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Abstract

Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain
condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess
trigeminal nerve changes. Since diffusion tensor imaging (DTI) provides information on white matter microstructure, we
explored the feasibility of trigeminal nerve tractography and assessment of DTI parameters to study microstructural
changes after treatment. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging,
allowing detection of unique, focal changes in the target area after radiosurgery. Changes in specific diffusivities may
provide insight into the mechanism of action of radiosurgery on the trigeminal nerve.

Methods and Materials: Five TN patients (4 females, 1 male, average age 67 years) treated with Gamma Knife radiosurgery,
80 Gy/100% isodose line underwent 3Tesla MR trigeminal nerve tractography before and sequentially up to fourteen
months after treatment. Fractional anisotropy (FA), radial (RD) and axial (AD) diffusivities were calculated for the
radiosurgical target area defined as the region-of-interest. Areas outside target and the contralateral nerve served as
controls.

Results: Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA
values at the target with no significant change in FA outside the target, demonstrating highly focal changes after treatment.
RD but not AD changed markedly, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive
than conventional gadolinium-enhanced post-treatment MR, since FA changes were detected regardless of trigeminal nerve
enhancement. In subjects with long term follow-up, recovery of FA/RD correlated with pain recurrence.

Conclusions: DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo
imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the
pathophysiology of TN and treatment effects.

Citation: Hodaie M, Chen DQ, Quan J, Laperriere N (2012) Tractography Delineates Microstructural Changes in the Trigeminal Nerve after Focal Radiosurgery for
Trigeminal Neuralgia. PLoS ONE 7(3): e32745. doi:10.1371/journal.pone.0032745

Editor: Wang Zhan, University of Maryland, College Park, United States of America

Received August 19, 2011; Accepted February 2, 2012; Published March 6, 2012

Copyright: � 2012 Hodaie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially funded by the Physicians’ Services Incorporated Foundation (PSI Foundation, www.psifoundation.org). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Competing Interests: The authors have read the journal’s policy and have the following conflicts. MH is the surgical co-director of the Gamma Knife
radiosurgery unit at the Toronto Western Hospital. DQC, JQ and NL have no conflicts to report. This does not alter the authors’ adherence to all the PLoS ONE
policies on sharing data and materials.

* E-mail: mojgan.hodaie@uhn.on.ca

Introduction

TN is a chronic neuropathic facial pain in one or more

trigeminal nerve divisions [1]. The most prevalent theory is

ephaptic signal transmission secondary to neurovascular compres-

sion at the nerve entry zone [2,3], however focal areas of

demyelination have also been implicated [3,4]. Surgical treatment,

including microvascular decompression (MVD), rhizotomy or

focal radiosurgery, is undertaken if medication is insufficient or

there are undesirable side-effects. The most common type of focal

radiosurgery for trigeminal neuralgia consists in Gamma Knife

radiosurgery (GKRS).

GKRS consists in delivery of highly focused 60Co radiation to

the the trigeminal nerve, outside the root entry zone in the

brainstem [5]. The exact position of the shot varies ranging from

just outside the nerve entry zone [6] to the distal segment of the

trigeminal nerve [7]. Despite widespread clinical use of GKRS for

the treatment of TN, there are no objective imaging methods to

adequately correlate treatment and outcome, particularly since

TN GKRS is associated with delay in pain relief [8] and a

relatively lower risk of facial dysesthesia compared with other TN

treatments [9], although more recent reports demonstrate an

increasing trend of facial dysesthesiae with time [10–12]. Lack of

clinical benefit may correlate with either lack of effectiveness or
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targeting inaccuracy. Current imaging modalities rely primarily on

comparison of pre and post MR imaging with the addition of

gadolinium-enhancement. The latter shows enhancement on the

trigeminal nerve in approximately 80% of cases, however this

finding is neither predictive of benefit nor recurrence of pain

[13,14]. Clearly, better methods of assessment of changes in the

trigeminal nerve after GKRS are needed.

Neither the effect of GKRS nor the mechanisms underlying the

resultant analgesic effect are well understood. Axonal degeneration

has been proposed as a possible mechanism based on animal

studies [15], as has demyelination [4]. Whatever the effect, the

mechanism may not necessarily relate to permanent nerve injury,

since in a significant proportion of cases the trigeminal nerve

function remains clinically unchanged. Further, recurrence of pain

implies recovery from radiation injury and points away from

permanent changes. The effect of GKRS is also dose-dependent.

The typical dose of 80 Gy is subnecrotic [15]. Increasing dose

beyond 80 Gy is associated with increasing risk of facial numbness

and at 100 Gy frank necrosis can be observed [15]. The

radiosurgical dose has a sharp drop-off implying a much lower

dose immediately outside the target. This highly focal area of

injury is characteristic of GKRS [16].

White matter tractography is gaining increasing application in

imaging. In addition to showing a 3D representation of fiber

tracts, water anisotropy is susceptible to changes in neural

microstructure, and allows for the detection of such changes in an

in vivo system. It is now accepted that DTI parameters are

sensitive to microstructural changes since processes including

demyelination and axonal injury can affect water anisotropy

[17,18]. Recent technical advances are overcoming the challeng-

es of imaging small white matter bundles, such as the cranial

nerves [19]. We employed this technique to study the hypothesis

that a) trigeminal nerve tractography can accurately detect focal

changes in the trigeminal nerve after GKRS and is more

informative than the standard 2D MR image post-treatment and

b) tractography can detail microstructural changes that occur in

the nerve after focal radiosurgery, and provide further informa-

tion on the possible mechanism of action of GKRS in TN. To

test our hypothesis, trigeminal tracts were reconstructed in five

subjects pre and post-radiosurgery and compared with standard

post-treatment 2D MR imaging. In each instance, DTI

parameters including fractional anisotropy (FA), radial (RD)

and axial (AD) diffusivities were measured before and after

GKRS and changes were analyzed.

Methods

Ethics Statement
This study involved retrospective analysis of MR data. Informed

consent was not requested by our ethics board since the study did

not involve any specific participation of subjects in the study. MR

data was anonymized prior to analysis. Institutional review board

(University Health Network Research Ethics Board) approval was

obtained for this study. The University Health Network Research

Ethics Board does not require informed consent when studies

involve analysis of retrospective data, regardless of whether this is

clinical or imaging (MRI) data analysis. All patient information is

stored in secure databases, only accessed upon approval of a

research study. Our hospital and research ethics boards (Univer-

sity Health Network Research Ethics Board) does not require that

patients give written consent for their information to be stored in

specific hospital databases. The merits of each research proposal

are assessed separately by our institution’s ethics board. Informed

written consent is requested for prospective studies, or those that

involve patient identifiers such that the study or its publication

would interfere with patient confidentiality. This case does not

apply to our current study.

Subjects consisted in five patients (4F, 1M) with classic TN,

chosen on the basis of availability of pre and post treatment DTI

studies and length of follow-up. Average age was 67 years. Three

patients had left sided pain and two had right sided pain. All

patients had prior treatment with medications, to which they were

either intolerant, or the medications had poor effectiveness. The

most common trigeminal distribution of pain was V2. Upon

clinical assessment, none of the patients showed evidence of new

trigeminal numbness after their radiosurgery treatment. Demo-

graphics and details for each patient are presented in Table 1. All

subjects had TN that was not amenable to medical treatment

alone. Subjects were treated with GKRS (Leksell Gamma Knife

4C unit �, Stockholm, Sweden) using 80 Gy to the 100% isodose

line, 4 mm collimator in a single fraction. The target was chosen

as a point outside the nerve entry zone, such that the 20% isodose

line remained outside the brainstem, and the 80% isodose line

wrapped around the contour of the trigeminal nerve on coronal

images. This method allowed us to constrain the dose to the

brainstem, which was kept to less than 15 Gy to 1 mm3.

All patients underwent pre and serial post-treatment imaging at

6–7 months post treatment. Subjects S1, S2 had additional post-

treatment imaging at 14 and 12 months respectively.

Table 1. Demographics and clinical presentation of subjects studied.

Subject/Gender Age
Trigeminal
division affected Laterality Medications Effect of treatment

Post GKRS
numbness

Post treatment MR
gadolinium enhancement

S1/F 43 V1, V2, V3 Left Intolerant/poor
effectiveness

Significant improvement
initially, pain recurred at 1 year

No Yes

S2/F 77 V2, V3 Right Carbamazepine
800 mg daily

No pain at one year post
treatment

No No

S3/M 53 V1, V2 Right Carbamazepine
600 mg daily

No pain at 6 months No No

S4/F 82 V2 Left Intolerant/poor
effectiveness

No pain at 6 months No Yes

S5/F 83 V1 Left Intolerant/poor
effectiveness

No pain at 6 months No Yes

doi:10.1371/journal.pone.0032745.t001

Trigeminal Nerve Tractography
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Tractography Procedure
Data Acquisition, image processing and registration. 3T

MR imaging (GE Signa HDx) imaging sequences included T1

anatomical (axial Fast spoiled gradient echo (FSPGR). slice

thickness = 1 mm, slice spacing = 1 mm, repetition time = 8.0 ms,

echo time = 3.1 ms); diffusion weighted images (DWI) were acquired

using an 8-channel head coil with DTI 25 directions Array special

sensitivity encoding technique (ASSET) = 2, Echo Planar/Spin

Echo sequence (3 mm thickness, 55 slices, 1 baseline, slice

spacing = 0 mm, echo time = 86.6 ms, repetition time = 12,000 ms,

NEX = 1). The acquisition matrix size was 1286128, and b-

value = 1000 s/mm2. Images were processed, registered and

tractography were performed using the 3D Slicer software (http://

www.slicer.org, NA-MIC�) [20] following the procedure described

elsewhere [19].

DTI Tractography. Tractography of bilateral trigeminal

nerves was performed from both pre and post-treatment DTI

Tensors. Streamline tractography was performed with initial seed

spacing = 0.5, linear measure starting threshold = 0.2, fractional

anisotropy threshold = 0.2, curvature threshold = 0.8 rad.

Diffusivity Data. Two distinct ROI on the trigeminal nerve

were studied. The first region, (‘‘target’’) was chosen to be over the

area where the radiosurgical target was located, as determined by

the location of the radiosurgical target on the planning software. A

second ROI, (‘‘proximal’’) was defined as an area proximal to the

nerve root entry zone separated with the ‘‘target’’ ROI by at least

two voxels. The proximal target still remained outside the nerve

entry zone. The sizes of the ‘‘target’’ and ‘‘proximal’’ ROI used in

all sets of pre and post-treatment images were equivalent. FA

volume was generated from the DTI volume. AD and RD

volumes were calculated by custom module developed in-house.

The diffusivity statistics were exported from these volumes.

‘‘Unaffected’’ ROI was defined as an ROI in the contralateral,

non-symptomatic nerve, with a position and size comparable to

the ‘‘target’’ and ‘‘proximal’’ ROIs.

Results

Response to treatment (Table 1)
All subjects had significant improvement (S1, S3) or resolution

of their pain (S2, S4, S5) at assessment 6 months post-treatment.

Two subjects, S1 and S2 were assessed also at one year post-

treatment. At that time, S1 had experienced full recurrence of her

pain to its baseline. S2 remained pain free.

Image resolution and ROI definition
Figure 1 shows an axial image of the brainstem at the level of

the trigeminal nerve. The overlaid tracts of the trigeminal nerve

(panel C) demonstrate adequate concordance with the location

and size of the tracts. The location of the radiosurgical target, and

corresponding selection of ROIs are shown in panels D-F. The

small ROI size was not a limitation in trigeminal tract

reconstruction or calculation of scalar DTI parameters.

Changes in DTI parameters after GKRS treatment of the
trigeminal nerve

To determine whether tractography can detect a focal change

in trigeminal nerve anisotropy, the scalar values of FA, RD and

AD were studied over different time-points for the selected ROI.

‘‘Target’’ ROI showed a significant decrease in FA after

treatment, dropping by 47%, down to 53% of its baseline value

(p = 0.027 two-tailed t-test) (Figure 2A, Table 2). ‘‘Proximal’’

ROI showed no significant change in FA, demonstrating that

this technique can detect highly focal changes between very

small ROI only two voxels apart. The area of focal decrease in

FA corresponds to site of delivery of Gamma radiation.

Significant rise in RD (increased 55.8% over baseline, paired

t-test value = 0.002) but not AD (Figure 2B,C, Table 2), denotes

that the proportional contribution of FA is primarily from RD.

No changes in the contralateral nerve diffusivities were

observed.

Figure 1. Baseline MR imaging, tractography of the trigeminal nerve, target and ROI definition. Image processing commenced with
baseline anatomical 3TMR images (A, axial section, midpontine level). Diffusion tensor images with overlaid colour-by-orientation fibers are shown in
B. Reconstructed tracts of the trigeminal nerve onto colour-by-orientation images are shown in C. Panel D depicts the contour of the trigeminal nerve
(blue) and location of the radiosurgical shot. Yellow circle denotes the 80% isodose line, representing the ‘‘target’’ of Gamma radiation to the nerve.
Panel E shows focal area of post-gadolinium enhancement on the trigeminal nerve (yellow arrowhead), defining the ‘‘target’’ ROI. Panel F shows the
location of the ‘‘proximal’’ ROI, proximal to the area of gadolinium enhancement (B, white arrow), and ‘‘unaffected’’ ROI, contralateral nerve.
doi:10.1371/journal.pone.0032745.g001
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Trigeminal nerve diffusivity is dynamic, but 2D MR
changes are not

To examine possible dynamic changes in the tracts, the pattern

of change within the ‘‘target’’ ROI was examined at different

time points in subject S1 by reconstructing the tracts at 0, 1, 7

and 14 months post treatment, (Figure 3). An initial sharp

decrease in FA was seen at one month, which continued at 7

months. At 14 month this pattern changed, with the most distal

fibers now being easily visualized. At this point, the patient’s pain

had also recurred to baseline. In comparison, gadolinium-

enhanced MRs during all time points showed uniform enhance-

ment of the nerve (Figure 3, top panel), demonstrating that

tractography is more sensitive than 2D MR imaging and

gadolinium-enhancement in detecting changes in the nerve after

treatment.

To determine whether we could pinpoint the neuroanatomical

sub-region where the change in diffusivity occurred, the ‘‘target’’

ROIs was examined in detail. Figure 4A,B depicts two

reconstructed trigeminal tracts pre- and post-treatment in subject

S1. We observe a near circumferential pattern of change, with

apparent preservation of FA in the deep fibers. In subject S2 (Fig. 4

C,D), we observe tract pruning and marked change in FA

inferiorly in the nerve. 2D MR assessment alone does not show

any notable structural changes.

Tractography detects changes in the trigeminal nerve in
absence of post-treatment MR gadolinium-enhancement

To investigate whether our technique can detect changes in the

absence of gadolinium-enhancement, we compared diffusivity

values in the ‘‘target’’ ROI between the subset of subjects that

showed gadolinium-enhancement post treatment and those who

did not (S2, S3). FA decrease is comparable with the whole group

(Table 2), and changes in the ‘‘target’’ ROI could be clearly

visualized (Figure 5), pointing to higher robustness and sensitivity

of this technique.

Return of FA to baseline may correlate with pain
recurrence

Subjects (S1, S2) had different long-term pain outcomes. To

assess whether diffusivity changes correlate with pain outcome, we

compared diffusivity values and pain relief with time. In S1, FA

dropped after treatment with a subsequent rise to 83% of the

baseline 14 months (Table 2). In comparison, S2 (pain free) FA

values decreased over 50% after treatment and remained low at 12

months.

Discussion

In this article we report a novel method of in vivo analysis of

microstructural changes in the trigeminal nerve to study the effects

of focal radiosurgery for TN. We demonstrate for the first time

that DTI can detect changes in trigeminal nerve microstructure

that correlate with GKRS treatment and effect. These changes

consist in 1) highly focal diffusivity changes in the radiosurgical

target, 2) increase in RD suggesting a primary effect on myelin, 3)

highly sensitive technique that can detect changes in absence of

post-treatment MR nerve enhancement and 4)correlation between

diffusivity changes and pain, such that recurrence of pain is

associated with reversal of FA towards baseline values. The

described technique offers a novel improvement in the way in

which we study TN and the effect of treatment, since traditionally

investigation of this entity have relied mainly on clinical reports,

particularly in TN GKRS.

Although changes in FA, AD and RD have been demonstrated

in relation to a number of pathological process in the central

nervous system (CNS) [17,18,21] the relationship between specific

diffusivities and clinical outcomes have not been studied in cranial

nerve disorders previously. To be able to measure specific

diffusivities in small fibers with accuracy clearly opens the door

for further applications of this technique.

The applicability of tractography to the study of cranial nerves

is novel and few studies have been reported in this area [22,23].

Table 2. Effect of GKRS treatment on trigeminal nerve diffusivities.

Subjects Fractional anisotropy Radial diffusivity Axial diffusivity

Target Unaffected Proximal Target Unaffected Target Unaffected

S1 44.6 (83.3) 72.85 (84.4) 101.7 221.7 101.6 111.7 87.7

S2 52.0 (56.61) 99.23 (107.4) 120.0 158.0 91.3 117.3 85.2

S3 52.9 97.14 93.3 144.7 90.0 107.1 88.9

S4 60.2 101.29 93.9 123.1 82.3 107.8 84.1

S5 55.0 98.43 102.5 131.8 92.4 106.8 92.9

Mean+SD 53.065.6 93.8611.8 102.3610.8 155.8639.1 91.566.9 110.264.5 87.763.4

p-value *0.027 NS NS *0.002 NS NS NS

Scalar diffusivity values for each ROI were compared pre and post-treatment, as change from baseline value of 100%. Timepoints for comparison are pre-treatment and
6–7 months post-treatment. S1, S2 timepoints (parentheses) represent values measured at 12 and 14 months respectively. S1 diffusivity values trended towards baseline
at 14 months, and paralleled the clinical return to baseline pain levels. S2 remained with stable diffusivity values post-treatment, and no clinical return of trigeminal
neuralgia pain. The values of S2 and S3 are bolded, and denote lack of post-treatment MR gadolinium-enhancement. ‘‘Target’’ ROI shows statistically significant
decrease in FA and elevated RD (two-tailed t-test. SD = standard deviation, NS = no statistical significance).
doi:10.1371/journal.pone.0032745.t002

Figure 2. Target ROI is characterized by focal diffusivity changes. Comparison of diffusivities change across all ROIs reveal statistically
significant decrease in FA and rise in RD in ‘‘target’’ post-radiosurgery treatment. Rise in RD and non-significant changes in AD point to changes in
myelination as main contributor of diffusivity changes. (*denotes statistically significant changes, FA p = 0.027, RD p = 0.002; two-tailed t-test. NS = no
statistical significance. RD,AD scalar values are multiplied 61000 for ease of representation).
doi:10.1371/journal.pone.0032745.g002
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We recently demonstrated that tractography can be used to

delineate the course of the cranial nerves, and that significant

information with respect to the DTI parameters can be obtained

[19,24]. Our technical advances allowed us to study the feasibility

of detecting changes in the trigeminal nerve after focal

radiosurgery for TN.

Figure 3. Changes in FA after GKRS treatment are dynamic. Sequential images for subject S1 are shown at 0, 1, 7 and 14 months after Gamma
Knife radiosurgery (GKRS) treatment. Top panel depicts serial MR images, showing similar gadolinium enhancement in the midcisternal portion of the
nerve after treatment with time (yellow triangles). Middle panel shows reconstructed trigeminal nerve tracts for the same time points. At one month,
marked FA decrease is seen in the target area (high FA pre-treatment, blue now appearing as low FA, orange) and tract-pruning due to fall-off of FA
value. At 14 months the FA values trends towards baseline, with a longer reconstructed trigeminal segment. The area of low FA has also resolved.
Lower panel shows a graph of the scalar values of FA with time. At 14 months, subject S1 has experienced full recurrence of her pain.
doi:10.1371/journal.pone.0032745.g003
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Role of tractography in detecting changes in the
trigeminal nerve after GKRS

We hypothesized that DTI can detect the changes that occur in

the trigeminal nerve after GKRS treatment. To demonstrate a

direct relationship, the expected FA changes should reflect the

highly focal nature of GKRS and the target location, as calculated

during radiosurgical planning and seen in gadolinium-enhanced

post-treatment MR (Figure 1D–F). We demonstrate distinct

changes in FA in ‘‘target’’ ROI while ‘‘proximal’’ ROI did not

change significantly (Figure 2), thereby confirming our hypothesis.

Proportional changes in RD vs. AD may provide
information on the mechanism of action of GKRS

The preferential RD rise suggests that focal radiosurgery affects

primarily myelin. This is consistent with our clinical observation of

low proportion of permanent sensory changes after GKRS, and

lack of trigeminal deficits in this group. Recovery of myelination

changes points also towards recurrence of pain. Previous studies

have been published on dysmyelination in the CNS and how this

process affects DTI parameters [25,26], however similar findings

in the cranial nerves has not been reported. To our knowledge,

Figure 4. Tractography outlines detailed FA changes in the trigeminal nerve after GKRS treatment. Panels A–D depict the trigeminal
nerve tracts pre and post-treatment for subjects S1(A,B) and S2 (C,D). The area between the yellow and blue arrows delineates the cisternal segment,
with the yellow arrow being proximal to the brainstem and the blue arrow distal. The red arrow denotes the target area, which corresponds to the
region where the greatest change in FA was observed. In S1, FA change affects primarily the outlying fibers of the nerve, while for S2, FA changes are
seen in the inferior portion of the cisternal segment of the trigeminal nerve.
doi:10.1371/journal.pone.0032745.g004

Figure 5. Tractography can detect changes in the trigeminal nerve in the absence of post-treatment gadolinium enhancement:
Panels A to E delineate FA changes seen after treatment. Subject S2 did not show post-treatment MR gadolinium enhancement.
Panel A shows location of radiosurgical target during treatment planning. Panels B, C depict post-treatment MR and lack of gadolinium-enhancement
(yellow arrowhead). Reconstructed trigeminal tracts are shown in panel D (pre-treatment) and E (post-treatment), with clear FA changes in the target
area (blue arrowhead).
doi:10.1371/journal.pone.0032745.g005
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this is the first report of an in vivo model through which the effects

of radiation on the trigeminal nerve can be assessed.

Tractography is superior to gadolinium-enhanced MR in
detecting changes in the trigeminal nerve after
treatment

The only current imaging modality that can detect the effect of

GKRS on the trigeminal nerve consists of post-treatment

gadolinium-enhanced MR images, despite there being no direct

correlation between enhancement and effect of treatment [14]. We

hypothesized that our present technique was able to detect

changes in the nerve in the absence of post-treatment enhance-

ment. The magnitude of FA and RD changes for subjects S2, S3 is

similar to that of the group (Table 2), indicating that assessment of

DTI parameters is a more sensitive and robust test compared with

postoperative gadolinium-enhancement alone.

While tractography revealed clear changes in DTI parameters

in the same subject across different time-points, we observed no

difference in the pattern of gadolinium-enhanced MR (Figure 3).

This is significant since it identifies an in vivo imaging technique

that detects dynamic changes and may correlate with treatment

outcome. Additionally, tractography depicts the actual target with

greater detail. Whereas gadolinium enhancement always appears

circumferential, tractography shows that not all the nerve is

equally affected (Figure 4). This has important implications in

radiosurgical planning and detection of accuracy of targeting. The

dynamic nature of FA changes is also seen in the subset of patients

who had post-treatment imaging beyond 12 months. In these, the

fall and rise of FA parallels the improvement and subsequent

recurrent of pain status, pointing to a possible prognostic value of

diffusivity changes (Figure 3, Table 2).

Further study in this area will benefit from imaging, clinical

assessment and treatment outcome at multiple time points and

larger population. Although ideally histological data would

provide additional proof of the effects of focal radiosurgery on

the cranial nerve, this is not feasible in the present clinical context.

Robust imaging methods of the trigeminal nerve provide the

possibility of using tractography for the study of cranial nerve

disorders using animal model correlates.

Our study serves as a strong proof of principle of the use of

trigeminal tractography and diffusivity assessment in the study of

effects of TN treatment. The novel technique provides not only

detailed structural views but provides information on neural

microstructure. Our findings open the door to new avenues of the

study of TN and our approach to the study of pain and other

disorders of the cranial nerves.
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