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ABSTRACT We quantify the potential landscape to determine the global stability and coherence of biological oscillations. We
explore a gene network motif in our experimental synthetic biology studies of two genes that mutually repress and activate each
other with self-activation and self-repression. We find that in addition to intrinsic molecular number fluctuations, there is another
type of fluctuation crucial for biological function: the fluctuation due to the slow binding/unbinding of protein regulators to gene
promoters. We find that coherent limit cycle oscillations emerge in two regimes: an adiabatic regime with fast binding/unbinding
and a nonadiabatic regime with slow binding/unbinding relative to protein synthesis/degradation. This leads to two mechanisms
of producing the stable oscillations: the effective interactions from averaging the gene states in the adiabatic regime; and the
time delays due to slow binding/unbinding to promoters in the nonadiabatic regime, which can be tested by forthcoming exper-
iments. In both regimes, the landscape has a topological shape of the Mexican hat in protein concentrations that quantitatively
determines the global stability of limit cycle dynamics. The oscillation coherence is shown to be correlated with the shape of the
Mexican hat characterized by the height from the oscillation ring to the central top. The oscillation period can be tuned in a wide
range by changing the binding/unbinding rate without changing the amplitude much, which is important for the functionality of
a biological clock. A negative feedback loop with time delays due to slow binding/unbinding can also generate oscillations.
Although positive feedback is not necessary for generating oscillations, it can make the oscillations more robust.
INTRODUCTION
The goal of biology is to understand both function and
behavior. In a living cell, biological functions and behaviors
are often regulated by the underlying complex and diverse
genetic networks. The oscillatory behavior, known as a bio-
logical clock, is one of the most interesting and enigmatic
phenomena. Such rhythms exist at many levels in living
organisms, from the cell proliferation cycle to the circadian
sleep-wake cycle of higher organisms (1–11). Recently,
many timingmechanisms accompanied with periodic behav-
iors were studied, including three-gene repressilators
(3,12,13), self-repressors with explicit time delays (14,15),
cell cycles (1,9,16–18), circadian clock networks
(2,6,7,19,20), and engineered two-component motifs from
synthetic biology with the interplay of positive feedback
and negative feedback (activated repression) (14,17,21,22).
These studies shed light on the underlying mechanisms.
However, the understanding of global stability and robust-
ness for these biological rhythms remains a challenge.

In the cell, intrinsic fluctuations not present in bulk are
unavoidable due to the limited number of proteins. There
have been increasing numbers of studies on how the gene
regulatory networks can be stable and functional under
such highly fluctuating environments (3,13,23). Further-
more, another type of fluctuation, arising from the biochem-
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ical reactions of the regulatory proteins binding/unbinding
to the genes, can be significant for oscillatory dynamics.
Conventionally, it was often assumed that the binding/
unbinding is significantly faster than the synthesis and
degradation (adiabatic limit) (24). It leads to the expected
single stable state for a self-repressor, which can be
measured in experiments (25). Although this assumption
may hold in some prokaryotic cells in certain conditions,
in general there is no guarantee it is true. In fact, one expects
in eukaryotic cells and some prokaryotic cells, binding/
unbinding can be comparable or even slower than the corre-
sponding synthesis and degradation (nonadiabatic limit).
The phrases ‘‘adiabatic’’ and ‘‘nonadiabatic’’ were borrowed
from condensed matter physics to refer to fast binding/
unbinding and slow binding/unbinding in gene regulatory
networks. This can lead to nontrivial stable states appearing
as a result of new timescales introduced due to the nonadia-
baticity (26–31), which is confirmed by recent single-mole-
cule, single-gene experiments (32,33). Therefore, the
challenge for us is to understand how the biological oscilla-
tions can be robust and coherent under both intrinsic fluctu-
ations and nonadiabatic fluctuations.

The global stability and robustness of a complex network
can be quantitatively studied if the underlying Hamiltonian
is known a priori, or in other words, the potential landscape
is known. However, most of the dynamical systems are not
integrable and not in equilibrium. The potential landscape is
not known a priori for these systems, and the global stability
will be a challenge. Therefore, with the presence of intrinsic
doi: 10.1016/j.bpj.2012.02.002
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stochasticities, the more appropriate way to describe the
dynamics of such nonequilibrium systems is the evolution
of probabilistic distributions rather than deterministic
trajectories.

In this study, by exploring the underlying master equa-
tions describing intrinsic fluctuations, we will quantify the
nonequilibrium landscape to explore the global stability
and robustness of oscillation networks. The steady-state
probability introduces a probabilistic landscape. The under-
lying potential landscape for a dynamical nonequilibrium
system is logarithmically related to the steady-state proba-
bility distribution, which can be used to quantitatively
address the global stability or robustness of oscillations
(11,17–20,22). In particular, we explore a gene network
motif in the experimental synthetic biology studies of two
genes that mutually repress and activate each other with
self-activation and self-repression: i.e., activated repression.
This network has been engineered in the experiment of
synthetic biology and generated robust oscillations in
Escherichia coli (14). In this design, as shown in Fig. 1 a,
the hybrid promoter (Plac/ara�1) is composed of an activation
operator site from the araBAD promoter and a repression
operator site from the lacZYA promoter. The activation oper-
ator site is placed in its normal location relative to the tran-
scription starter site, and the repression operator site is
placed both upstream of the activation operator site and
immediately downstream of the transcription starter site.
Plac/ara�1 is activated by the binding of araC protein (A)
and repressed by the binding of lacI protein (R). The araC,
lacI genes are under the control of Plac/ara�1 to form coregu-
lated transcription modules. It was found that if two identical
a b

c d

FIGURE 1 (a) Network diagram of the dual-feedback network: two genes

mutually repress and activate each other with self-activation and self-repres-

sion. (b) Network diagram of the single loop negative feedback with one

intermediate step. (c) Phase diagram of dual-feedback network. (d) Phase

diagram of the single loop negative feedback network. (Key: uRA,

binding/unbinding parameter; fa, activation factor of protein synthesis; solid

representation, oscillation region; open representation, monostable region.)
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promoters Plac/ara�1 control the transcription of araC and
lacI proteins, the network can generate robust oscillations
when the binding/unbinding is fast (14). However, we found
that with the same circuit wiring, if the two hybrid promoters
controlling AraC and LacI proteins are not identical, robust
oscillations can be generated even when the binding/
unbinding is slow, which can be tested by single molecule
single gene expression experiments in the future.

When the binding/unbinding speed is slow (nonadiabatic
limit), gene regulation processes involve at least two kinds
of biochemical reactions: binding/unbinding reactions of
regulatory proteins to the promoters, and synthesis/degrada-
tion reactions of proteins. It provides another level of com-
plexity for the dynamical process. Therefore, the gene state
of the promoter switching on (activated) or off (repressed)
is important for the transcription process and the production
of functional proteins. We found that stochastic fluctuations
generated by protein binding/unbinding processes can be
a possible mechanism for robust oscillations. Similar behav-
iors were shown in competence cycles (5). Furthermore, we
also found that even without positive feedback, the coherent
oscillation can persist with networks as in Fig. 1 b.
Phase diagrams in Fig. 1, c and d, show that positive
feedback is not necessary for coherent oscillations in the
nonadiabatic regime (slow binding/unbinding). However,
positive feedback can make the oscillation more robust
with respect to changing parameters, which agrees with
previous observations (14).
METHODS AND MATERIALS

In Fig. 1 a, the hybrid promoter a can be bound by the regulatory protein

b with the binding rate hab and dissociation rate fab (both hab and fab can

depend on protein concentration nb). The synthesis of protein a is

controlled by the gene state of promoter a. There are two types of genes,

araC (A) and lacI (R), to be translated into activators araC (A) and repressors

lacI (R), respectively. The activator A can bind to the promoter of the gene A

(R) to activate the synthesis rate of A (R); the repressor R can bind to the

gene A (R) to repress the synthesis rate of A (R). Here, activators A bind

on the gene A and R as a dimer with the binding rate

1

2
hAAnAðnA � 1Þ

and

1

2
hRAnAðnA � 1Þ;

respectively; repressors R bind on the gene A and R as a tetramer with the

binding rate

1

4!
hARnRðnR � 1ÞðnR � 2ÞðnR � 3Þ

and

1

4!
hRRnRðnR � 1ÞðnR � 2ÞðnR � 3Þ;
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respectively. Therefore, each gene has four states and the whole system has

16 gene states in total. For simplicity, we neglect the roles of mRNAs by

assuming translation processes are very fast. The model can be expressed

by the following chemical reactions,

O11
a þ 2A#

haA

faA
O01

a ;

O10
a þ 2A#

haA

faA
O00

a ;

(1)

O11 þ 4R#
haR O10;
a
faR

a

O01
a þ 4R#

haR

faR
O00

a ;

(2)

ij g
ij
A ij

g
ij
R
OA/ A; OR/R;

A/
kA

[ R/
kR

[;
(3)

with a¼ A (R) for the hybrid promoter Plac/ara�1 of gene A (R). For the gene

state index ij of gene Oa, the first index i ¼ 1(0) stands for the activator

protein A unbound(bound) on the promoter a; the second index j ¼ 1(0)

stands for the repressor protein R unbound(bound) on the promoter a.

The term gijA(g
ij
R) is the synthesis rate of the protein A (R) when the

gene A (R) is in state ij. The probability distribution of the microstate is

indicated as Pijkl(nA,nR), where nA and nR are the concentration of the acti-

vator A and the repressor R, respectively. The index i (j) represents the gene

A occupation state by the protein A (R), and the index k (l) represents the

gene R occupation state by the protein A (R).

There are 16 master equations for the probability evolution, as listed in

the Supporting Material. The steady-state probability distribution satisfies

dP
ðssÞ
ijkl ðnA; nRÞ

dt
¼ 0

for all i, j, k, l (34). The total probability distribution isX

PðssÞ ¼

ijkl

P
ðssÞ
ijkl :

A direct way to find the steady state Pss is through kinetic simulations (35).

The generalized potential function U of the nonequilibrium network can be
quantified as U(nA,nB) ¼ � ln P(ss). It maps to the potential landscape,

which gives a quantitative measure of the global stability and function of

the underlying network (17).

It is also helpful to study the deterministic moment equations for under-

standing the qualitative behavior in an approximate way (13,15,36). Themth

moment is defined as

hnmig ¼
X
n

nmPgðnÞ;

where g indicates the general gene state: 1111, 1100, etc. To get mth-order

moment equations, multiply nm and then sum over n on both sides of master
TABLE 1 Reaction parameters in the dual-feedback network

kA kR kA ¼ 4kR fa fr uA ¼ uR XA
eq XR

eq

0.2/min 0.005/min 8000/min 100 100,000 1000 450 33,750
equations. In principle, moment equations are equivalent to original master

equations if we can include all moment equations to the infinite order.

Because an infinite number of moment equations are difficult to deal

with, we introduce the Hartree-type approximation and the Poisson assump-

tion to find a smaller, more manageable set of moment equations up to the

first-order moments. The Hartree-type approximation, an approximation for

electron wave functions in multielectron atoms, considers the probability
distribution for each type of protein separated from that of the others and

only has a mean-field type of effect on the others, which means

PijklðnA; nRÞzPA
ijðnAÞPR

klðnRÞ:
In addition, the Poisson assumption of concentration distributions
PA
ijðnAÞ ¼ cAij

�hnAiij�nA
nA!

e�hnAiij

and � �nR

PR
ijðnRÞ ¼ cRij

hnRiij
nR!

e�hnRiij

can truncate moment equations up to the first-order. Therefore, we reached

a closed form of 16 deterministic moment equations, which only involve

zero-order moments cij
A(R) and first-order moments hnAðRÞiij (see the Sup-

porting Material).
OSCILLATIONS IN ADIABATIC/NONADIABATIC
REGIME

Following experimental reports (14), we performed several
sets of parameters with which deterministic limit cycles
persist from slow (nonadiabatic) to fast (adiabatic)
binding/unbinding. The parameters are set as follows: the
protein degradation rate kA ¼ 0.2/min, kR ¼ 0.005/min.
Both genes have maximum protein synthesis rate when
they are occupied by the activator A and unoccupied by
the repressor R: gA

01 ¼ kA ¼ 4gR
01¼ 4kR ¼ 8000/min.

Also, we set the activation factor fa ¼ 100 and repression

factor fr ¼ 100,000: g01A ¼ fag
11
A ¼ frg

00
A ¼ fafrg

10
A and

g01R ¼ fag
11
R ¼ frg

00
R ¼ fafrg

10
R . The binding/unbinding pro-

cesses are asymmetric between the gene A and the gene R:
hRA s hAA ¼ hA, hAR ¼ hRR ¼ hR, fRA s fAA ¼ fA,
and fAR ¼ fRR ¼ fR. We fix uA ¼ FA/kA ¼ uR ¼ fR/kR ¼
1000, which indicates the binding/unbinding of the activator
A to the gene A and the repressor R to both genes are fast.
The value uRA ¼ fRA/kA measures the binding/unbinding
speed of the activator A to the gene R. Equilibrium
constants, which indicate the ratio between unbinding and
binding speed, are set as XA

eq ¼ fRA/hRA ¼ fAA/hAA ¼ 450
and XR

eq ¼ fAR/hAR ¼ fRR/hRR ¼ 33,750. All parameters
are listed in Table 1.

In the adiabatic limit, the binding/unbinding processes are
much faster than the synthesis/degradation. Therefore, the
binding/unbinding processes reach equilibrium faster than
the other processes and the probability of the gene state is
determined as the function of the concentrations. Then,
the system can be simplified into a two-dimensional birth/
death process with effective synthesis rates (24,26,27):
Biophysical Journal 102(5) 1001–1010
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gAeff ¼ kA

"
f �1
a þ 1

2!

n2A
XA
eq

# "
1þ 1

4!

n4R
XR
eq

f �1
r

#
"
1þ 1

2!

n2A
XA
eq

# "
1þ 1

4!

n4R
XR
eq

# ; (4)

"
2
# "

4
#

gReff ¼ kR

f �1
a þ 1

2!

nA
XA
eq

1þ 1

4!

nR
XR
eq

f �1
r"

1þ 1

2!

n2A
XA
eq

# "
1þ 1

4!

n4R
XR
eq

# : (5)
a b

c d

e f

FIGURE 2 (a, c, and e) Deterministic trajectories of the dual-feedback networ

istic trajectories of the dual-feedback network (limit cycles in the counterclock
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The solutions of deterministic moment equations (see the

Supporting Material) for different values of uRA, as in

Fig. 2, show that the system can have oscillations and limit

cycles in a large range of parameters, as shown in phase

diagram of Fig. 1 c, which were also demonstrated by

previous experiments (14). However, it is noted that the

oscillation mechanism changes from the adiabatic regime

(high binding/unbinding rate uRA) to the nonadiabatic

regime (low binding/unbinding rate uRA). In the adiabatic

regime (fast binding/unbinding), oscillations come from

the nonlinear cooperative interactions of negative feedback

in gene circuits. The trajectories of the activator A are
k for protein concentrations nA and nR versus time t. (b, d, and f) Determin-

wise direction) in the plane of nA versus nR.
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relatively smooth, as shown in Fig. 2, e and f. While in the
nonadiabatic regime (slow binding/unbinding), the activator
A shows spikes in periodic time series, as shown in Fig. 2,
a and b. Such abrupt oscillations are due to the slow
binding/unbinding processes, whose kinetic mechanism is
very different with oscillations in the adiabatic regime
(fast binding/unbinding).

In this circuit, there is a two-step negative feedback loop:
R / A / R. Both regulatory steps are realized by the
protein binding/unbinding on the promoters. In nonadia-
batic regime, the slow binding/unbinding rate of the acti-
vator A on the gene R gives significant time delays of this
negative feedback. Once the promoter on the gene R is
bound by the activator A, the expression of the repressor R
will rise to a high level, which will strongly repress the
expression of the activator A to a lower level. If the
binding/unbinding speed is fast, the lower concentration of
the activator Awill immediately reduce the activation effect
on the repressor R. However, for the nonadiabatic case,
where the binding/unbinding rate is low, the activator A
will keep binding on the gene R for a long time even
when the concentration of the activator A is very low.
Thus, the negative feedback is delayed until the activator
A dissociates from the gene R. When the activator A disso-
ciates from the gene R, the expression level of the repressor
R will decrease. The low nR has less repression on the acti-
vator A and a spike of nA occurs until the gene R is bound by
the activator A again, which starts another round of limit
cycle. Therefore, nonadiabatic limit cycles are realized by
the time-delayed negative feedback due to the slow switch-
ing of the gene state R. Because the time delay is the major
oscillation mechanism, the oscillation period is more
controlled by the binding/unbinding rate uRA of the acti-
vator A on the gene R. In Fig. 3, we demonstrated the
changing of oscillation periods and amplitudes with respect
to the changing of uRA. We noted that the oscillation period
decreases monotonically with the increasing of uRA. So it
can be tuned in a large range by adjusting the binding/
unbinding rate uRA without changing the oscillation ampli-
tude very much, which was observed in the experiments
(14). Such gene expression design is important for biolog-
ical rhythms like heartbeats and cell cycles, which require
a near-constant output (amplitude) over a range of frequen-
a b
cies (8). However, in the adiabatic regime (fast binding/
unbinding), because of the different oscillation mechanism
(nonlinear cooperative interactions for effective average of
gene states) in which gene states can be omitted, the oscil-
lation period will not change any more with the change of
the binding/unbinding rate.

Deterministicmoment equations give approximation solu-
tions for limit-cycle trajectories without providing further
information such as the oscillation coherence. Therefore,
probability distributions for the master equations and
stochastic trajectories from Gillespie simulations, which do
not need any approximations, are necessary to study the
coherence of stochastic oscillations. As one can notice, in
the intermediate regime of uRA ¼ 1, although the determin-
istic equations give oscillation solutions as in Fig. 2, c and d,
the probabilistic landscape and phase coherence of stochastic
trajectories show that the oscillations are as not as coherent as
in the adiabatic regime (fast binding/unbinding) and the
nonadiabatic regime (slow binding/unbinding).
OSCILLATION LANDSCAPES IN ADIABATIC AND
NONADIABATIC REGIMES

The robustness of oscillations can be shown by probability
distributions or potential landscapes. For a stable and
coherent oscillation, the landscape in the nA�nR plane
should have a clear Mexican-hat shape, because the
stochastic trajectories fluctuates around the limit cycle,
which leads to a higher probability on the ring than the
center and the outside (17,18).

We observed sharp Mexican-hat topography in potential
landscapes for both the adiabatic regime (large uRA) and
the nonadiabatic regime (small uRA), but blurred topog-
raphy in the intermediate regime between them, as shown
in Fig. 4. In the adiabatic regime, the binding/unbinding
is very frequent. The resulting landscape is an effective
average of different gene states. The oscillation mechanism
is then due to this effective potential with the nonlinear
cooperative interactions of the negative feedback. There-
fore, the ring of the limit cycle in the potential landscape
is relatively smooth. In addition, because of fast switching
between on- and off-gene states, the coupling between these
two gene states is very strong and the resulting potential
FIGURE 3 (a and b) Oscillation periods and

amplitudes from deterministic trajectories.

Biophysical Journal 102(5) 1001–1010



FIGURE 4 (a–d) For the dual-feedback

network, probability distribution landscapes in nA
�nR plane of different gene states and stochastic

trajectories for different binding/unbinding rate

uRA. Most robust oscillations in (a) the nonadia-

batic and (d) the adiabatic regime accompanied

with sharpest Mexican hats. (Vertical axis) The

terms on(0) and off (1) indicate the sum of states

with the gene R bound or unbound by the activator

A, respectively. The term Total indicates the sum of

probability landscapes of the on-state and the off-

state.
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landscapes of on- and off- gene states are very similar, as in
shown Fig. 4 d. In the nonadiabatic regime (small uRA), the
oscillation mechanism is the time delay of the negative feed-
back due to the infrequent binding/unbinding. The ring of
the limit cycle is very bumpy, as shown in Fig. 4 a. There
are seemingly disconnected gaps on the right side and the
left side of the ring, which are due to the occasional gene
state jumping or switching. The landscapes of on- and off-
gene states are very different because the coupling between
these two gene states is very weak and the synthesis rates are
very different between on- and off-states. In the interme-
diate uRA regime, the gene state switches between on- and
off-states, but not so frequently. As shown in Fig. 4, b and
c, the resulting landscapes of on- and off-gene states are
qualitatively more similar to each other than in the nonadi-
abatic regime but not as similar as in the adiabatic regime.
The potential landscapes for more parameters are given in
the Supporting Material.

Stochastic trajectories associated with the underlying
potential landscapes are given in Fig. 4 for different uRA.
The nonadiabatic stochastic limit cycle with small uRA is
shown in Fig. 4 a. Here, because the binding rate of the
activator A on the gene R is small, the system will wait for
a long time in the on-state with small nA until the activator
A is dissociated from the gene R and the gene state switches
to the off-state. The oscillation is initiated by this dissociation
and the concentration of R will decrease without the activa-
tion fromA. The low concentration ofRwill have less repres-
Biophysical Journal 102(5) 1001–1010
sion on A and a spike will occurs, which makes nA jump to
a large value. With a large nA, the hybrid promoter on the
gene Rwill have a higher chance to be bound by the activator
A because the binding rate is ~hRA/2 n

2
A. Once the gene R is

occupied by the activator A, nR will increase and repress nA
to a smaller value for a long time (because unbinding rate
fRA is small in nonadiabatic limit) until the next dissociation
of the activator A from the gene R, which starts the next
spike and another round of oscillation (limit cycle). In this
process, fluctuations arising from the biochemical reactions
of protein binding/unbinding to the promoters are significant
for oscillatory dynamics. The adiabatic stochastic limit cycle
is shown in Fig. 4 d. With large uRA, the state of gene R
switches frequently and the effective protein synthesis rates

are given as g
AðRÞ
eff ðnA; nRÞ in Eqs. 4 and 5, which are deter-

mined by the average weight of each gene state. Therefore,
specific gene states can be effectively omitted in the
dynamics and the nonlinear cooperative interactions of

g
AðRÞ
eff ðnA; nRÞ between the activator A and the repressor R

drive robust limit cycles.
LANDSCAPE TOPOGRAPHY AND COHERENCE
OF ADIABATIC AND NONADIABATIC
OSCILLATIONS

Barrier height can be used to quantify the landscape topog-
raphy. In particular, it is a good quantity to measure how
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sharp the Mexican-hat landscape is for oscillations. It is
defined as the potential (U ¼ �lnPSS) difference between
the peak inside the limit cycle (top of the hat) and the
peak on the limit cycle loop (top of the oscillation ring).
When the central barrier of the limit cycle is high, stochastic
trajectories can hardly go across it and are forced to run
around the barrier, which makes stable limit cycles (oscilla-
tions). Therefore, the barrier height measures how stable the
limit cycle (oscillation) is. Barrier heights for different uRA

are shown later in Fig. 6 a. As the uRA increases, the barrier
height first decreases then increases. Such turn-over
behavior confirmed our observation that there are robust
oscillations (sharp Mexican hat) in both the adiabatic regime
(large uRA) and the nonadiabatic regime (small uRA) but
only weak oscillation (blurred Mexican hat) in between.

In addition, we calculated the degree of coherence in the
oscillation measured by phase coherence to be defined as (12)

x ¼
2
P
i

qðfðtÞÞfðtÞP
i

jfðtÞj � 1; (6)

where q is a step function,
qðxÞ ¼ 1; xR0; (7)

qðxÞ ¼ 0; x<0; (8)
and phase angle f(t) is the angle between two consecutive
positions N(t) at time t and N(tþt) at time tþt on the

stochastic trajectories with respect to the potential central
peak O of the limit cycle loop, as shown in Fig. 5. When
the trajectories move randomly without any coherence,
which means N(t) has a half-chance of moving clockwise
and a half-chance of moving counterclockwise, we will have

xz

2
P
i

1

2
jfðtÞjP

i

jfðtÞj � 1 ¼ 0:

The value jxj increases when the regularity of the oscillation
increases, which indicates that, statistically, the consecutive
FIGURE 5 Sketch map for the definition of phase coherence x.
trajectories move in one direction more than the other direc-
tion. When the oscillation is completely coherent, i.e., the
trajectories move in one direction only, we will have

x/

2
P
i

fðtÞP
i

fðtÞ � 1 ¼ 1

for the counterclockwise direction or
x/
0P

i

fðtÞ � 1 ¼ �1

for the clockwise direction. The value t, the time interval
between two consecutive positions, should be much smaller

than the oscillation period but should be larger than the fast
noisy fluctuations (12). When f(t) is a large angle closing to
180�, it will be hard to tell whether f(t) is positive or nega-
tive. To avoid such conditions, we chose t much smaller
than the oscillation period, so that N(t þ t) will not move
too far away, respective to N(t). The value of x depends on
t. When t is shorter, the result of x will be smaller because
more small forward and backward motions in the trajectory
will be captured. The phase coherence for different uRAwith
t ¼ 0.01/kR is shown in Fig. 6 b. We noted that strong
coherent oscillations in both adiabatic (fast binding/
unbinding) and nonadiabatic regimes (slow binding/
unbinding). It correlates with the shape of Mexican hat char-
acterized by the barrier heights.

Both the barrier heights and phase coherence indicate two
mechanisms of oscillations. In the adiabatic regime, the
Mexican hat-shape topography of the landscape is mostly
determined by the averaged (over the fast binding/
unbinding) nature of protein synthesis and degradation.
The oscillations emerge from nonlinear cooperative interac-
tions and are more stable because the binding/unbinding is
faster. In the nonadiabatic regime, Mexican hat-shape
topography of the landscape is mostly determined by the
binding/unbinding of regulatory proteins to the genes (aver-
aged over the fast synthesis and degradation of proteins).
The oscillations emerge from time delays due to the slow
binding/unbinding to the genes and are more stable because
the binding/unbinding is slower.
OSCILLATIONS WITH A SINGLE NEGATIVE
FEEDBACK LOOPS

In addition, we uncovered another regime in the parameter
space, which would support oscillatory behavior controlled
by a time delayed negative feedback loop. The network
circuit is shown in Fig. 1 b and chemical reactions are

O1
A þ 4R#

hRðnRÞ

fR
O0

A;

O1
R þ 2A#

hAðnAÞ

fA
O0

R;

(9)
Biophysical Journal 102(5) 1001–1010
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FIGURE 6 (a) Barrier height and (b) phase

coherence of the dual-feedback loops and the

single loop negative feedback for different uRA.
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c
gc
A c

gc
R
OA/A; OR/R;

A/
kA

[; R/
kR

[:
(10)
The setup is almost the same as the network in Fig. 1 a,
except there is no direct self-repressions in the gene R

and no direct self-activations in the gene A in Fig. 1 b.
The time-delay effect is from the intermediate step that R
can bind on the gene A and repress the synthesis of A, and
A can bind on the gene R and enhance the synthesis of
R, which forms a two-step negative feedback loop.
Thus, the time-delay effect strongly depends on the
binding/unbinding rate. With the suitable parameters of
kA ¼ 0.2/min, kR ¼ 0.05/min, g1A ¼ 4g0R ¼ k ¼ 80/min,
fA ¼ g1A/g

0
A ¼ 100, fR ¼ g0R/g

1
R ¼ 100,000, uA ¼ 0.1,

uR¼ 1000, and all other parameters (same as listed in Oscil-
lations in Adiabatic/Nonadiabatic Regime), robust oscilla-
tions can be generated from this single-loop negative
feedback, as shown in Fig. 7. All parameters are listed in
Table 2.
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Because of the relatively slow binding/unbinding speed
uA of the activator A, the dynamics are quite similar to the
nonadiabatic (slow binding/unbinding) oscillation case in
the dual-feedback loop. According to the deterministic
trajectories in Fig. 7, a and b, and stochastic trajectories in
Fig. 7 c, the activator A still oscillates with sharp spikes,
just as in the case of the dual loop with positive feedback.
The oscillation is initiated by the dissociation of the acti-
vator A from the promoter site of the gene R. Then, the
concentration nR decreases to a level so that it cannot give
enough repression on A and a spike of nA is triggered.
With the high concentration nA, the activator A rebinds to
the gene R. It promotes the concentration nR and a limit
cycle finishes. Such stochastic process of the limit cycle is
almost the same as the network in Fig. 1 a with dual-feed-
back loops. It also gives a sharp Mexican-hat shape land-
scape as shown in Fig. 7, c and d. In Fig. 7, c and d, the
ring of the limit cycle is bumpy, which is similar to the
nonadiabatic landscape in Fig. 4 a for the network with
dual-feedback loops. Also, the landscapes of on- and off-
gene states are very different because the coupling between
FIGURE 7 Oscillations from the single loop

negative feedback with time delays, uA ¼ 0.1.

(a) Deterministic oscillatory trajectories for

protein concentrations nA and nR versus time t.

(b) Deterministic limit cycles in the nA�nR plane.

(c) Stochastic trajectories between states on(0)

and off (1) of the gene R. (d) The Mexican hat-

shape probability distribution landscape in the

nA�nR plane.



TABLE 2 Reaction parameters in the single loop negative

feedback

kA kR kA ¼ 4kR fa fr uA ¼ uR XA
eq XR

eq

0.2/min 0.05/min 80/min 100 100,000 1000 450 33,750
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these two gene states is weak. The potential landscapes for
more parameters are given in the Supporting Material.

It was shown that with multiple intermediate steps such as
transcription, translation, monomers to dimers, dimers to
tetramers, and tetramers binding on promoters, oscillations
can be generated (14,15). Here we found that with the
slow binding/unbinding, robust oscillations can be gener-
ated by a two-step, single-loop negative feedback. So the
positive feedback is not necessary for a stable oscillation.
However, in this regime, the positive feedback can make
the oscillation more robust as shown in phase diagrams
Fig. 1, c and d. With positive feedback, oscillations robustly
exist from small uRA to large uRA, while without positive
feedback, oscillations are not robust in the adiabatic regime
(fast binding/unbinding) and exist only stably in the range of
smalluRA or the nonadiabatic regime. The positive feedback
is not necessary for a coherent oscillation only in this
regime. Outside of this regime, when the binding/unbinding
rate is fast, the coherent oscillation and limit cycle will
disappear without positive feedback. So, in the fast
binding/unbinding regime, the positive feedback is neces-
sary for a coherent oscillation. In nonadiabatic regime
(slow binding/unbinding), the positive feedback is not
necessary for a coherent oscillation. The barrier heights
for different uRA values are given in Fig. 6 a. It shows
that, in the robust oscillation regime, there are sharp
Mexican-hat landscapes and the central barrier height of
the limit cycle is high. It means that the trajectories are
kept on the path on the ring and have little chance of
crossing the central barrier. The phase coherence results
(for t¼ 0.01/kR) as in Fig. 6 b also agree with the landscape
topography analysis. The landscape topography is quanti-
fied by the barrier heights that characterize the shape of
Mexican hat. We see the higher central barrier height, the
more robust and coherent oscillations.
DISCUSSION AND CONCLUSION

In this study, we explored the global stability of a biological
oscillation. We found that coherent limit cycle oscillations
emerge in adiabatic (fast binding/unbinding) and nonadia-
batic regimes (slow binding/unbinding). In both regimes,
the underlying landscape has the topography of a Mexican
hat. The shape of the Mexican hat provides the quantitative
description of the capability of the system to communicate
with each other. The global stability and robustness are
quantitatively determined by the topography of the land-
scape characterized by the barrier height. The coherence
of the oscillations is shown to be correlated with the shape
of Mexican hat. In the adiabatic regime, the binding/
unbinding of regulatory proteins to the promoters are fast
compared with the synthesis/degradation of proteins. The
Mexican hat-shape topography of the landscape is mostly
determined by the effective protein synthesis and decay.
The oscillations are more stable because the binding/un-
binding is faster. In the nonadiabatic regime, the binding/
unbinding of regulatory proteins to the promoters are slow
compared with the synthesis/decay of proteins. The
Mexican hat-shape topography of the landscape is mostly
determined by the binding/unbinding of regulatory proteins
to the genes. The oscillations are more stable because the
binding/unbinding is slower.

The two regimes give the two mechanisms of producing
robust oscillations: from the adiabatic regime with effective
nonlinear cooperative interactions by averaging the gene
states, and from the nonadiabatic regime with time delays
due to the slow binding/unbinding to the gene. Such oscilla-
tions are robust in a large range of parameters. By changing
the binding/unbinding rate, the oscillation period can be
easily tuned without changing the amplitude much. Such
design is suitable for biological rhythms like cell cycles
and heartbeats that require a near constant output over an
adjustable wide range of frequencies (8). The adiabatic
oscillation due to effective cooperative interactions agrees
with previous observations (14). The nonadiabatic oscilla-
tion patterns due to the slow binding/unbinding can be
examined by single-molecule single-gene expression exper-
iments (33). We also generated robust oscillations in both
deterministic and stochastic sense with a single-loop, two-
step negative feedback with suitable time delays due to
the slow binding/unbinding process. It means positive feed-
back is not necessary for oscillations but can make oscilla-
tions more robust.

Our landscape framework and the corresponding analysis
on the adiabatic and nonadiabatic fluctuations are general
and can be applied to other dynamical systems and networks
to explore the global stability and function.
SUPPORTING MATERIAL

Master equations, moment equations, distribution landscapes. four figures,

and reference (34) are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(12)00201-9.
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