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Abstract

Background: Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing
long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take
up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure
of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective
against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for
alternative treatment ways, i.e. other effective drugs or vaccines.

Methodology/Principal Findings: Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that
immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after
challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and
furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with
the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as
IFN-c secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden.

Conclusions/Significance: Our results present a tool to understand the immunological basis of vaccine induced protection
in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful
weapon to stop transmission of filariasis.
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Introduction

Infections with filarial nematodes are classified among the

‘‘neglected tropical diseases’’ and cause serious public health

problems in the tropics and subtropics with more than 150 million

people infected and many more at risk. Lymphatic filariasis (LF)

caused by the filarial nematodes Wuchereria bancrofti and Brugia spp.

affects 120 million people with one third of them suffering from

clinical presentations of the infection, namely lymphedema of the

extremities and hydrocele, making LF the second-largest cause of

long-term disability [1].

Human filariasis is transmitted by blood feeding vectors that

ingest first stage larvae (microfilariae, Mf) from infected patients.

Within the vector, Mf undergo two obligatory molts to become

infective third stage larvae (L3). After their transmission to a new

host infectious L3 molt twice into adult worms, which mate and

release thousands of new Mf [2].

Current elimination strategies of the WHO such as the Global

Programme to Eliminate LF (GPELF [3]) or the African Programme

for Onchocerciasis Control (APOC [4]) are based on the mass drug

administration (MDA) of the microfilaricides ivermectin (IVM),

diethylcarbamazine and albendazole that have been successful in

reducing Mf-burden. However, only IVM and albendazole are used

in MDA programs against LF in Africa, because diethylcarbamazine

causes rapid death of Mf, thereby increasing chances of adverse

reactions, such as ocular damage in onchocerciasis [2]. In addition,

doxycycline has been introduced for individual drug administration

[5] directed against the obligate endosymbiotic Wolbachia bacteria of

the filariae [6,7]. Doxycycline inhibits filarial embryogenesis, and has

been proven to be macrofilaricidal and to halt or reduce pathology

[8,9]. However, doxycycline is contraindicated in children #9 years

and pregnant woman and improvement of anti-wolbachial chemo-

therapy to be used in public health control programs is a focus of

ongoing research [2].
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Despite the success of anti-helmintic drugs used in MDA

programs in order to reduce infection and morbidity, certain

drawbacks have to be considered. IVM has only limited

macrofilaricidal efficacy [2] and repeated treatment for the life

of the adult worm (up to eight years) is needed in order to stop

transmission. Together with the limited logistics, especially in areas

with civil unrest, the occurrence of adverse events after treatment

such as scrotal pain or systemic inflammation can substantially

corrupt the degree of compliance to therapy [1]. Finally, emerging

resistance to drugs [10] reinforces the urgent need of alternative

ways of disease control.

Hence, besides drug therapy and vector control [11], the

development of a vaccine against filarial infections would be a

pivotal step towards the elimination of this disease [12]. As filarial

nematodes have a high reproductive capacity with a total daily

turnover of thousands of Mf in chronically infected human

individuals [13], a vaccine achieving substantial clearance of

circulating Mf would be a step towards stopping disease

transmission. At best, a vaccine would be used in conjunction

with MDA after Mf loads in a population were reduced either to

prevent re-infection or to prevent circulation of Mf in the blood,

particularly in areas of very high transmission.

Despite the severity of infection and the vast number of infected

people and individuals at risk, there is no vaccine against filarial

infections available [12,14]. Addressing this issue, various animal

immunization studies using different approaches have been

conducted. For example the group of Odile Bain used Litomosoides

sigmodontis L3 to immunize mice and achieved up to 58%

protection [15]. The protection was established within a few days

after challenge infection and was characterized by L3-specific

immunoglobulins, eosinophilia and high levels of IL-5. Lange and

colleagues used a similar approach to immunize mice with

Onchocerca volvulus L3 and also observed fast protection, which led

to reduction of the recovery rates by 54% to 77% between five and

28 days post challenge infection (p.i.), and this was also associated

with eosinophils and IL-5 [16]. In the experiments of Dixit el al

[17], immunization of Mastomys coucha with a fraction of adult B.

malayi extract reduced the recovery rate of adult worms by 85.7%.

Other groups used recombinant peptides instead of complete

extracts [18,19,20,21]. The immunization with B. malayi heavy

chain myosin for example generated a high level of protection

against challenge infection in jirds and M. coucha [21]. Different to

all these setups, Anand and colleagues used a cocktail of B. malayi

DNA to immunize mice and found high cytotoxcicity against B.

malayi Mf in immunized mice, associated with specific Ig and

increased IFN-c responses [22]. However, none of these studies

reported complete clearance of adults or Mf.

In the 1960s, Wenk and colleagues found that cotton rats

immunized with L. sigmodontis Mf had fewer blood-circulating Mf,

although adult worms were present [23,24,25]. In this study we

have taken this approach another step forward using the fully

permissive BALB/c mouse model to study filarial infections. In

this model with the advantage of greater access to immunological

tools, female L. sigmodontis worms release the Mf into the pleural

space of the thoracic cavity, the site of infection. From there they

migrate into the peripheral blood [26]. Here, we show that

immunization with Mf together with the adjuvant alum reduces

microfilaraemia by apparently inhibiting embryogenesis.

Materials and Methods

Animals
Eight - 12 week old female BALB/c wild type mice (Janvier, La

Genest St. Isle, France) were maintained under specific pathogen-

free conditions, according to animal welfare guidelines.

Ethics Statement
All animal experiments were approved by and conducted in

accordance with guidelines of the appropriate committee (Land-

esamt für Natur, Umwelt und Verbraucherschutz, Köln, Ger-

many).

Immunization
Mf were purified from the peripheral blood of infected cotton

rats on a Percoll gradient as described [27]. In brief, isoosmotic

Percoll (Sigma-Aldrich, Munich, Germany) was prepared by

mixing 9 parts of Percoll (density, 1.130 g/ml) with 1 part of

2.5 M D-sucrose (Sigma-Aldrich). Dilutions of the isoosmotic

Percoll in 0.25 M sucrose were made to obtain 25% and 30%

solutions. Three ml of both gradient dilutions were layered and the

peripheral blood diluted 1:2 in phosphate-buffered saline (PBS)

(PAA, Cölbe, Germany) was placed on top. After centrifugation at

4006g for 30 min at room temperature (RT) without brakes, Mf

(between the 25% and 30% layers) were recovered and washed

twice with PBS and 16105 viable Mf per mouse were used for

each immunization. Injection was performed via different

administration routes as indicated in the text (see also Figure

S1). For Mf attenuation, 16106 Mf/ml were irradiated 40 min at

140 kV and 25 mA, corresponding to an absorbed dose of

400 Gray (Gy) at the Facility of Experimental Therapy of the

University Hospital Bonn. Microscopic analysis of irradiated Mf

confirmed their attenuation by monitoring their motility (data not

shown). For IVM (Merck, Darmstadt, Germany) treatment after

immunization, mice received 800 mg per kg mouse body weight.

For immunization with alum (Thermo Scientific, Bremen,

Germany), Mf were added slowly to the adjuvant to a final

adjuvant concentration of 25% and then mixed on an automatic

shaker at 1,000 rpm for 30 min. After this procedure Mf were

morphologically intact, however they were amotile and motility

was not reconstituted after 72 h at 37uC and 5% CO2, suggesting

Author Summary

Lymphatic filariasis is caused by parasitic filarial worms that
are transmitted by mosquitoes, requiring uptake of larvae
and distribution into the blood of the host. More than 120
million people are infected and about 30% of these
individuals suffer from clinical symptoms. Reduction in
transmission currently depends on mass drug administra-
tion, which has significantly reduced transmission rates
over the past years. However, despite repetitive rounds of
administration, transmission has not been eliminated
completely from endemic areas. In some infected individ-
uals the immune system can partially control the parasite,
such that a proportion of infected individuals remain
microfilaria-negative, despite the presence of adult worms.
Therefore mechanisms must exist that are able to combat
microfilaraemia. Identifying such mechanisms would help
to design vaccines against disease transmitting microfilar-
ial stages. Using the Litomosoides sigmodontis murine
model of filariasis research we show a successful immu-
nization against the blood-circulating larval stage that is
responsible for arthropod-dependent transmission of the
disease. Reduced microfilaraemia was associated with
impairment of worm embryogenesis, with systemic and
local microfilarial-specific host IgG and with IFN-c secretion
by host cells at the site of infection. These results raise
hope for developing a microfilariae-based vaccine, being a
pivotal step towards eradicating filariasis.

Immunization Reduces Microfilaraemia
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that the Mf were not viable. Directly before injection, the

suspension was intensively vortexed. For the sham injection

control mice received alum or PBS. In all experiments, second and

third immunization injections were performed two and three

weeks after the initial immunization.

Natural Infection
For challenge infection, infective L3 larvae were transmitted through

the bite of the vector mite Ornithonyssus bacoti as described [28]. Natural

infection was performed one week after the last immunization.

Mf Monitoring
Peripheral blood was taken from the tail vein and directly

transferred into 500 ml Hinkelmann solution (0.5% [wt/vol] eosin

Y, 0.5% [wt/vol] phenol (both Merck) and 0.185% [vol/vol]

formaldehyde (Sigma-Aldrich) in deionized water). After centrifu-

gation (5 min, 2506g) supernatant was discarded and pellet

suspended in 20 ml PBS before counting under the microscope

(406). For monitoring Mf in the pleural space, 20 ml from 1 ml

pleural space lavage (see section below) were added to 450 ml

Hinkelmann solution and treated as described for peripheral Mf.

Parasite Recovery
Mice were euthanized with Isofluran (Abbott, Wiesbaden,

Germany). Parasites and cells were harvested from the pleural space

by lavage with cold PBS. At 15 days p.i., L4 (L3/L4 molting around

day eight in BALB/c mice [29]) and at days 70 and 90 p.i. adults

(L4/adult molting around day 22 p.i. [29]) were separated from the

cells by 15 min sedimentation. For the embryogram each single

female worm was transferred into 80 ml PBS, cut into several pieces

and embryonic stages squeezed out of the uterus using a 1.5 ml

plastic tube and plastic pestle. The embryonic stages were stained by

adding 20 ml Hinkelmann solution and 10 ml of this preparation

(thus 10% of total uterine content of each analyzed female filariae)

were analyzed under the microscope. If present, three female worms

from each mouse were investigated. Damaged females, empty

females or females with only oocytes were excluded from analysis.

Ex vivo Restimulation
Ex vivo stimulations were performed at days 22, 70 or 90 p.i..

Lysis of red blood cells from the pleural space exudate cells was

done by 5 min incubation with trisammoniumchloride (Sigma-

Aldrich). Cells were washed twice with PBS, filtered through sterile

41 mm gaze (Bueckmann, Moenchengladbach, Germany), and

2.56105 cells per well in RPMI medium (supplemented with 10%

fetal calf serum, 1% L-glutamine, 1% penicillin/streptomycin, 1%

non-essential amino acids, 1% sodium bicarbonate, and 1%

sodium pyruvate (all PAA)) were stimulated with 5 mg/ml

concanavalin A (Sigma-Aldrich) in a 96 well plate (Greiner Bio-

One, Frickenhausen, Germany) or the respective worm extracts

for 72 h at 37uC and 5% CO2. For preparation of L. sigmodontis

extract, freshly isolated adult worms were rinsed in sterile PBS

before being mechanically minced. Insoluble material was

removed by centrifugation at 3006g for 10 min and 4uC. Protein

concentrations of crude extracts were determined using the

Advanced Protein Assay (Cytoskeleton, Denver, CO, USA). All

procedures were conducted under sterile conditions. L. sigmodontis

Mf extract was similarly prepared with sonicated (Bandelin

Electronics, Berlin, Germany) freshly isolated Mf.

Mf-Specific and Cytokine ELISA
Systemic Mf-specific IgG was measured from plasma of mice

directly before immunization injections (days 228, 214 and 27)

and in weekly intervals after infection (days 0, 7 and 14 p.i.). Blood

was taken submandibular from anesthetized (Ketanest, Medistar,

Ascheberg, Germany/Rompun, Bayer, Leverkusen, Germany)

mice. After centrifugation (5 min at 6,5006g), plasma was taken

and stored at 220uC until further usage. Mf-specific Ig of the

pleural space were measured from the supernatant of the pleural

space lavage at days 22 and 70 p.i.. Polysorb ELISA plates (Nunc,

Roskilde, Denmark) were coated overnight at 4uC with 10 mg/ml

of Mf crude extract in PBS at pH 9. After blocking 1 h with 1%

BSA-PBS (PAA), plates were washed with PBS containing 0.05%

Tween 20 (Sigma-Aldrich) and incubated for 2 h at RT with

either 50 ml of pleural space lavage or a 1:10 (IgE) or 1:1,000 (IgG)

dilution of plasma. After another washing step, biotinylated

detection antibody (BD Pharmingen, Heidelberg, Germany) was

added as recommended by the manufacturer. After a final wash,

alkaline phosphatase-conjugated streptavidin (Roche, Grenzach,

Germany) was added and tetramethylene benzidine (Carl Roth,

Karlsruhe, Germany) was used as substrate. The reaction was

stopped by adding 1 M H2SO4 (Merck) and the absorbance was

measured at 450 nm.

IFN-c (eBioscience, Frankfurt, Germany), IL-5 (BD Pharmin-

gen), IL-13, macrophage inflammatory protein 2 (MIP)-2a,

chemokine C-C motif ligand 5 (CCL5), granzyme B, eotaxin-1

and eotaxin-2 (R&D Systems, Wiesbaden, Germany) ELISA of the

pleural space lavage and the supernatants of restimulated cells

were performed according to manufacturer’s instructions.

Statistics
Statistical analyses were performed with GraphPad Prism 5.0

software (GraphPad Software, La Jolla, CA, USA), using the

Student’s unpaired t-test for parametric, the Mann Whitney t-test

(u-test) for nonparametric data and Welch’s correction for data

sets with different variances. Variances were tested with the

D’Agostino & Pearson omnibus normality test. P-values #0.05

were considered significant. Microfilaraemia, Ig kinetics and

cytokine responses after ex vivo restimulation were analyzed with

regular 2-way ANOVA and Bonferroni post tests. Data were

graphed with means 6 standard error of mean (SEM).

Results

Subcutaneous Immunization with Mf in Alum Prevents
Peripheral Microfilaraemia

Revisiting some of the known immunization protocols in animal

models, we immunized mice in various ways (for detailed

information see Figure S1). Initially, because Mf are mainly

located in the blood of the infected host, we immunized BALB/c

mice three times intravenously (i.v.) with 100,000 living Mf. This

injection resulted in a transient presence of Mf in the peripheral

blood lasting about two weeks (Figure S2A). After challenge

infection, natural Mf levels in the peripheral blood were monitored

from the onset of peripheral microfilaraemia at day 50 until the

end of patency around day 90 p.i.. This immunization neither

delayed the onset of natural microfilaraemia nor changed the Mf

levels in the peripheral blood after challenge infection compared to

control animals at any time point during patency (Figure 1A).

Next, since healthy Mf may modulate immune responses in the

immunized host, and in order to enrich the amount of

immunogenic material mice were treated after immunization with

the microfilaricide IVM, which suppresses the ability of Mf to

secrete immunomodulatory proteins [30] and inhibits their

neuromuscular control [31]. Accordingly, after IVM injection,

Mf disappeared from the peripheral blood within one day after

injection (Figure S2B). However, as observed for mice immunized

Immunization Reduces Microfilaraemia
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three times with live Mf, microfilaraemia was not reduced in

infection-challenged mice (Figure 1B).

According to the successful scheme originally used in cotton rats

[24], we then immunized mice first subcutaneously (s.c.), followed

by an intraperitoneal (i.p.) immunization two weeks later and an

i.v. immunization three weeks after primary immunization. As

with the two former schemes, this route of immunization failed to

protect mice and this was independent of the usage of either

healthy (Figure 1C) or irradiation-attenuated Mf (Figure 1D).

Finally, to investigate whether a standard adjuvant is able to

establish protective immunity, mice were then immunized three

times with 100,000 Mf together with the adjuvant alum. Due to

the viscosity of alum this immunization was performed s.c.. Mice

immunized with Mf in alum had significantly reduced numbers of

circulating Mf after challenge infection compared to control

animals throughout patency (P,0.05, Figure 2A). Furthermore,

the frequency of mice that became microfilaraemic until the end of

observation was significantly reduced in the immunized group

(P,0.05, Figure 2B).

Taken together, effective vaccination of 70–100% was only

observed in mice after s.c. immunization with Mf in alum, but not

after immunization with Mf alone, irrespective of the administra-

tion route, irradiation of Mf or IVM treatment of mice after

immunization. Consequently, all further experiments were

performed with 100,000 s.c.-administrated Mf in alum.

Immunization Blocks Embryogenesis of Female Worms
To investigate whether immunization inhibits the ability of

females to generate and release Mf or just hinders the Mf

migration into the blood, the pleural space lavage was analyzed for

the presence of Mf on days 70 and 90 p.i.. Figure 2C and D show,

that the number of Mf in the pleural space was significantly

reduced after immunization compared to the alum-treated control

group, the latter showing a wide range of microfilaraemia that is

well described for this model [28]. The few immunized mice that

were Mf+ at day 70 p.i. had only low Mf levels with a mean of four

Mf compared to 226 Mf/20 ml lavage in the alum treated control

group (P,0.005, Figure 2C). Furthermore, at day 90 p.i. 90% of

the immunized mice were free of Mf with only one mouse having

five Mf/20 ml lavage. In contrast, 90% of control mice still

harbored Mf with a mean of 68 Mf/20 ml lavage (P,0.005,

Figure 2D). To rule out that alum itself influences the course of

infection, we compared mice injected s.c. with either alum or PBS

and did not find significant differences in the course of infection

(data not shown, 2-way ANOVA of peripheral microfilaraemia

P = 0.4898, Welch-corrected t-test of pleural space Mf P = 0.7377).

The reduction of Mf levels not only in the blood but also in the

pleural space suggested that either Mf were cleared immediately

after being released or the Mf output of female worms was reduced.

Consequently, the embryogenesis of female worms was analyzed.

During the filarial embryogenesis four main developmental stages

Figure 1. Immunization strategies that failed to protect mice from peripheral microfilaraemia. Mice were immunized with 100,000 Mf
either three times i.v. (A, B) or first s.c. followed by an i.p. and i.v. immunization (C, D). All control mice received PBS. L. sigmodontis challenge infection
was performed one week after the last immunization. (B) After immunization mice were treated i.v. with IVM. (D) Mice were immunized with
irradiated (400 Gy) Mf. Microfilaraemia was monitored throughout patency. Data obtained from single experiments with at least six mice per group
are shown. Two-way ANOVA (mean 6 SEM) was used for statistical analysis including both Mf2 and Mf+ mice.
doi:10.1371/journal.pntd.0001558.g001
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can be distinguished in the uteri of female worms (Figure 3A–D):

oocyte, divided egg (fulfilled first cell division), pretzel and stretched

Mf [32,33]. If present, three female worms from each mouse were

investigated. Empty females or females with only oocytes were

excluded from analysis. In the embryograms of three independent

experiments the percentage of those excluded females was similar

between immunized (33, 20 and 27%) and non-immunized mice

(16, 18, and 28%), indicating that immunization did not interfere

with insemination. At day 70 p.i. we found all stages to be present in

the uteri of female worms of control mice, whereas females of

immunized mice contained mainly the first two developmental

stages (oocyte and divided egg) but rarely pretzel stages (P,0.001)

and fully developed Mf (P,0.01, Figure 3E, see also Figure S4A).

To confirm this, any remaining worms were checked for the

presence or absence of later stages such as fully stretched Mf and

pretzel stages. Only two out of 23 female filariae were positive for

later stages in the Mf-vaccinated group (see also Figure S4A; 0/6

worms), whereas in the control group 25 of 31 females contained

stretched Mf (see also Figure S4A; 14/26 worms). Inhibition of

embryogenesis at day 70 p.i. was exemplarily documented by live

video analysis of the uteri of freshly isolated healthy females (video

S1, and Video S2). Finally, in an additional experiment inhibition of

embryogenesis could already be observed at the beginning of

patency (day 56 p.i., see Figure S4B).

Taken together, these data suggest that immunization induces

the inhibition of larval development.

Figure 2. Mice immunized with Mf in alum have reduced numbers of Mf. Mice were immunized three times s.c. with 100,000 Mf in alum.
Control mice received alum alone. L. sigmodontis infection was performed one week after the last immunization. Microfilaraemia was monitored twice
a week throughout patency. (A) Kinetics of Mf load of sham-treated (dashed line) and immunized (black line) mice in the peripheral blood. One
representative of three independent experiments with ten mice per group is shown (2-way ANOVA, mean 6 SEM), including both Mf2 and Mf+ mice.
For additional experiments see figure S3A, B. (B) Percentage of Mf+ mice of three independent experiments was analyzed using Student’s t-test. Each
mouse with peripheral Mf at any given time point was defined as Mf+. (C, D) Mf burden in the pleural space days 70 (C) and 90 (D) p.i.. Graphs show
one representative of three (C) and two (D) independent experiments (at least seven mice each group, see also Figure S3C–E) and were analyzed with
Welch-corrected t-test. Numbers below the symbols indicate the number of Mf+ mice (median, * P,0.05, ** P,0.005).
doi:10.1371/journal.pntd.0001558.g002

Immunization Reduces Microfilaraemia

www.plosntds.org 5 March 2012 | Volume 6 | Issue 3 | e1558



Immunization Reduces Adult Worm Burden
Cross reactive protection with respect to other developmental

stages is known for immunization with L. sigmodontis L3. Thus, we

asked whether Mf immunization may also affect stages other than

the Mf. Analysis of the L4 burden at day 15 p.i. and adult burden at

day 56 p.i. showed that immunized mice had similar worm numbers

as control animals (Figure 4A, B). However, at day 70 (P,0.005,

Figure 4C) and 90 p.i. (P,0.0001, Figure 4D) immunized mice

contained significantly fewer adult worms and this reduction was

associated with decreased numbers of both males and females, as

the gender balance was similar in immunized and control mice

(Figure 4E). Male and female worms did not differ in length to the

corresponding worms of control mice (Figure 4F, G).

Taken together, our data show that immunization with

100,000 Mf in alum not only inhibited microfilaraemia, but also

reduced adult worm burden at later time points.

Humoral and Cellular Immune Responses Induced by
Immunization

To investigate whether immunization-induced Mf-specific Ig

responses were associated with protection, Mf-specific IgE, IgG1

and IgG2 levels were measured in the plasma and pleural space

lavage at different time points throughout immunization and

infection. As Figure 5A and B illustrate, the immunization induced

an Mf-specific humoral response and both IgG1 and IgG2

antibodies were elevated in the blood. The most prominent

increase was observed after the boost immunizations, as indicated

by the levels seven days before the challenge infection. A

comparison of both immunized groups (infected vs. uninfected)

revealed that these humoral responses were not further enhanced

by the infection itself. The same picture was found at the site of

infection with Mf-specific IgG1 and IgG2 levels being significantly

elevated in immunized mice compared to controls on day 22

(P,0.001, Figure 5C, D) as well as on day 70 p.i. (P,0.001,

Figure 5E, F). Albeit the differences in IgG1 levels remained

significantly higher in immunized mice at day 70 p.i., the IgG1

levels of infected but non-immunized mice increased on days 28

and 42 (Figure S6C, D) compared to day 22 p.i. (Figure S6A, B).

This however indicates a Th2 shift induced by the parasite itself

and is well-known for primary infected BALB/c mice [34,35].

The amount of Mf-specific IgE was not increased at day 22 p.i.

in the pleural space of immunized mice (mean OD of 0.047)

Figure 3. Immunization inhibits embryogenesis in female worms. Mice were immunized three times s.c. with 100,000 Mf in alum. Control
mice received alum alone. L. sigmodontis challenge infection was performed one week after the last immunization. Seventy days after infection
female worms were analyzed for their embryonic stages. Representative pictures of oocyte (A; micron bar 10 mm), divided egg (B; 10 mm), pretzel
stage (C; 15 mm) and stretched Mf (D; 30 mm) are shown. (E) Embryogram illustrating the composition of embryonic stages in female worms. If
present, three female worms of each mouse were investigated (27 females in the control group, 28 females from the immunized group, additional
experiments see Figure S4). Statistical analysis was performed with Mann-Whitney U-test (mean 6 SEM, ** P,0.01, *** P,0.001).
doi:10.1371/journal.pntd.0001558.g003
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compared to non-immunized mice (mean OD of 0.0892). Later

during infection, Mf-specific IgE was elevated in the blood of

immunized mice with a mean OD of 0.121 (day 28 p.i.) and 0.187

(day 42 p.i.) in immunized mice, and a mean OD of 0.043 and

0.050 in control mice, respectively. However, these levels of Mf-

specific IgE clearly did not reach the IgE levels of chronically

infected mice (OD on day 100 p.i. 1.683; single experiment, data

not shown), suggesting that immunization per se does not lead to a

strong IgE induction.

To classify cellular responses, we analyzed major cell popula-

tions in the pleural space lavage by flow cytometry. However, no

consistent differences were observed (Table S1). We also measured

various cytokines in the pleural space at day 22 p.i.. Since

eosinophils are known effector cells in helminth infections [36], we

measured molecules involved in eosinophil recruitment or activity,

i.e IL-13, MIP-2a, CCL5, granzyme B, eotaxin-1 and eotaxin-2.

Results from three independent experiments did not reveal any

significant differences between immunized mice and control

animals (data not shown). However, analysis of hallmark cytokines

IL-5 and IFN-c of type 1 and 2 immunity showed that immunized

mice had significant more IFN-c in the pleural space of the

thoracic cavity (P,0.001), whereas level of IL-5 were low

irrespective of the immunization (Figure 6A). A similar picture

was observed when cells recovered from the pleural space were

restimulated with worm extracts (Figure 6B, C). Strikingly, 22 days

p.i., a time point when parasites are already present in the pleural

space, only cells of immunized mice secreted IFN-c regardless of

whether they were infected or not. This effect was seen after

specific restimulation with crude extract of adult worms and Mf, as

well as with nonspecific stimulation by concanavalin A (P,0.001,

Figure 6B). Although less pronounced, enhanced IFN-c responses

after restimulation were also present throughout patency (Figure

S7A, B). Different to IFN-c, the IL-5 responses were dependent on

the infection itself, as only cells from infected mice secreted IL-5

after restimulation irrespective of immunization (Figure 6C, Figure

S7C, D).

Discussion

Current public health control of human filarial infections relies

on chemotherapy provided by MDA programs. Antifilarial drug

therapy has to be implemented for years with high coverage,

incurring high logistical costs and the emergence of drug resistance

is a potential threat [12]. Thus, a vaccine that results in the

reduction of parasite burden would complement the MDA efforts,

as suggested for other neglected tropical diseases [37] and that

would be complementary step towards elimination of the diseases.

The present study describes a successful immunization protocol

against L. sigmodontis Mf in the murine model of filariasis, which

additionally resulted in a reduced adult worm burden. Subcuta-

neous immunization with Mf in alum prevented the onset of

microfilaraemia after challenge infection in the majority of mice.

Reduced Mf loads were observed in the peripheral blood and at

the site of infection in conjunction with intrauterine inhibition of

embryogenesis. Protection was further associated with systemic

and local Mf-specific IgG and IFN-c secretion of pleural space

exudate cells.

In mouse models the adjuvant alum is often administered i.p.

and this route has been referred to establish ‘‘systemic’’ responses

in contrast to the ‘‘local’’ s.c. route [38]. Interestingly, we found

Figure 4. Immunization reduces adult worm burden, but does not affect their development. Mice were immunized three times s.c. with
100,000 Mf in alum. Control mice received alum alone. L. sigmodontis challenge infection was performed one week after the last immunization.
Numbers of worms on days 15 (A), 56 (B), 70 (C) and 90 (D) p.i. (additional experiments see Figure S5A–C), gender balance (E) (individual experiments
see Figure S5D, E), as well as length of males (F) and females (G) at day 90 p.i. (10/90 percentile, outliers are indicated, individual experiments see
Figure S5F–I) were analyzed with Student’s t-test (** P,0.01, *** P,0.001).
doi:10.1371/journal.pntd.0001558.g004
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neither the systemic i.v. route nor the combination of the local s.c.

and both systemic i.p. and i.v. routes to be able to reduce

microfilaraemia (Figure 1). As systemic immunizations have been

reported to induce tolerance rather than immunity [39], out of the

protocols tested in this study, only the s.c. immunization was able

to immunize mice successfully against L. sigmodontis Mf. The s.c.

immunization would also be a route, which is best applicable to

humans.

It is known that immunization with irradiated L3 stages reduces

the recovery rate of larvae in the pleural space [40]. However,

immunization with Mf did not render mice less susceptible for

infection per se, as the worm burden did not differ on day 15 p.i..

The short time between immunization and challenge infection

might explain the absence of enhanced immunity against

incoming L3. The observation that the adult worm burden

remained similar in both groups until the onset of patency at day

56 p.i., may suggest that the accessibility of Mf in the pleural space

of the thoracic cavity could be a critical step in initiating the

responses that affect the adult filariae. However, only one

experiment was performed on day 56 and a more detailed

Figure 5. Immunization induces Mf-specific IgG1 and IgG2. Mice were immunized three times s.c. with 100,000 Mf in alum (Al-Mf/naı̈ve, Al-
Mf/Inf). Control mice received alum alone (Al/naı̈ve, Al/Inf). L. sigmodontis challenge infection was performed one week after the last immunization
(Al/Inf, Al-Mf/Inf) or left uninfected (Al/naı̈ve, Al-Mf/naı̈ve). Plasma levels of Mf-specific IgG1 (A) and IgG2a/b (B) were measured. Two-way ANOVA was
used for statistical analysis, day 0 indicates day of challenge infection. Asterisks indicate significant differences between the immunized and infected,
and the corresponding control group (*** P,0.001) and pound signs between the immunized but uninfected, and the corresponding control group
(# P,0.05, ## P,0.01, ### P,0.001). (C–F) Pleural space lavage was analyzed for specific IgG1 and IgG2a/b on days 22 (C, D) and 70 p.i. (E, F). Data
analyzed with Welch-corrected t-test (mean, *** P,0.001). Graphs show representatives of three independent experiments with eight to ten mice
each group (additional experiments see Figure S6A, B, E–J).
doi:10.1371/journal.pntd.0001558.g005

Figure 6. Immunization enhances IFN-c responses. (A) At day 22 p.i. the pleural lavage was analyzed for IL-5 and IFN-c. Combined data of three
independent experiments with five mice each group are shown. (B, C) At day 22 p.i. cells from the site of infection were restimulated for 72 h with
5 mg/ml Concanavalin A (ConA), 100 mg/ml complete adult (Ls) or microfilarial (Mf) crude extract of L. sigmodontis and IFN-c (B) and IL-5 (C) secretion
were measured (mean 6 SEM). Representative data of two independent experiments with five mice each group. Analysis was done using the 2-way
ANOVA, for significances see text.
doi:10.1371/journal.pntd.0001558.g006
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analysis of the efficacy on adult worm burden is needed to identify

the time point when adulticidal immune responses are effective.

Interestingly, at later time points, namely on days 70 and 90 p.i.,

we could observe a reduced worm burden in immunized mice

compared to the controls. This reduction was seen with both male

and female worms, suggesting effector mechanisms not only acting

against intrauterine Mf in female worms, but against target

structures of adult worms. In line with this, different developmen-

tal stages of filariae share many molecular structures [41] and

cross-reactive immunization effects are documented for filarial

immunizations [19,42]. Importantly, it is unlikely that the lower

worm burden observed on days 70 and 90 p.i. is the reason for

reduced microfilaraemia in immunized mice, because all immu-

nized mice contained male and female worms and it has been

shown that even a few fecund females can establish peripheral

microfilaraemia [43].

Inhibition of embryogenesis in immunized mice was further

indicated by the reduced number of Mf in the pleural space and,

more importantly, the presence of embryonic stages that had not

developed beyond several divisions of the fertilized oocytes. This is

in contrast to Wenk and colleagues who found fully developed Mf

in the uterus of female worms and in the pleural space of infected

and Mf-immunized cotton rats [23]. The differences between both

animal models in the mode of Mf reduction may be due to

different susceptibilities of the hosts to L. sigmodontis. Both, BALB/c

mouse and the cotton rat develop patent infection, but BALB/c

mice clear the infection after 3–4 months, whereas the cotton rat is

the natural host and can harbor filarial parasites for years [29].

This is the general downside of using laboratory mice for L.

sigmodontis infection rather than the natural host; however the

advantage is that cytokine responses can be measured and

associated with protection, and for future studies cytokine deficient

mice may answer further questions about the essentiality of key

cytokines for vaccination success.

In our experiments, immunization induced Mf-specific IgG1

and IgG2 antibodies, present throughout the whole infection

including patency, were associated with protection. Because

protective responses induced by immunization often rely on

protective antibodies [44] and the importance of B cells in

promoting immune responses against filarial Mf is well document-

ed for the murine model of filariasis [45,46], we analyzed the

frequency and total number of pleural space B1 and B2 B cells by

flow cytometry, but found no consistent differences between

immunized and non-immunized mice (Suppl. Table 1), suggesting

differences in B cell activation rather than in total B cell numbers.

Interestingly, despite a strong antibody production female worms

of immunized mice appeared morphologically as intact as those in

non-immunized control mice. Furthermore we did not find any

host cells within the female worms. These two findings suggest a

blockade of embryonic development, rather than a cell-dependent

destruction of the embryonic stages. In our experiments, Mf-

specific IgGs may have entered the female worm uterus and bound

to the developing early developmental stages, thereby hindering

their further growth in an Ig-dependent, but cell-independent

manner. Indeed, it is known that filarial-infected humans produce

filarial-specific Ig that is able to bind early intrauterine filarial

stages, as shown by using sera of chronic LF patients against

isolated intrauterine Mf stages from the filariae Setaria digitata [47].

Another possibility for cell-independent, Ig-mediated responses is

the activation of the complement cascade resulting in the

formation of the membrane attack complex (MAC), due to

insertion of complement proteins into a phospholipid bilayer [48].

Although there is as yet no evidence for MAC formation in the

sheath of adult nematodes, earlier developmental stages may be

more sensitive to MAC formation. The next step to clarify the role

of antibodies in the establishment of immunization-induced

protection would be the verification of embryonic stage-bound

Mf-specific Ig, e.g. by immunohistochemistry. Furthermore,

experiments with mice having a defect in immunoglobulin

production would give important insights into the relevance of

Ig for impairment of embryogenesis. Also, a possible IgE reaction

to the immunization has to be elucidated. We did not observe a

strong IgE response after immunization and infection in the blood

nor at the site of infection. However, future experiments should

clarify how chronically infected mice that already have Mf-specific

IgE respond to immunization. In humans, a vaccination may be

favourable one month after IVM treatment, when individuals have

no skin or blood Mf, as the risk of urticaria due to immune attack

on remaining Mf would be at its minimum.

IFN-c and IL-5 are well known players in innate, adaptive and

vaccine-induced immunity against helminths [49], with the

adaptive type 2 response referred to as ‘‘typical’’ for helminth

infections [50]. We found that immunization was associated with

strong IFN-c responses, mirrored by increased levels in the pleural

space and after restimulation of pleural exudate cells. The

importance of IFN-c production in immune responses against

Mf in permissive BALB/c mice is underlined by several findings.

IFN-c2/2 mice have increased numbers of circulating L.

sigmodontis Mf compared to the wild type littermates [51]. In

addition it has been shown that IFN-c RNA levels of restimulated

splenocytes obtained from L. sigmodontis-infected BALB/c mice are

strongly increased within days after the beginning of patency [52].

These observations may reflect the moderate increase in IFN-c
production also in non-immunized mice upon natural infection

and the less pronounced but still significant differences in IFN-c
between immunized and non-immunized mice during patency

(Figure S7A, B). Furthermore, it is known that injected B. malayi

Mf, but not implanted adult stages induce IFN-c and Th-1-

assiociated IgG2a in BALB/c mice [53]. IFN-c is an inducer of

IgG2a [54] therefore it is most likely that in our experiments, Mf-

induced IFN-c has promoted the secretion of IgG2. Importantly,

induction of IFN-c is not in conflict with the use of the adjuvant

alum, which is generally referred as Th2-promoting, because

recent findings have shown that alum also can influence

proliferation and IFN-c production of CD8+ T cells [55].

Furthermore, Toll-like receptor agonists have been found to be

able to bias alum towards a mixed Th1/Th2 response [56]. L.

sigmodontis, like many other filariae contains endosymbiotic

Wolbachia bacteria that are recognized by Toll-like receptors [57].

Although IL-5 responses did not differ between immunized and

control mice, this cytokine may also play a role for the overall

effect of immunization in the infected mice. It may even be

possible that the effect of immunization, although predominated

by IFN-c, may be dependent on at least baseline levels of IL-5,

since this cytokine has been shown to be important for both adult

worm and Mf containment in L. sigmodontis infection in our earlier

reports [58,59]. Future immunization experiments with BALB/c

mice defective for IFN-c or IL-5 responses will shed more light on

the importance of both key cytokines for the inhibition of

embryogenesis.

Taken together, the immunization scheme presented in this study

demonstrates the feasibility of an immunization that is directed against

the Mf stage, leading to protection against peripheral microfilaraemia

with an efficacy of up to 100%. The IFN-c that has been induced by

the immunization suggests a shift towards a Th1-like milieu in the host

that may furthermore promote direct or indirect responses against the

Mf during patency, possibly through IFN-c-promoted IgG2a. It is

known for human LF that there is a threshold for Mf density in the
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peripheral blood to achieve transmission and a high number of

infective bites is needed to produce a patent infection [60]. We

hypothesize that the reduction of circulating peripheral Mf at the level

we observed might prevent transmission.

The study presented here contributes to the understanding of

the immune mechanisms needed to develop a vaccine against

filarial parasites. Whereas the use of Mf recovered from infected

humans would be costly and the number of Mf limited, even

disregarding the potential transmission of other infections, our

data may serve for a better understanding of the nature of

protective Mf vaccination. Future assessments should address the

characterization of microfilarial molecular subunits that account

for this protection, as the growing fields of helminth genomics [61]

and systems biology [62] may predict such potential Mf-related

vaccine candidates. Administration of only a subunit vaccine may

also avoid vaccination with tolerogenic molecules contained within

the Mf and lead to better efficacy of protection.

Supporting Information

Figure S1 Immunization schemes. Figure shows schedule of

immunization, challenge and analysis. Table shows detailed

information of all immunization experiments mentioned in the text.

(TIF)

Figure S2 Kinetic of i.v.-injected Mf in the peripheral
blood. 100,000 Mf were injected i.v. into the tail vein and Mf in

the peripheral blood was monitored daily. (A) Representative data

of two independent injections with seven mice per group (mean 6

SEM). (B) One hour after injection mice were treated with IVM at

800 mg per kg body weight. One representative of two indepen-

dent injections with eight mice per group is shown (mean 6 SEM).

(TIF)

Figure S3 Additional experiments showing reduced Mf
load. Mice were immunized three times s.c. with 100,000 Mf in

alum. Control mice received alum alone. L. sigmodontis infection

was performed one week after the last immunization. (A, B)

Kinetics of Mf load of control (dashed line) and immunized (black

line) mice in the peripheral blood of two additional experiments

with ten mice per group each experiment (2-way ANOVA, mean

6 SEM), including Mf2 and Mf+ mice. (C–E) Mf burden in the

pleural space at days 70 (C, D) and day 90 (E) p.i., analyzed with

Welch-corrected t-test (mean, * P,0.05). Numbers below the

symbols indicate number of Mf+ mice in the shown experiment.

(TIF)

Figure S4 Additional experiments illustrating inhibited
embryogenesis in female worms of immunized mice.
Mice were immunized three times s.c. with 100,000 Mf in alum.

Control mice received alum alone. L. sigmodontis challenge infection

was performed one week after the last immunization. Seventy (A)

and 56 days (B) after infection female worms were analyzed for their

embryonic stages. Analysis was performed with Mann-Whitney u-

test (mean 6 SEM, * P,0.05, ** P,0.01, *** P,0.001).

(TIF)

Figure S5 Additional data illustrating that immuniza-
tion reduces adult worm burden, but does not affect
their development. Mice were immunized three times s.c. with

100,000 Mf in alum. Control mice received alum alone. L. sigmodontis

challenge infection was performed one week after the last immuni-

zation. Numbers of worms at days 70 (A) and 90 p.i. (B, C), gender

balance of worms (D, E) and length of males (F, G) and females (H, I)

at day 90 p.i. (10/90 percentile, outliers are indicated) were analyzed

with Student’s t-test (mean 6 SEM, * P,0.05, *** P,0.001).

(TIF)

Figure S6 Additional data confirming enhanced Mf-
specific IgG1 and IgG2. Mice were immunized three times s.c.

with 100,000 Mf in alum (Al-Mf/naı̈ve, Al-Mf/Inf). Control mice

received alum alone (Al/naı̈ve, Al/Inf). L. sigmodontis challenge

infection was performed one week after the last immunization

(Al/Inf, Al-Mf/Inf) or left uninfected (Al/naı̈ve, Al-Mf/naı̈ve).

Plasma levels of Mf-specific IgG1 (A) and IgG2a/b (B) were

measured. Asterisks indicate significant differences between the

immunized and infected, and the corresponding control group (*

P,0.05, ** P,0.01, *** P,0.001) and pound signs between the

immunized but not infected, and the corresponding control group

(# P,0.05, ## P,0.01, ### P,0.001). (C, D) Plasma Mf-

specific IgG1 and IgG2 at days 28 and 42 p.i. measured in a

single experiment and analyzed with Student’s t-test (mean 6

SEM, *** P,0.001). (E–J) Pleural space lavage was analyzed for

specific IgG1 and IgG2a/b at days 22 (E–H) and 70 p.i. (I, J).

Data were analyzed with the Welch-corrected t-test (mean, **

P,0.01, *** P,0.001).

(TIF)

Figure S7 IFN-c and IL-5 responses of pleural space
exudate cells. Cells from the site of infection were restimulated

72 h with 5 mg/ml Concanavalin A (ConA) or 100 mg/ml

complete adult crude extract of L. sigmodontis (Ls) at day 70 (A,

C) or day 90 p.i. (B, D). Combined data from two independent

experiments are shown. Analysis was done with 2-way ANOVA

(mean 6 SEM, * P,0.05).

(TIF)

Table S1 Flow cytometric analysis of pleural space
exudate cells 15, 22, 70 and 90 days p.i.. Mice were

immunized three times s.c. with 100,000 Mf in alum. Control

mice received alum alone. L. sigmodontis challenge infection was

performed one week after last immunization. Percentages (A) and

absolute numbers (B) for dendritic cells (DC), macrophages (MO),

B-cells (BC) and B2 B-cells (B2 BC), T-cells (TC) and eosinophils

(EO) are shown. Staining was performed according to standard

protocols with fluorochrome-conjugated antibodies to the surface

markers F4/80, SiglecF, CD3e, CD11c, CD19, and CD23, used

as recommended by the manufacturers (eBioscence, BD Pharmin-

gen). ‘‘-’’ indicates that no data are available for that time point.

(XLS)

Video S1 Live in-uteri analysis of larval development in
control mice. One representative adult female worm isolated

from the pleural space of an alum-treated control mouse was

placed on a microscope slide and filmed with the microscope

analysis software Diskus 4.6 (Hilger, Koenigswinter, Germany).

Living and moving Mf in the uterus can be seen.

(MOV)

Video S2 Live in-uteri analysis of larval development in
immunized mice. One representative adult female worm

isolated from the pleural space of an Mf-alum immunized mouse

was placed on a microscope slide and filmed with the microscope

analysis software Diskus 4.6 (Hilger, Koenigswinter, Germany).

Divided eggs stages in the uterus can be seen (indicated by the

arrow).

(MOV)
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