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1. Introduction
A fundamental challenge in organic chemistry resides in the development of increasingly
efficient protocols for carbon–carbon-bond formation. The ideal C–C-bond forming
processes should be applicable to both petrochemical and renewable feedstocks and should
be aligned with the economic and aesthetic ideals of atom-economy,1 step-economy,2 and
Green Chemistry.3 Ultimately, chemical production should be sustainable, that is, it should
not compromise human health, the environment, or the economy.

Hydrogen is vastly abundant, constituting roughly 90% of the atoms present in the Universe.
Catalytic additions of elemental hydrogen, termed “hydrogenations,” rank among the most
significant catalytic transformations in existence in terms of social and economic impact.
For example, the catalytic hydrogenation of atmospheric nitrogen to produce ammonia, the
Haber-Bosch process,4 is used to produce over 107 metric tons of ammonia annually.
Nitrogenous fertilizer obtained from the Haber-Bosch process is estimated to sustain one-
third of the Earth’s population.5 The asymmetric hydrogenation of C=X π bonds (X = O,
NR) is estimated to account for over half the chiral drugs manufactured industrially,
withstanding physical and enzymatic resolution.6

The Fischer-Tropsch reaction7 and alkene hydroformylation8 may be viewed as the
prototypical C-C-bond forming hydrogenations. Hydroformylation combines basic
feedstocks (α-olefins, carbon monoxide, and hydrogen) with perfect atom-economy, and
accounts for the production of over 7 million metric tons of aldehyde annually, making it the
largest-volume application of homogeneous metal catalysis.9 Given the impact of
hydroformylation, it is surprising that the field of “hydrogenative C-C bond formation” lay
fallow for over 70 years.10,11

As described in this account, we find that hydrogenation and transfer hydrogenation may be
used to couple diverse π-unsaturated reactants to carbonyl compounds and imines.12 Such
hydrogenative C-C couplings define a departure from the use of preformed organometallic
reagents in classical C=X (X = O, NR) addition reactions, in many cases enabling
completely byproduct-free C=X addition processes. Further, under transfer-hydrogenative
coupling conditions, carbonyl addition can be attained from the alcohol or aldehyde
oxidation level, thereby circumventing redox manipulations often required to adjust the
oxidation level (Scheme 1).
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2. Vinylation of Carbonyl Compounds and Imines
Numerous methods exist for the preparation of allylic alcohols and allylic amines.13,14 For
example, the metal-catalyzed allylic substitution employing oxygen and nitrogen
nucleophiles is a powerful protocol for the synthesis of chiral nonracemic allylic alcohols
and allylic amines.15 Another approach, though less developed, involves a catalytic
enantioselective aldehyde vinylation.16-19 16,17,18,19 Catalytic enantioselective vinyl transfer
to imines had not been achieved prior to our work (vide infra).20,21

Limitations associated with the use of preformed vinyl metal reagents are potentially
overcome through direct metal-catalyzed alkyne-carbonyl reductive couplings. The first
catalytic process of this type, a rhodium-catalyzed reductive cyclization of acetylenic
aldehydes mediated by silane, was reported in 1994 by Ojima et al.22 In 1995, Crowe and
Rachita disclosed related silane-mediated titanocene-catalyzed cyclizations.23 The
corresponding nickel-catalyzed cyclizations were first reported in 1997 by Montgomery and
co-workers.24a-c,e Based on Montgomery’s finding, the nickel-catalyzed intermolecular
alkyne-aldehyde reductive coupling was achieved by Jamison in 2000.25 Improved nickel-
based catalysts were developed later by Takai26 and Montgomery.24d While reductive
couplings of this type signal a departure from the use of preformed organometallic reagents,
these methods employ terminal reductants such as hydrosilanes, hydrostannanes, organozinc
reagents, organoboron reagents or chromium(II) chloride and, hence, produce molar
equivalents of byproducts.

Under hydrogenation conditions, alkynes engage in completely byproduct-free reductive
couplings to both carbonyl compounds and imines.12d First-generation catalytic systems
based on rhodium promote the highly enantioselective coupling of conjugated alkynes to
activated aldehydes and ketones in the form of vicinal dicarbonyl compounds.27a-c 27a,b,c

Heterocyclic aromatic aldehydes and ketones couple to conjugated alkynes under closely
related conditions, providing access to heteroaryl-substituted carbinols.27d Notably, the
diene- and enyne-containing products are not subject to over-reduction under the
hydrogenative coupling conditions. Presumably, upon consumption of the electrophile (the
limiting reagent) excess alkyne unproductively coordinates rhodium and so impedes the rate
of further conventional hydrogenation (Scheme 2).27?

The coupling of conjugated enynes or diynes to ethyl (N-sulfinyl)iminoacetates proceeds
efficiently under the conditions of rhodium-catalyzed hydrogenation.28 Using appropriately
substituted (N-sulfinyl)iminoacetates, one generates the corresponding β,γ-unsaturated α-
amino acid esters as single diastereomers. A second hydrogenation of the unsaturated side
chain of the coupling product provides access to β-substituted α-amino acids (Scheme 3).

Gaseous acetylene couples to aldehydes and imines under hydrogenation conditions to
furnish products of (Z)-butadienylation.29 Using chirally modified rhodium catalysts, allylic
alcohols and allylic amines are formed in highly optically enriched form.29,30 These
byproduct-free couplings combine acetylene, an abundant feedstock,31 with carbonyl
compounds or imines to furnish chiral adducts in the absence of any preformed vinyl metal
reagents (Scheme 4).

Using second-generation catalysts based on iridium, the highly enantioselective
hydrogenative coupling of 1,2-dialkyl-substituted alkynes to N-arylsulfonyl imines is
achieved (Scheme 5).32 The trisubstituted allylic amine products are formed with complete
levels of E:Z selectivity (≥95:5), and excellent regiocontrol is observed using unsymmetrical
alkynes. This byproduct-free coupling provides trisubstituted allylic amines that are not
accessible via metal-catalyzed asymmetric allylic alkylation.15
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Finally, intramolecular coupling of alkynes to tethered aldehydes occurs readily in the
rhodium-catalyzed hydrogenation. Using chirally modified catalysts, products of reductive
carbocyclization are formed with uniformly high levels of optical enrichment.33 Using an
achiral rhodium catalyst, chiral racemic acetylenic aldehydes engage in highly syn-
diastereoselective reductive cyclizations to furnish cyclic allylic alcohols (Scheme 6).

3. Allylation and Propargylation of Carbonyl Compounds
Carbonyl allylation is employed routinely in synthetic organic chemistry.34 Asymmetric
allylation has been achieved using chirally modified allyl metal reagents,35 chiral Lewis acid
catalysts or chiral Lewis base catalysts.36 These methods invariably employ preformed allyl
metal reagents, such as allyl stannanes or trichlorosilanes, which generate stoichiometric
quantities of metallic byproducts. Other methods for catalytic carbonyl allylation include the
reduction of metallo-π-allyls derived from allylic alcohols and allylic carboxylates,37 which
require stoichiometric quantities of metal-based terminal reductants for catalytic turnover.38

We find that allyl metal species arising transiently in the course of allene hydrogenation may
be captured by exogenous carbonyl electrophiles, thus enabling byproduct-free carbonyl
allylation. For example, iridium-catalyzed hydrogenation of dimethylallene in the presence
of activated aldehydes or ketones delivers products of reverse prenylation.39a In the iridium-
catalyzed transfer hydrogenation employing isopropanol as the terminal reductant,
dimethylallene also couples to aldehydes.39b Finally, hydrogen embedded within an alcohol
substrate can be redistributed among reactants to generate nucleophile-electrophile pairs,
enabling byproduct-free carbonyl reverse prenylation from the alcohol oxidation level
(Scheme 7).39b

These results prompted efforts toward general catalytic protocols for alcohol-unsaturate
transfer-hydrogenative coupling.40 Under iridium-catalyzed transfer-hydrogenation
conditions, 1,3-cyclohexadiene couples readily to aldehydes employing isopropanol as
terminal reductant. An identical set of products may be prepared from the corresponding
alcohols under nearly identical conditions (Scheme 8).41 In the ruthenium-catalyzed transfer
hydrogenation employing RuHCl(CO)(PPh3)3 as precatalyst, simple acyclic dienes
(butadiene, isoprene, and 2,3-dimethylbutadiene) couple to diverse alcohols.42 Again,
coupling is possible from the alcohol or aldehyde oxidation level. In the latter case,
isopropanol or formic acid may be employed as terminal reductants (Scheme 9).

Under the ruthenium-catalyzed auto-transfer hydrogenation conditions, conjugated enynes
couple to benzylic, allylic, and aliphatic alcohols to furnish products of carbonyl
propargylation.43-45 43,44,45 Under related transfer-hydrogenation conditions employing
isopropanol as terminal reductant, enyne coupling to aldehydes provides identical products
of carbonyl propargylation. In this way, carbonyl propargylation is achieved from the
alcohol or the aldehyde oxidation level in the absence of preformed allenyl metal reagents.
Stereocontrolled variants of these newly developed allene, diene, and enyne couplings are
currently under investigation (Scheme 10).

An especially powerful application of transfer hydrogenative C-C coupling involves
iridium-catalyzed carbonyl allylation from the aldehyde or alcohol oxidation level
employing allyl acetate as the allyl donor.46a Exposure of allyl acetate to benzylic alcohols
in the presence of commercially available [Ir(cod)Cl]2 and (R)-BINAP delivers products of
C-allylation in good-to-excellent yields and with high levels of asymmetric induction.
Allylation from the carbonyl oxidation level is achieved by employing isopropyl alcohol as
the terminal reductant. In this case, (-)-TMBTP is used as the chiral phosphine ligand to
generate identical allylation adducts with high degrees of enantioselectivity. As such,
asymmetric allylation can be achieved from the alcohol or aldehyde oxidation levels with
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equal facility. More recently, this asymmetric allylation protocol has been extended to
allylic alcohols and aliphatic alcohols (Scheme 11).46b

4. Hydrogenative Aldol and Mannich Additions
For well over a century, the aldol reaction has served as a core method in organic
synthesis.47 Intensive efforts have led to the realization of aldol addition protocols that
enable excellent levels of diastereo- and enantiocontrol.48 A particularly significant advance
involves the refinement of methods for the direct asymmetric aldol additions of unmodified
ketones employing metallic49 or organic50 catalysts. These byproduct-free processes herald
a departure from the use of chiral auxiliaries and preformed enol(ate) derivatives. A
significant limitation of these nascent technologies resides in the issue of regiocontrolled
enolization. For example, direct catalytic asymmetric aldol additions of unsymmetrical
ketones, such as 2-butanone, typically result in coupling at the less substituted enolizable
position to furnish linear aldol adducts.51

The challenge of regiocontrolled enolization is overcome via enone reduction. Pioneering
work by Stork demonstrates that dissolving metal reduction of enones enables regiospecific
generation and capture of enolate isomers that cannot be prepared exclusively under
standard conditions for base-mediated deprotonation.52 Subsequently, catalytic reductive
couplings of enones to aldehydes emerged.53 To date, myriad metallic catalysts for
“reductive aldol coupling” have been devised, including those based on rhodium,54 cobalt,55

iridium,56 ruthenium,57 palladium,58 copper,59,60 nickel,61 and indium.62,63 These protocols
invariably employ metallic terminal reductants, such as stannanes, silanes, and organozinc
reagents, which mandates the generation of stoichiometric byproducts. Inspired by the
prospect of developing completely byproduct-free processes, catalytic reductive aldol
additions employing elemental hydrogen as the terminal reductant were investigated.64

Our initial efforts centered on developing intramolecular reductive aldol couplings of
tethered enone-aldehydes under hydrogenative conditions (Scheme 12).64a It was found that
upon exposure to catalytic quantities of phosphine-modified cationic rhodium complexes
under ambient pressures of hydrogen, a range of enone-aldehydes engage in highly
diastereoselective cyclization to deliver five- and six-membered-ring products. In a similar
fashion, enone-ketones cyclize under nearly identical conditions to furnish syn-aldol adducts
as single diastereomers.64b However, in these cases, the diminished electrophilicity of the
ketone leads to substantial quantities of simple enone reduction product. Extension of this
method to enone-diketone substrates provides a powerful desymmetrization strategy for the
stereocontrolled generation of bicyclic frameworks bearing three contiguous stereocenters.
The addition of aldehyde enolates to ketones, for which a single stoichiometric variant is
known,65 represents a highly challenging class of aldol addition. Under hydrogenative
conditions, enal-ketones cyclize with a high degree of efficiency to provide products of
aldehyde enolate-ketone addition, although competitive 1,4 reduction is also observed.
Specifically, cationic rhodium complexes, in conjunction with catalytic quantities of base,
are essential in suppressing conventional reduction of the starting material and enabling the
desired coupling (Scheme 13).64c

Intermolecular hydrogenative aldol couplings also are possible. Under an atmosphere of
hydrogen, cationic rhodium complexes catalyze the coupling of vinyl ketones to diverse
aldehydes.64a Whereas the catalyst derived from Rh(cod)2OTf and triphenylphosphine
provided aldol adducts as diastereomeric mixtures, high syn-diastereoselectivity may be
realized using tri(2-furyl)phosphine as ligand.64e,66 Under these modified conditions, a wide
range of aldehydes couple to methyl or ethyl vinyl ketone with exceptional levels of syn-
diastereoselectivity. Of note is the wide range of potentially “hydrogen-labile” functionality
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tolerated, enabling the use of substrates containing alkynes, alkenes, benzylic ethers,
nitroarenes, and aryl bromides. Furthermore, functionalized enones also are tolerated, as
demonstrated by the employment of crotyl vinyl ketone.64f Remarkably, the mild reaction
conditions permit aldol coupling of configurationally sensitive N-Boc-α-aminoaldehydes
without racemization. Here, high levels of anti-Felkin-Anh control are achieved by taking
advantage of hydrogen-bonded chelates, which arise in reaction media with low dielectric
constants (Scheme 14).64g

The ability to access syn-aldol adducts relevant to polyketide synthesis inspired further
efforts toward enantioselective variants. π-Acidic monodentate phosphine ligands are
required to enforce high levels of diastereoselectivity and catalytic turnover. However,
commercially available phosphines of this type (e.g., phosphoramidites and BINOL-derived
phosphites) give rise to inactive rhodium complexes, suggesting a very narrow window in
terms of ligand π acidity. Consequently, the design of an effective, chiral, monodentate,
phosphorus-based ligand was undertaken. The versatility of TADDOL-like phosphonites
enabled the determination of key structure-selectivity trends, ultimately leading to the design
of an effective ligand. Thus, by simply exposing methyl or ethyl vinyl ketone to aldehydes
under an atmosphere of gaseous hydrogen in the presence of the rhodium phosphonite
complex, aldol addition occurs with high levels of relative and absolute stereocontrol. This
method generates optically enriched polyketide substructures and circumvents the
stoichiometric generation of byproducts (eq 1).64h

Based on the preceding results, reductive Mannich couplings of vinyl ketones were
explored.67 Previously, reductive Mannich couplings had been accomplished using silane,68

the Hantzsch ester,69 or diethylzinc70 as the terminal reductant. Under hydrogenative
conditions employing a tri(2-furyl)phosphine-ligated rhodium catalyst, vinyl ketones couple
to N-(o-nitrophenyl)sulfonyl aldimines to furnish the desired Mannich addition products
with good levels of syn-diastereoselectivity.67 These preliminary studies suggest the
feasibility of developing asymmetric variants of this transformation (eq 2).

5. Future Directions
The stereoselective vinylation, allylation, and enolate addition of carbonyl compounds rank
among the most broadly utilized methods in organic synthesis. Traditional protocols have
relied upon the use of organometallic reagents, which are often basic, moisture sensitive,
and give rise to stoichiometric quantities of metallic byproducts. Inspired by alkene
hydroformylation and the parent Fischer-Tropsch reaction, hydrogenative variants of these
classical carbonyl addition processes are aimed at meeting the environmental, economic, and
health and safety ideals set by Green Chemistry. For the hydrogenative protocols, carbonyl
and imine addition occurs under essentially neutral conditions simply upon exposure of an
unsaturate-electrophile pair to gaseous hydrogen in the presence of a metal catalyst.
Accordingly, vinylation, allylation, and enolate addition are achieved without stoichiometric
byproduct generation and with stereoselectivities often surpassing traditional methods. The
discovery of related transfer-hydrogenative couplings not only evades the stoichiometric
generation of metallic byproducts, but also the requirement for substrate oxidation level
adjustment. The ability to perform carbonyl addition from either the aldehyde or alcohol
oxidation level has broad implications for the field of organic synthesis. These nascent
reactivity modes should serve as the basis for innumerable byproduct-free alcohol-
unsaturate and amine-unsaturate coupling processes.
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Scheme 1.
Catalytic C-C Coupling via Hydrogenation and Transfer Hydrogenation.
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Scheme 2.
Direct, Byproduct-Free Hydrogenative Coupling of Conjugated Alkynes to Activated
Carbonyl Compounds and Imines Employing Cationic Rhodium Catalysts. (Ref. 27)
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Scheme 3.
Unnatural α-Amino Acids via C-C-Bond-Forming Hydrogenation. (Ref. 28)
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Scheme 4.
Enantioselective Carbonyl and Imine (Z)-Butadienylation via Rhodium-Catalyzed
Hydrogenative Coupling of Acetylene. (Ref. 29,30)
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Scheme 5.
Enantioselective Imine Vinylation via Iridium-Catalyzed Hydrogenative Coupling of
Unconjugated Alkynes. (Ref. 32)

Patman et al. Page 17

Aldrichimica Acta. Author manuscript; available in PMC 2012 March 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 6.
Enantio- and Diastereoselective Carbocyclizations of Acetylenic Aldehydes by the
Rhodium-Catalyzed Asymmetric Hydrogenation. (Ref. 33)
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Scheme 7.
Catalytic Carbonyl Addition via Iridium-Catalyzed Hydrogenative Coupling of
Dimethylallene. (Ref. 39)
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Scheme 8.
Coupling of Dienes to Alcohols or Aldehydes by the Iridium-Catalyzed Transfer
Hydrogenation. (Ref. 41)
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Scheme 9.
Coupling of Dienes to Alcohols or Aldehydes by the Ruthenium-Catalyzed Transfer
Hydrogenation. (Ref. 42)

Patman et al. Page 21

Aldrichimica Acta. Author manuscript; available in PMC 2012 March 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 10.
Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium-
Catalyzed Transfer-Hydrogenative Coupling of 1,3-Enynes. (Ref. 43-45)
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Scheme 11.
Enantioselective Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level via
Iridium-Catalyzed Transfer-Hydrogenative Coupling of Allyl Acetate. (Ref. 46)
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Scheme 12.
Reductive Aldol Cyclization via Catalytic Hydrogenation. (Ref. 64a,b)
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Scheme 13.
Reductive Aldol Cyclization via Catalytic Hydrogenation. (Ref. 64b,c)
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Scheme 14.
syn-Diastereoselective Hydrogen-Mediated Aldol Coupling Employing Cationic Rhodium
Catalysts Ligated By Tri(2-furyl)phosphine. (Ref. 64e-g)
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