Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):o647. doi: 10.1107/S1600536812004746

4-Meth­oxy-N-methyl­benzamide

Juan Yuan a, Yan-Ju Liu a,*
PMCID: PMC3295439  PMID: 22412550

Abstract

In the title compound, C9H11NO2, the dihedral angle between the amide group and the benzene ring is 10.6 (1)°. In the crystal, mol­ecules are connected via N—H⋯O hydrogen bonds, supported by a C—H⋯O contact, forming chains along b. These chains are linked by C—H⋯π inter­actions to give a three-dimensional network.

Related literature  

The title compound is an important inter­mediate in organic synthesis. For background to applications of the title compound and the synthesis, see: Lee et al. (2009). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o647-scheme1.jpg

Experimental  

Crystal data  

  • C9H11NO2

  • M r = 165.19

  • Monoclinic, Inline graphic

  • a = 8.7350 (17) Å

  • b = 9.2750 (19) Å

  • c = 10.719 (2) Å

  • β = 99.83 (3)°

  • V = 855.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.973, T max = 0.991

  • 3239 measured reflections

  • 1573 independent reflections

  • 1088 reflections with I > 2σ(I)

  • R int = 0.042

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.169

  • S = 1.00

  • 1573 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812004746/sj5190sup1.cif

e-68-0o647-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004746/sj5190Isup2.hkl

e-68-0o647-Isup2.hkl (77.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004746/sj5190Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.20 2.961 (2) 147
C1—H1A⋯O2i 0.93 2.46 3.378 (3) 169
C7—H7CCg1ii 0.96 2.94 3.816 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was supported by the Science and Technology Department of Henan Province (grant No. 102102310321) and the Doctoral Research Fund of Henan Chinese Medicine (grant No. BSJJ2009-38). The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

Benzamide derivatives exhibit interesting biological activities including antibacterial and antifungal effects (Lee et al., 2009). We report here the crystal structure of the title compound 4-methoxy-N-methylbenzamide, (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the amide group and the benzene ring is 10.6 (1)°. The bond lengths are within normal ranges (Allen et al., 1987). In the crystal structure, intermolecular N—H0A···O2 hydrogen bonds, supported by C1—H1···O1 contacts (Table 1) result in the molecular chains along b. These chains are linked by C7—H7···π interactions to give a three-dimensional network.

Experimental

The title compound, (I) was prepared by a literature method (Lee et al., 2009). Crystals were obtained by dissolving (I) (0.2 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H, 0.96 Å for methyl H and 0.86 Å for N—H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and N—H, and x = 1.5 for methyl H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I).

Crystal data

C9H11NO2 F(000) = 352
Mr = 165.19 Dx = 1.282 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.7350 (17) Å θ = 10–14°
b = 9.2750 (19) Å µ = 0.09 mm1
c = 10.719 (2) Å T = 293 K
β = 99.83 (3)° Block, colourless
V = 855.7 (3) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1088 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.042
Graphite monochromator θmax = 25.4°, θmin = 2.4°
ω/2θ scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = −11→11
Tmin = 0.973, Tmax = 0.991 l = −12→12
3239 measured reflections 3 standard reflections every 200 reflections
1573 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.1P)2 + 0.095P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
1573 reflections Δρmax = 0.18 e Å3
110 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.25 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N −0.0727 (2) 0.35158 (19) 0.24974 (17) 0.0581 (6)
H0A −0.0375 0.4382 0.2598 0.070*
O1 0.4704 (2) 0.42231 (19) 0.72531 (15) 0.0746 (6)
C1 0.1914 (3) 0.4288 (2) 0.4363 (2) 0.0641 (7)
H1A 0.1610 0.4937 0.3706 0.077*
O2 −0.0596 (2) 0.12586 (17) 0.32506 (15) 0.0701 (6)
C2 0.3083 (3) 0.4659 (2) 0.5335 (2) 0.0701 (8)
H2A 0.3569 0.5550 0.5321 0.084*
C3 0.3548 (3) 0.3727 (2) 0.63338 (19) 0.0544 (6)
C4 0.2849 (3) 0.2390 (3) 0.63200 (19) 0.0564 (6)
H4A 0.3161 0.1740 0.6975 0.068*
C5 0.1686 (3) 0.2022 (2) 0.5331 (2) 0.0532 (6)
H5A 0.1229 0.1116 0.5328 0.064*
C6 0.1180 (2) 0.2963 (2) 0.43448 (19) 0.0474 (6)
C7 0.5133 (3) 0.3375 (3) 0.8361 (2) 0.0813 (9)
H7A 0.5957 0.3847 0.8921 0.122*
H7B 0.5481 0.2445 0.8131 0.122*
H7C 0.4253 0.3260 0.8779 0.122*
C8 −0.0109 (2) 0.2511 (2) 0.33215 (18) 0.0497 (6)
C9 −0.1962 (3) 0.3222 (3) 0.1440 (2) 0.0700 (8)
H9A −0.2229 0.4094 0.0970 0.105*
H9B −0.2857 0.2867 0.1753 0.105*
H9C −0.1618 0.2512 0.0898 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.0653 (12) 0.0475 (10) 0.0548 (11) −0.0002 (9) −0.0089 (9) −0.0047 (8)
O1 0.0820 (12) 0.0739 (11) 0.0562 (10) −0.0104 (9) −0.0210 (9) 0.0078 (8)
C1 0.0857 (17) 0.0445 (12) 0.0520 (13) −0.0056 (12) −0.0170 (12) 0.0065 (10)
O2 0.0913 (13) 0.0485 (9) 0.0628 (10) −0.0150 (8) −0.0085 (9) −0.0023 (7)
C2 0.0898 (18) 0.0466 (12) 0.0629 (14) −0.0129 (12) −0.0185 (13) 0.0059 (10)
C3 0.0585 (13) 0.0559 (13) 0.0445 (11) 0.0014 (10) −0.0034 (10) −0.0015 (10)
C4 0.0685 (14) 0.0558 (13) 0.0429 (11) 0.0057 (11) 0.0045 (10) 0.0115 (10)
C5 0.0644 (14) 0.0459 (11) 0.0483 (12) −0.0041 (10) 0.0065 (10) 0.0011 (9)
C6 0.0575 (12) 0.0411 (11) 0.0427 (11) 0.0032 (9) 0.0058 (9) −0.0017 (8)
C7 0.0776 (17) 0.106 (2) 0.0522 (14) −0.0006 (16) −0.0108 (13) 0.0132 (14)
C8 0.0593 (13) 0.0460 (12) 0.0427 (11) 0.0008 (10) 0.0058 (9) −0.0059 (9)
C9 0.0688 (15) 0.0703 (16) 0.0630 (16) −0.0017 (12) −0.0117 (13) −0.0018 (12)

Geometric parameters (Å, º)

N—C8 1.333 (3) C4—C5 1.380 (3)
N—C9 1.451 (3) C4—H4A 0.9300
N—H0A 0.8600 C5—C6 1.384 (3)
O1—C3 1.365 (3) C5—H5A 0.9300
O1—C7 1.420 (3) C6—C8 1.492 (3)
C1—C2 1.372 (3) C7—H7A 0.9600
C1—C6 1.385 (3) C7—H7B 0.9600
C1—H1A 0.9300 C7—H7C 0.9600
O2—C8 1.235 (3) C9—H9A 0.9600
C2—C3 1.383 (3) C9—H9B 0.9600
C2—H2A 0.9300 C9—H9C 0.9600
C3—C4 1.381 (3)
C8—N—C9 123.30 (19) C5—C6—C1 117.52 (19)
C8—N—H0A 118.3 C5—C6—C8 119.12 (19)
C9—N—H0A 118.3 C1—C6—C8 123.36 (19)
C3—O1—C7 118.3 (2) O1—C7—H7A 109.5
C2—C1—C6 121.1 (2) O1—C7—H7B 109.5
C2—C1—H1A 119.5 H7A—C7—H7B 109.5
C6—C1—H1A 119.5 O1—C7—H7C 109.5
C1—C2—C3 120.9 (2) H7A—C7—H7C 109.5
C1—C2—H2A 119.6 H7B—C7—H7C 109.5
C3—C2—H2A 119.6 O2—C8—N 121.38 (19)
O1—C3—C4 125.57 (19) O2—C8—C6 121.26 (19)
O1—C3—C2 115.6 (2) N—C8—C6 117.36 (18)
C4—C3—C2 118.86 (19) N—C9—H9A 109.5
C5—C4—C3 119.8 (2) N—C9—H9B 109.5
C5—C4—H4A 120.1 H9A—C9—H9B 109.5
C3—C4—H4A 120.1 N—C9—H9C 109.5
C4—C5—C6 121.9 (2) H9A—C9—H9C 109.5
C4—C5—H5A 119.1 H9B—C9—H9C 109.5
C6—C5—H5A 119.1
C6—C1—C2—C3 −0.9 (4) C4—C5—C6—C8 −178.5 (2)
C7—O1—C3—C4 −6.9 (4) C2—C1—C6—C5 −1.0 (4)
C7—O1—C3—C2 174.2 (2) C2—C1—C6—C8 179.2 (2)
C1—C2—C3—O1 −179.0 (2) C9—N—C8—O2 −2.2 (3)
C1—C2—C3—C4 2.0 (4) C9—N—C8—C6 178.6 (2)
O1—C3—C4—C5 179.8 (2) C5—C6—C8—O2 −9.3 (3)
C2—C3—C4—C5 −1.4 (3) C1—C6—C8—O2 170.5 (2)
C3—C4—C5—C6 −0.5 (3) C5—C6—C8—N 169.8 (2)
C4—C5—C6—C1 1.7 (3) C1—C6—C8—N −10.4 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
N—H0A···O2i 0.86 2.20 2.961 (2) 147
C1—H1A···O2i 0.93 2.46 3.378 (3) 169
C7—H7C···Cg1ii 0.96 2.94 3.816 (3) 153

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5190).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Lee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358–6361. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812004746/sj5190sup1.cif

e-68-0o647-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004746/sj5190Isup2.hkl

e-68-0o647-Isup2.hkl (77.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004746/sj5190Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES