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Abstract

MicroRNAs (miRNA), a class of ~22-nucleotide RNA molecules, are important gene regulators
that bind to the target sites of MRNAS to inhibit the gene expressions either through translational
inhibition or mRNA destabilization. There are growing evidences that miRNAs have played
several regulatory roles in opioid pharmacology. Like other research fields such as cancer biology,
the area where numerous miRNAs are found to be involved in gene regulation, we assume that in
opioid studies including research fields of drug additions and opioid receptor regulation, there may
be more miRNAs waiting to be discovered. This review will summarize our current knowledge of
miRNA functions on opioids biology and briefly describe future research directions of miRNAs
related to opioids.
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Introduction

MicroRNAs (abbreviated miRNAs) are endogenously expressed and short non-coding
RNAs (~22-nucleotides in length) that regulate gene expression at the post-transcriptional
level through binding to a target complementary mRNA (Lee et al. 1993; Bartel 2004). The
biological roles of miRNAs, although still largely unknown, are rapidly accumulating for
their importance in development and diseases, such as cancers, drug addictions, metabolic
diseases, neurological diseases, and viral infections. miRNAs are found in almost all bio-
organisms and affect both the stability and translation of mMRNAs (Valencia-Sanchez et al.
2006). Moreover, the biogenesis and activity of miRNAs are closely associated to those of
small interfering RNAs (siRNAs) that mediate RNA interference, another ancient
mechanism for post-transcriptional gene silencing (Kim et al. 2009). Bioinformatic
predictions suggest that miRNAs target at least 30% of protein-coding genes (van Rooij
2011) and are involved in almost all cellular functions, and regulate gene expression mainly
by binding to the 3’-UTRs of targeted mRNAs. Expression analysis of miRNAs using
miRNA microarrays has been widely used to monitor tissue-specific miRNA expression and
regulatory changes in tissues/cell types, developmental stages, diseases as well as tissues
treated with opioid drugs (Lagos-Quintana et al. 2002; Liu and Kohane 2009; Schratt et al.
2006; Somel et al. 2010; Bartel 2004; Zheng et al. 2010c). It was suggested that miRNAs
have an organ and/or cell type-specific function based on tissue and temporal specificity of
miRNAs (Chen et al. 2004; Lee et al. 2006). Abnormal patterns of miRNA expression have
been found in many disease states and drug addictions where expression of mMiRNA was
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either increased or decreased (Yang et al. 2007; Lee and Dutta 2006; Hollander et al. 2010).
A number of experimental reports addressing the involvement of miRNAs in the opioid
system clearly indicate that opioids modify the expression profile of a number of mMiRNASs in
central nervous system (CNS) (Zheng et al. 2010c; Wu et al. 2009; He et al. 2010).

1) Regulation of miRNAs by opioids

Recent studies have demonstrated that miRNAs are highly expressed in the CNS including
the brain and spinal cord where biological action of opioids, as well as nociception takes
place (Dave and Khalili 2010; Sanchez-Simon et al. 2010; He et al. 2010; Zheng et al.
2010c). Although we are currently in the initial stages of understanding how this novel class
of gene regulators is involved in opioid-related biological functions (Table 1), a growing
body of exciting evidence suggests that miRNAs are important regulators of opioid-
associated biological processes such as drug addiction (Zheng et al. 2010a; He et al. 2010),
pain perception (Kusuda et al. 2011), neuron development (Gao 2010), viral infection
(Wang et al. 2011b; Dave and Khalili 2010), and opioid receptor regulation (Wu et al.
2009).

A series of articles from our laboratory have shown good examples of miRNA involvement
on opioid signaling (Zheng et al. 2010c; Zheng et al. 2010a; Zheng et al. 2010b). Also
opioid agonists have been shown to affect the expression of several miRNA differentially
(Table 1). Fentanyl and morphine are both opioid analgesics that act on the mu opioid
receptor (MOR). Morphine is a natural opioid and mainly used as a pain medicine in clinics,
while fentanyl is a fully synthetic opioid. In the clinic, patients chronically treated with
morphine adversely develop drug unresponsiveness, defined as tolerance. Fentanyl is up to
100 times stronger than morphine and currently the most widely used synthetic opioid in
clinical practice for relieving pain, especially in cancer patients and severe chronic pain
management. Along with its stronger analgesic effect than morphine, fentanyl exhibits a
much higher potential for developing addiction, dependence, and causes more severe
respiratory depression (Jeal and Benfield 1997; Pergolizzi et al. 2008). However, compared
to morphine, fentanyl produces less tolerance (Duttaroy and Yoburn 1995), and milder side-
effects of nausea and itching (Mayes and Ferrone 2006). As a typical G protein-coupled
receptor (GPCR), MOR signals are mediated by adenylyl cyclase, extracellular signal-
regulated kinase (ERK) pathway, intracellular calcium stores, and ion channels on cell
membrane (Law et al. 2000). In addition to both agonists’ difference in pharmacological
actions, differential signaling of both agonists in cellular level suggested that the agonists of
MOR induce ERK phosphorylation through different pathways: morphine uses the protein
kinase C (PKC)-pathway, whereas fentanyl functions in a beta-arrestin2-dependent manner
(Zheng et al. 2010c). These differences were also correlated with regulation of a miRNA
expression differentially as described below in details and a detailed summary shown in Fig.
1 that was adopted and redrawn from a recent paper (Zheng et al. 2010a).

In miRNA microarray analysis using the primary culture of rat hippocampal neurons and the
mouse hippocampi treated either with morphine or fentanyl for 3 days, among the seven
miRNAs regulated by one or two of the agonists, miR-190 was down-regulated by fentanyl
but not by morphine (Zheng et al. 2010c). It also indicated that fentanyl increases
neurogenic differentiation 1 level (NeuroD, one of the miR-190 targets), a transcription
factor that is known to be involved in adult neurogenesis, by reducing the amount of
miR-190. Hippocampal adult neurogenesis is important for learning and memory (Neves et
al. 2008). However, morphine does not change NeuroD level, suggesting that the MOR
could regulate the NeuroD pathways through the control of miR-190 expression. This
agonist-dependent regulation of NeuroD was associated with dendritic spine stability in an
agonist-dependent manner too (Zheng et al. 2010b). Reduction of the miR-190 level by
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fentanyl was due to its host gene, talin2, suggesting that fentanyl decreases the miR-190
level by inhibiting the transcription of talin2 (Zheng et al. 2010a). Fentany! signals to induce
ERK phosphorylation by mediating p-arrestin2 pathway, resulting in the phosphorylation of
Yin Yangl (YY1). The resulting YY1 phosphorylation leads to a decrease in the association
of YY1 with the Talin2 promoter which is essential for YY1 to stimulate the transcription of
talin2. Therefore, fentanyl decreased the transcription of talin2 and subsequently reduced the
cellular level of miR-190 by inducing YY1 phosphorylation. The reduction of miR-190 by
fentanyl could result in increase of NeuroD level as mentioned earlier (Zheng et al. 2010c).
In contrast, because morphine induces ERK phosphorylation via the PKC pathway,
morphine did not induce YY1 phosphorylation and had no effect on the transcription of
talin2 and the cellular content of miR-190. Together, the agonist-selective regulation on
miR-190 is related with the agonist-selective ERK phosphorylation (Zheng et al. 2010c).
Therefore, the above researches in regard to miR-190 provide a new insight to understand
the differential mechanisms of MOR signaling, such as regulating dendritic spine stability,
by different MOR agonists.

A recent article has reported miRNA’s association in neuronal development induced by an
opioid (Sanchez-Simon et al. 2010). Previously, it was shown that morphine regulates
neuron differentiation in vivo (Kim et al. 2006). Sanchez-Simon’s group (Sanchez-Simon et
al. 2010), using zebrafish embryos as the model, reported that morphine decreases miR-133b
expression, resulting in increase of its target gene expression, Pitx3 (Pituitary homeobox 3).
The Pitx3, the homeobox (a DNA sequence encoding a protein domain (the homeodomain)
which can bind DNA, mostly a promoter region of its target gene) gene as a transcription
factor, is directly involved in the differentiation of dopaminergic neurons by activating
genes such as the tyrosine hydroxylase and the dopamine transporter (Kim et al. 2007). They
demonstrated that reduction of miR-133b level by morphine in zebrafish embryos is
mediated through its MOR receptor via ERK 1/2. Morphine-induced down-regulation of
miR-133b was also observed in the immature but not in mature rat hippocampal neurons.
Long-term exposure to morphine was known to disrupt the ERK 1/2 signaling, which is
thought to enhance the development of tolerance (Macey et al. 2009). This miR-133b study
indicates that zebrafish can serve as a good model to investigate the roles of miRNA in
neuronal development affected by long-term morphine exposure (Sanchez-Simon et al.
2010).

Regarding miRNAs in neuroimmune systems, two research groups recently reported that
several miRNAs were regulated by opioids in human immune cells (Dave and Khalili 2010;
Wang et al. 2011b). It is known that opioid abusers infected with HIV-1 (human
immunodeficiency virus type 1) often exhibit an aggressive form of HIV-1-associated
dementia and enhanced neurological disorders (Bell et al. 2006; Fitting et al. 2010). Active
HIV-1 infection and secretion of neurotoxic molecules by microglia and perivascular
macrophages are believed to be contributing factors for the HIV-1 neuropathogenesis
(Gonzalez-Scarano and Martin-Garcia 2005; Hauser et al. 2007). A study by Dave et al.
(Dave and Khalili 2010) reported that in human monocyte-derived macrophages treated with
morphine, two miRNAs (miR-15b and miR-181b) were either greatly increased or decreased
in expression levels, respectively. Fibroblast growth factor-2 (FGF-2), identified as a
miR-15b target gene, was decreased at the protein expression levels in response to
morphine. Other target genes, such as those involved in inflammation and T-cell activation
pathways, namely MCP-2 (monocyte chemoattractant protein-2) and IL-6 (Interleukin-6),
were also induced by morphine. Both, MCP-2 and IL-6 have been reported to be secreted in
response to HIV-1 infection of microglia in the CNS (Schwartz et al. 2000; Wang and
Gabuzda 2006), indicating the similar phenomena of the two pro-inflammatory responses
(MCP-2 and IL-6 secretion) that were observed during HIV-1 infection. Moreover,
proteomic analysis revealed the induction of mitochondrial superoxide dismutase in
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response to morphine treatment (Dave and Khalili 2010). In HIV-1 infection mitochondrial
superoxide dismutase was not induced, suggesting the unique aspects of morphine inducing
the metabolic change in CNS. These results by Dave et al. (Dave and Khalili 2010)
demonstrate that morphine induces inflammation and oxidative stress in immune cells
through regulating the miRNAs (miR-15b and 181-b), thereby contributing to expansion of
HIV-1 CNS reservoir and disease progression.

Another group’s works by Wang et al. (Wang et al. 2011b) found the different types of
miRNAs regulated by opioids in human monocytes. Morphine treatment in monocytes led to
decrease in several anti-HIV miRNAs (miR-28, 125b, 150, and 382) which were correlated
with susceptibility of monocytes/macrophages to HIV-1 infection (Wang et al. 2009).
Antagonists of the opioid receptors blocked the decrease of miRNAs mediated by morphine,
indicating morphine’s function through its own receptors. However, type | interferon (IFN),
IFN-a/p in monocytes could induce the expression of the anti-HIV miRNAs (miR-28, 125b,
150, and 382). Type | IFNs are known to play a crucial role in the host innate immune
defense mechanism against viral infection, including HIV-1 infection (Perry et al. 2005;
Mogensen et al. 2010). Other studies have also shown that type | IFNs modulate miRNA
expression in several cell systems (Pedersen et al. 2007; O’Connell et al. 2007; Ohno et al.
2009), functioning as the potent inducer of miRNAs. However, morphine co-treatment with
the IFN-a./p in monocytes inhibited the induction of IFN-mediated anti-HIV miRNAs
(Wang et al. 2011b). These results support previous observations from several reports that
morphine suppresses IFNs expression in various cell systems, including monocytes
(Pedersen et al. 2007), lymphocytes (Nair et al. 1997), peripheral blood mononuclear cells
(PBMCs) (Homan et al. 2002). It is known that opioid potentiates HIV-1 infection at least
partly by attenuating the immune response and is, therefore, a cofactor in the pathogenesis
of HIV-1 infection (Vallejo et al. 2004; Donahoe and Vlahov 1998). Interestingly, Wang et
al. (Wang et al. 2011b) observed the similar in vivo results in human that heroin (a synthetic
derivative of morphine)-dependent subjects had significantly lower levels of anti-HIV
miRNAs (miR-28, 125b, 150, and 382) in PMBCs than those of the healthy subjects,
suggesting the important role of the miRNAs in opioid-mediated immunosuppression of
HIV-1.

In future studies, it will be interesting to know whether opioid-mediated miRNA regulation,
in addition to the above mentioned routes, is involved in HIV-1 infection through different
factors. One factor would be a chemokine receptor 5 (CCR5), which is the main route to
gain HIV-1 entry into host cells (Tuttle et al. 1998; Keele et al. 2008; Gottlieb et al. 2008).
Several researches suggest that opioids may facilitate HIV-1 infection in human immune
cells by modulating CCR5 (Tuttle et al. 1998; Guo et al. 2002; Vallejo et al. 2004) as well as
cytokines. Opioids, morphine and methadone (a synthetic opioid and generally used in the
treatment of opioid dependence), were shown to increases CCR5 expression in human
immune cells (Guo et al. 2002; Li et al. 2002) and enhanced viral activation and replication.
The effect of methadone on viral replication and entry was blocked by opioid antagonists,
naltrexone and methylnaltrexone (Guo et al. 2002; Ho et al. 2003; Li et al. 2002). Other viral
infections, including addicted patients with hepatitis C, were modified by opioids as well
(Jeffrey et al. 2007). Therefore, in those model systems, it is reasonable to suggest that
opioids may regulate miRNAs and contribute to regulatory effects of HIV-1 infectivity
through CCRS5 or cytokines.

In addition, various miRNAs were differentially regulated by xenobiotic drugs, including
dexamethasone, methadone, and cocaine, in several human cell lines (Rodrigues et al. 2011).
Methadone as well as cocaine down-regulated miR-124a, the most abundant microRNA
expressed in neuronal cells and is involved in neuronal differentiation (Makeyev et al. 2007;
Yu et al. 2008; Visvanathan et al. 2007), in human neuroblastoma (BE(2)-M17 and SH-
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SY5Y) cells (Rodrigues et al. 2011). Dexamethasone is a potent synthetic member of steroid
drugs (a glucocorticoid receptor agonist), generally is known to act as an anti-inflammatory
and immunosuppressant. Dexamethasone is also an inducer of the drug-metabolizing
enzyme cytochrome P450 2D6 (CYP2D6) which converts codeine to a bioactive morphine
in the liver (Gasche et al. 2004; Madadi et al. 2011). Codeine is one of the most commonly
used pain medicines and is used to treat mild to moderate pain and to relieve cough
(Drugs.com 2011). Since codeine is considered as a prodrug because of its conversion to
active analgesic (morphine as well as codeine-6-glucuronide), drug-metabolism differences
by enzymes, like the CYP2D6, significantly affect the pharmacokinetics of the codeine drug
(Gasche et al. 2004). Several studies demonstrated differential analgesic response in
individuals with genetic polymorphisms in the CYP2D6 gene (Flores and Mogil 2001; Ali et
al. 2010), life-threatening opioid intoxication in patients for the treatment of a cough
associated with bilateral pneumonia (Gasche et al. 2004), and differential prevalence rates of
functional CYP2D6 alleles in ethnic groups with distinct codeine metabolism (Ingelman-
Sundberg 2005). Rodrigues et al. (Rodrigues et al. 2011) reported that the inducer of
CYP2D6, dexamethasone, in human cells (Caco-2), suppressed the expression of miR-27b,
miR-148a, and miR-451 that regulate genes involving in adipocyte differentiation (Lin et al.
2009; McGregor and Choi 2011), epigenetic modification (Duursma et al. 2008; Sato et al.
2011; Lehmann et al. 2008), and multidrug resistance (drug-transporter P-glycoprotein) (van
Jaarsveld et al. 2010). Dexamethasone, combined with other drugs, inhibited miR-21
expression in myeloma cells that adhered to bone marrow stromal cells (Wang et al. 2011a)
and dexamethasone treatment in human corneal fibroblasts showed changes of global
miRNA profiles analyzed by miRNA microarrays (Liu et al. 2011). The detailed mechanism
underlying the induction of miRNAs by dexamethasone in different biosystems is still
unclear and whether miRNAs directly involve in the up-regulation of CYP2D6 enzyme.
However, it is possible that the regulation of CYP2D6 expression may be due to post-
translational regulation by miRNAs.

All those forerunning studies (see Table 1) of miRNA regulation by opioid and its-related
drugs strongly support potential and significant roles for miRNAs in opioid
pharmacobiology (Kalow 2001) and human diseases. Future studies may or will find more
direct networks of opioids in related to miRNAs and target genes, and may provide better
insights in clinical pharmacology of opioids for pain, and their side effects including opioid
dependence, withdrawal, and tolerance, as well as in opioid-related human diseases.

2) Opioid receptor gene regulation by miRNAs

Involvement of miRNA, currently considered as a new epigenetic factor, has begun to
emerge on opioid receptor gene regulation, especially for mu opioid receptor (MOR) gene.
In general, the MOR mRNA is uniquely distributed in brain and correlates with its protein
expression patterns, as previously defined by autoradiography and immunohistochemical
studies (Mansour et al. 1995; Brodsky et al. 1995). However, there are some discrepancies
in certain brain regions between its mMRNA and protein levels, as high levels of mMRNA with
little mu opioid binding sites or vice versa (Mansour et al. 1995). The discrepancy was also
shown in antagonist-treated brain regions too (Unterwald et al. 1995). Although there are
many possible reasons to explain the discrepancies, such as different sensitivities of the
detection methods, RNA transport, existence of MOR isoforms (Pan et al. 2001), it is also
possible that MOR at the brain region could be regulated at the post-transcriptional level—
including different translation rates by miRNAs, RNA binding factors or through mRNA
stability.

From our studies to determine whether miRNAs, that have their target sites especially in 3’-
UTR of MOR gene, and are stimulated or inhibited by opioids or other stimulants to regulate
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MOR at the post-transcriptional level, we have found that two miRNAs were involved to
regulate MOR gene: miR-23b and miR-339. The first one, miR-23b interacts with the MOR
3’-UTR via a K box motif (5"-UGUGAU-3"), a conserved 3’-UTR sequence motif (Fig. 2).
In Drosophila, miRNAs directly bind to the K box of Notch target genes and regulate the
expression of the Notch genes at the post-transcriptional level (Lai 2002; Lai et al. 1998; Lai
et al. 2005). In mouse cells (P19 mouse embryonal carcinoma cells), miR-23b, via K box
binding, regulates a notch gene Hairy/enhancer of split (Hes1) (Kimura et al. 2004), the
transcription factor whose expression is initiated by the Notch signaling pathway. The Notch
pathway is important for cell-cell communication involved in gene regulation mechanisms
that control multiple cell differentiation processes during embryonic and adult life
(Artavanis-Tsakonas et al. 1999). Several studies have demonstrated alteration of miR-23
expression (including its genome clustered miRNAs) in human diseases (Chhabra et al.
2009; Chhabra et al. 2010; Hassan et al. 2010), thereby indicating that miR-23 controls
several processes during health and diseases.

By knocking down endogenous miR-23b in mouse neuroblastoma NS20Y cells using
miR-23b inhibitor (Wu et al. 2008), we confirmed that miR-23b inhibits MOR protein
expression in vivo. This was the first study reporting a translationally repressive role for the
MOR 3’-UTR by miRNA. The regulatory mechanism of miR-23b was that miR-23b blocks
the association of MOR mRNA with polysomes, thereby arresting its translation and
suppressing the production of MOR protein. Later in another article (Wu et al. 2009), we
demonstrated that long-term morphine treatment increases miR-23b expression in a dose-
and time-dependent manner and represses the polysomal association of MOR mRNA
through the MOR 3’-UTR. The suppressive effect of morphine was further proven by the
translational luciferase reporter assay that requires the MOR 3’-UTR. This suggests a
potential link between MOR expression and morphine treatment at the post-transcriptional
level in which a specific miRNA, miR-23b, is involved.

The second miRNA, miR-339, was identified by a microarray data analysis using mice
treated chronically with either morphine or fentanyl, and was found to be consistently
increased in hippocampal brain region, about 2- or 4-fold, respectively, compared to non-
treated and agonist-treated cerebellum controls (unpublished data). This miRNA was bound
to its target site in MOR 3’-UTR, resulting in suppression of the MOR gene. The
suppression was attenuated by addition of miR-339 inhibitor, as well as when the target site
was mutated. In MOR-expressing N2A-MOR cells, fentanyl treatment induced a 4-fold
increase in the expression of mature miR-339 through increasing its primary miRNA
production, indicating the involvement of transcriptional regulation of the miRNA. The
entire length of its primary RNA and the promoter were identified. It was revealed that
mature miR-339 was embedded in non-coding 3"-UTR region of an unknown host gene and
was regulated under control of the host promoter. The resulting promoter activity was
increased by fentanyl treatment and the activity was blocked by antagonist co-treatment.
These results suggest that miR-339 play a key role in agonist-mediated MOR down-
regulation through the binding of MOR 3’-UTR.

There is additional information that is valuable to mention here about what we obtained
from this miR-339 work (unpublished data). To determine a role of this miRNA in vitro, we
co-transfected miR-339 expression plasmid (pSuper-339) with the luciferase reporter
construct, PMUTR, containing MOR promoter and the full-length of 3’-UTR of MOR gene,
into HEK293T cells. The luciferase reporter activity began to decrease at the limited amount
(50 ng) of pSuper-339 which is relevant to the amount of endogenous miRNA, suggesting
an interaction between miR-339-3p and MOR 3’-UTR. However, when the MOR promoter
in pMUTR was replaced by SV40 promoter (pSVUTR), the inhibition of pSuper-339 on
reporter activity was blunted. Similar effect was observed in a reporter with SV40 promoter
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fused with MOR 5’-UTR (pSV5MUTR), suggesting a need to use different promoters in
miR-339’s effect. When we used a construct containing miR-339 target site in pmirGLO
vector (Promega) which is under the control of human phosphoglycerate kinase promoter
(pPGK) and provides low translational expression, we could observe the subtle changes led
by the miRNA. If, in many cases, miRNA target sites are controlled under strong viral
promoters such as SV40 promoter, effects of miRNA may be harder to determine because
miRNA-mediated effects often come with subtle changes in their target genes. The viral
promoter produces too strong transcription that might hinder observing the regulatory effect
by miRNA, especially on SVV40 promoter-controlled constructs.

Recently, another research group reported that miRNA let-7 targets MOR gene (see also our
in silico analysis in Fig. 2) and regulates opioid tolerance (He et al. 2010). let-7 binds to its
target site in the MOR 3’-UTR and represses MOR expression. Morphine upregulates let-7
expression both in SH-SY5Y cells and a mouse model of opioid tolerance. The let-7
inhibitor decreases let-7 levels in brain and partially attenuated opioid antinociceptive
tolerance in mice. Association of polysomes with MOR mRNA was decreased in a let-7-
dependent manner. The miRNA let-7 functions as a mediator sequestering MOR mRNA to
P-bodies leading to translational repression. These results suggest that let-7 may play a
significant role in opioid tolerance.

For other two members of opioid receptors, delta and kappa, DOR and KOR, respectively,
there is no report about miRNA-mediated regulation. However, based on our unpublished in
silico analysis, there are several miRNA target sites in their DNA sequences. Therefore, it
will be worthy to study on miRNA-mediated regulation about the above two genes.

Although the above three miRNAs were identified as regulators of MOR expression, in
silico analysis to search miRNA target sites in MOR 3’-UTR (Fig. 2) showed potential
target sites of several more miRNAs with highly complementary sequence (over 80%
compared to full sequences of miRNAS), low free energy values, and some miRNAs had
more than two target sites in MOR 3’-UTR. These suggest that further research works may
find more miRNAs targeting to MOR gene and provide details for better understanding in
miRNA-mediated MOR regulation.

3) miRNAs in opioid drug addiction and future directions

Opioid drug addiction is a major public health issue, despite its usefulness of pain-killing
effects. Addictive drugs, such as cocaine, opioids (including heroin) and amphetamines,
trigger strong and persistent neuroadaptive changes in the brain through a series of gene
regulatory mechanisms leading to addiction. Recent studies have reported involvement of
miRNAs in drug addiction (Hollander et al. 2010; Dreyer 2010; Schaefer et al. 2010),
mainly associated with cocaine-related drug addiction, although there is no direct report of
miRNAs involved in opioid-related addiction so far. It is worth to review various articles
related to other drugs regarding miRNAs which will guide miRNA study further for opioid
addiction. A recent report (Hollander et al. 2010) showed that miR-212, which is closely
related to miR-132, is upregulated in the dorsal striatum, the brain region known to regulate
the development of compulsive drug use in drug-abused rats. Surprisingly, even more
overexpression of the miRNA using lentiviral vector system in the same brain region caused
the abused rats to eliminate the compulsive drug-seeking behavior. The report demonstrated
that miR-212 regulate the activity of CREB (CAMP-response element binding protein), a
transcription factor known to play a role in decreasing the rewarding properties of cocaine.
CREB, in turn, increases the expression of miR-212. Interestingly, the expression of CREB
is stimulated by cocaine intake, and may play a key role of a self-limiting mechanism of
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drug use. This may provide a new direction for addiction therapeutics by miRNA
expression.

Previously it was reported that MeCP2 (methyl CpG binding protein 2) expression is
regulated by a miRNA miR-132 (a same family member of miR-212), which is also induced
by CREB (Klein et al. 2007). The MeCP2 protein (Lewis et al. 1992) binds to forms of
DNA that have been methylated at the cytosine of CpG islands, which frequently occur at
the gene promoters. The MeCP2 protein then interacts with other repressor proteins, such as
histone deacetylases and histone methyltransferases, and the co-repressor Sin3a, to form a
complex that repress the target gene. Mutations of MeCP2 gene cause most cases of the
neurodevelopmental disorder Rett syndrome and one of the most common causes of mental
retardation in females (Amir et al. 2005; Amir et al. 1999). Loss of function as well as
increased expression of the MeCP2 gene also cause several neuropsychiatric disorders
(Chahrour et al. 2008), indicating MeCP2 is a key contributor to neurological diseases.

MeCP2 translation was decreased by miR-132 binding to its own target site of MeCP2 long
variant’s 3’-UTR (Klein et al. 2007). Blocking miR-132-mediated repression led to
increased MeCP2 and brain-derived neurotrophic factor (BDNF) levels. The increased
MeCP2 enhanced BDNF and miR-132 levels in vivo. Increase in miR-132 will then
decrease the levels of MeCP2 and restore the balance. This feedback circuit may provide a
mechanism for homeostatic control of MeCP2 expression in the brain. Failure to regulate
MeCP2 levels is connected to neurological disorders including Rett syndrome. The
transcription of this cluster was enhanced by CREB. BDNF activates CREB through kinases
(ERK1/2 and MSK) and the activated CREB then enhances production of miR-132.
Enhancers of CREB phosphorylation (i.e., forskolin and KSHV) can also enhance miR-132
production in vitro. In vivo data also showed that the miR-132 levels were increased in the
in vivo activation of neurons of brain regions that were induced by long-term potentiation,
bicuculline, pilocarpine-induced seizures, contextual fear conditioning, odor-exposure, and
cocaine injection (Wayman et al. 2008; Nudelman et al. 2010; Wibrand et al. 2010). These
in vivo studies suggest a strong causal relationship between neuronal activation and
miR-132 transcription. miR-132 is also associated with synaptic function as it increases
post-synaptic protein levels (BDNF-related increase of miR-132) (Kawashima et al. 2010)
and is associate with Fragile X Mental Retardation Protein (FMRP) (Edbauer et al. 2010),
which is important for learning and memory.

In addition, it was recently reported the involvement of the MeCP2 in cocaine drug
addiction with the same type miRNAs (Albulescu et al. 2011). Cocaine increases MeCP2
expression in dorsal striatum, which suppresses cocaine-stimulated increases of miR-212
and miR-132, and thereby increasing expression to promote further cocaine intake
(Albulescu et al. 2011). However, there were contradicting/complicated network functions
between those factors reported from several previous works (Feng and Nestler 2010); as
miR-212/miR-132 repress MeCP2 translation; MeCP2 represses the BDNF gene directly;
CREB, which is also activated by cocaine, stimulates BDNF as well as miR-212/miR-132
expression; miR-212/miR-132 can enhance CREB activation; and CREB can compete with
MeCP2 for promoter binding sites. These complicated/coordinated epigenetic networks
remain to be resolved to better understand the role of MeCP2 in drug addiction. MeCP2 was
also reported that it modulates amphetamine (AMPH)-induced behaviors (Deng et al. 2010)
and the psychostimulant induces phosphorylation of MeCP2 at Ser421 which is associated
with the repressor function of MeCP2. The phosphorylation (pMeCP2) is selectively
induced in GABAergic interneurons of nucleus accumbens and pMeCP2 is correlated with
behavioral sensitization to AMPH.
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In vivo administration of cocaine in rat can have profound effects on the expression of
opioid receptors. Chronic repeated administration of cocaine resulted in increased binding to
mu opioid receptor (Unterwald et al. 1992; Unterwald et al. 1994). Level of MOR mRNA
was also transiently elevated following chronic continuous cocaine administration. Cocaine-
induced MOR mRNA upregulation was blocked by co-administration of either D1, D2, or
D3 dopamine receptor antagonists (Azaryan et al. 1996b; Azaryan et al. 1996a).
Furthermore, elevations in MOR mRNA were also found after continuous administration of
other direct and indirect dopamine agonists (Azaryan et al. 1996a). These data confirm the
involvement of dopaminergic mechanisms in the effects of cocaine on MOR regulation.
Importantly, specific miRNAs have emerged as key regulators leading to addiction, and
could serve as valuable targets for more efficient therapies. As mentioned the above, a
miRNA miR-212 inhibit the development of addiction in rats exposed to cocaine. It will be
interesting to know whether the same miRNA miR-212 is involved in opioid drug addiction
or are there other miRNAS too?

There is another example of miRNA’s involvement to cocaine addiction that may lead to a
new direction of opioid addiction research regarding miRNA. Argonaute 2 (Ago2), which is
known to control miRNA expression, in dopamine 2 receptor (Drd2)-expressing neurons, is
involved in regulation of cocaine addiction (Schaefer et al. 2010). Deficiency of Ago2 in
Drd2-expressing neurons greatly reduces the motivation to self-administer cocaine in mice.
The researchers identified several miRNAs that are specifically regulated by Ago2 in the
striatum and suggested that those miRNAs may likely play a role in cocaine addiction.

In the near future, we expect more miRNA researches to let us know better about the opioid
addiction as we have seen in cocaine drug addiction for the last few years. Altogether, if
future studies find more miRNASs’ involvements in opioid pharmacobiology, it is possible
that miRNA may serve as a therapeutic intervention for patients who abuse opioids.
Although the therapeutic use of miRNA/siRNA is in their early stages, the miRNA field has
evolved remarkably fast since the original discovery of miRNA molecules and appears to be
one of the most promising research areas for therapeutic strategy and drug discovery.
Further research should be conducted to examine the role of this valuable gene regulator,
miRNA in opioid pharmacology.
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Fig. 1.
A summary of proposed pathway for the regulation of miR-190 expression by fentanyl. This
figure was adopted and redrawn from Zheng et al. (Zheng et al. 2010a).
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[1: seed match sequence

** hsa : human microRNA

1: miRNAs, conserved in species and published

I miRNA, unpublished but identified by our experiments
mouse : MOR 3'-UTR sequence from mouse strain C57BL/6
nt*: 3-end location of miRNA target site of MOR 3'-UTR

[0 miRNASs have more than two target sites

Potential target sites of miRNAs in MOR 3’-UTR from mouse strain C57BL/6 by
bioinformatic analysis (Microlnspector: bioinfo.uni-plovdiv.bg/microinspector/) (Rusinov et
al. 2005). Homology percentage between miRNA and target site is shown on right side of
each sequence alignment. Cutoff value of free energy (fE) for binding is —27 (kcal/mol) and
each fE is indicated on right side. Sequence alignments without fE value were either
obtained from previous studies (He et al. 2010; Wu et al. 2008) or analyzed by other web-
based softwares, such as TargetScan (http://www.targetscan.org/mmu_50/) (Lewis et al.
2005), miRBase (http://www.mirbase.org/) (Kozomara and Griffiths-Jones 2011), or
miRDB (http://mirdb.org/miRDB/) (Wang and EI Naga 2008; Wang 2008).
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Table 1

List of miRNAs regulated by opioids.
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Factors (or
miRNA M echanisms affected genes) involved References
miR-190 . Down-regulated by fentanyl, resulting in PERK, B- (Zheng et al. 2010c; Zheng
induction of NeuroD arrestin2, pYY1, et al. 2010a; Zheng et al.
o . and Talin2 2010b)
. Dendritic spine stability
miR-133b . Down-regulated by morphine, resulting in ERK 1/2, TH,and  (Sanchez-Simon et al. 2010)

induction of Pitx3

Differentiation of dopaminergic neurons

DAT

miR-15b and -181b . Induced (miR-15b) or decreased (miR-181b) by FGF-2, MCP-2, (Dave and Khalili 2010)
morphine and IL-6
. Inflammation and HIV-1 infection
miR-28, 125b, 150, and . Down-regulated by morphine IFN-a/B (Wang et al. 2011b)
382
. Opioid-mediated immunosuppression in HIV-1
infection
miR-23b . Induced by morphine MOR (Wu et al. 2008; Wu et al.
2009)
let-7 . Induced by morphine MOR (He et al. 2010)
. Opioid tolerance
miR-339 . Induced by morphine and fentanyl MOR Unpublished

CYP2D6, cytochrome P450 2D6; DAT, dopamine transporter; Drd3, dopamine D3R; FosB, FBJ murine osteosarcoma viral oncogene homolog B;
IFN, interferon; IL-6, Interleukin-6; MCP-2, monocyte chemoattractant protein-2; MOR, mu opioid receptor; pERK, phosphorylated ERK; pYY1,
phosphorylated YY1; TH, tyrosine hydroxylase.
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