br1 178.4 (3) C11—C12—C13—C14 175.4 (3)
C1—C2—C3—C4 0.7 (6) C9—C8—C13—C12 1.1 (5)
Br1—C2—C3—C4 −179.0 (3) N1—C8—C13—C12 −177.9 (3)
C2—C3—C4—C5 0.3 (7) C9—C8—C13—C14 −173.5 (3)
C3—C4—C5—C6 −0.6 (7) N1—C8—C13—C14 7.5 (4)
C2—C1—C6—C5 1.0 (6) C12—C13—C14—O1 −57.2 (4)
C2—C1—C6—C7 178.1 (3) C8—C13—C14—O1 117.5 (4)
C4—C5—C6—C1 0.0 (6) C12—C13—C14—C15 121.4 (3)
C4—C5—C6—C7 −177.1 (4) C8—C13—C14—C15 −63.9 (4)
C8—N1—C7—C6 −174.9 (3) O1—C14—C15—C16 159.3 (3)
C1—C6—C7—N1 0.3 (6) C13—C14—C15—C16 −19.3 (5)
C5—C6—C7—N1 177.3 (4) O1—C14—C15—C20 −19.9 (5)
C7—N1—C8—C9 10.0 (5) C13—C14—C15—C20 161.6 (3)
C7—N1—C8—C13 −171.1 (3) C20—C15—C16—C17 0.1 (5)
C13—C8—C9—C10 −1.4 (5) C14—C15—C16—C17 −179.0 (3)
N1—C8—C9—C10 177.5 (3) C17—C18—C19—C20 −0.1 (6)
C8—C9—C10—C11 −0.1 (5) C15—C16—C17—C18 −0.9 (6)
C9—C10—C11—C12 2.0 (6) C19—C18—C17—C16 0.9 (6)
C9—C10—C11—Cl1 −178.2 (3) C18—C19—C20—C15 −0.8 (6)
C10—C11—C12—C13 −2.3 (5) C16—C15—C20—C19 0.7 (5)
Cl1—C11—C12—C13 177.9 (3) C14—C15—C20—C19 179.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12A···O1i 0.93 2.44 3.346 (4) 166
C17—H17A···O1ii 0.93 2.51 3.428 (5) 168

Symmetry codes: (i) −x, −y−1, −z+1; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2506).

References

  1. Aslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011a). Acta Cryst. E67, o3442–o3443. [DOI] [PMC free article] [PubMed]
  2. Aslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011b). Acta Cryst. E67, o3215. [DOI] [PMC free article] [PubMed]
  3. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206–216. [DOI] [PubMed]
  5. Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801. [DOI] [PubMed]
  6. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Zeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004667/pv2506sup1.cif

e-68-0o645-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004667/pv2506Isup2.hkl

e-68-0o645-Isup2.hkl (159.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004667/pv2506Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES