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Abstract
Cerebral palsy (CP), the most common physical disability of childhood, is a clinical diagnosis that
encompasses a highly heterogeneous group of neurodevelopmental disorders resulting in
movement and posture impairments that persist throughout life. Despite being commonly
attributed to a variety of environmental factors, particularly to birth asphyxia, the specific cause
remains unknown in the majority of individuals. Conversely, a growing body of evidence suggests
that CP is likely caused by multiple genetic factors, similar to other neurodevelopmental disorders,
such as autism and intellectual disability. Due to recent advances in next-generation sequencing
technologies, it is now possible to sequence the entire human genome in a rapid and cost-effective
way. It is likely that novel CP genes will be identified as more researchers and clinicians use this
approach to study individuals with undiagnosed neurological disorders. As our knowledge of the
underlying pathophysiologic mechanisms increases, so does the possibility of developing
genomically-guided therapeutic interventions for CP.

Introduction
The first descriptions of cerebral palsy (CP) as a clinical entity are attributed to William
John Little, an eminent British orthopedic surgeon. In 1861, he wrote a monograph, “On the
influence of abnormal parturition, difficult labor, premature birth and asphyxia neonatorum
on the mental and physical condition of the child”, proposing for the first time an association
between perinatal asphyxia and poor neurological outcomes later in life.1 Three decades
later, Sigmund Freud, neurologist and founder of psychoanalysis, questioned Little’s
conclusions on the etiology of CP. Based on the observation that children with CP had
medical comorbidities, including intellectual disability, epilepsy, and visual disturbances, he
proposed that CP could begin earlier in life, during in utero brain development.2 Despite
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Freud’s premises, the notion that complications during labor and delivery were the leading
cause of CP was widely accepted by the medical, scientific, and lay communities. In fact, it
was almost one century later that large population-based studies showed that only a minority
of CP cases result from birth asphyxia, thus providing support that Freud’s hypothesis was
indeed correct.3–6

CP is a clinical descriptive term applied to an exceedingly heterogeneous group of
neurodevelopmental disorders that share the presence of motor impairments which often co-
occur with a wide range of medical conditions. In 2004, the International Working Group on
the Definition and Classification of Cerebral Palsy defined CP as “a group of permanent
disorders of the development of movement and posture, causing activity limitation, that are
attributed to nonprogressive disturbances that occurred in the developing fetal or infant
brain. The motor disorders of cerebral palsy are often accompanied by disturbances of
sensation, perception, cognition, communication, and behavior; by epilepsy, and by
secondary musculoskeletal problems”.7 Unfortunately, in some cases, once a child is given a
clinical diagnosis of CP, very limited efforts, if any, are made to determine the underlying
etiology. Alternatively, if specific causes were identified, individuals with CP and their
families would have numerous benefits including a better understanding of the condition,
accurate assessment of recurrence risk, early intervention, and more importantly, further
research efforts to develop specific medical treatments and therapeutic interventions for CP.

Here, we review the growing body of evidence supporting the contribution of genetic
abnormalities to the occurrence of CP. We discuss previously proposed environmental risk
factors and their repercussion to obstetric management and medical malpractice litigation.
We also present an overview of the rapidly changing field of CP genetics, from the initial
targeted association studies with inconclusive results to the successful implementation of
genome-wide, exon-level copy number array analyses and whole-exome sequencing to
discover novel CP genes and syndromes. We also provide our perspective on current
diagnostic challenges and directions for future research.

Epidemiology and classification
CP is the most common cause of physical disability in childhood. The worldwide prevalence
of CP has remained stable at 2–3 per 1,000 live births for more than four decades, despite
remarkable improvements in obstetric and neonatal care.8 A recent report from the Centers
for Disease Control and Prevention noted a prevalence of 3·3 per 1,000 eight-year-old
children from four areas of the United States (US).9 Moreover, up to an estimated one
million children and adults in the US live with a diagnosis of CP, with an average lifetime
cost per affected individual of $921,000 dollars (in 2003 dollars).10,11 Due to the increasing
life expectancy of individuals with CP, the number of adults with this disorder is increasing
and their medical and social care needs are changing.10

CP can be classified based on four major components: type and severity of the motor
abnormalities, anatomical distribution, associated impairments, and timing of the presumed
causal event (prenatal, perinatal, or postnatal).12 A thorough physical and neurological
examination allows the identification of abnormal neuromuscular tone (hypotonia or
hypertonia) as well as the predominant type of motor impairment, which can be spastic,
ataxic, dyskinetic (dystonia or choreoathetosis), or mixed. The characteristics and severity of
the motor manifestations should be described for each limb and the trunk, thus
differentiating unilateral from bilateral involvement and establishing an anatomical
distribution (monoplegia, diplegia, triplegia, hemiplegia, and tetraplegia).13 These
classification systems, based on motor type and topography, are often times used to infer
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which area of the brain could be affected (pyramidal or extrapyramidal systems); however,
they have poor reliability even between experienced clinicians.14,15

In an effort to establish an accurate, reliable, and standardized system to classify CP,
Palisano et al. developed the Gross Motor Function Classification System (GMFCS), a five-
level classification based on the child’s gross motor abilities, functional limitations, and
need for wheeled mobility or assistive devices.16 The GMFCS has been successfully
implemented worldwide in a variety of settings including routine clinical management
(mobility assessment, intervention planning, and prognosis), research (sample selection and
stratification), and healthcare administration.17–19 A similar scale to assess Bimanual Fine
Motor Function (BFMF) was developed and validated as a complement to the GMFCS,20,21

whereas a Manual Ability Classification System (MACS) was designed to evaluate the
ability of children with CP to use their hands for routine activities.22 Furthermore, the
Communication Function Classification System (CFCS) was recently developed in an effort
to assess the functional communication competence of individuals with CP in daily life
situations.23 The development of objective and valid functional classification systems has
greatly improved health care delivery and standardized research efforts.

Although the hallmark feature of CP is the motor and posture deficit, it is not uncommon for
individuals with this disorder to present with several other impairments and medical
conditions.

Commonly reported comorbidities include intellectual disabilities in 30–65% of the cases,
seizure disorders in 30–50%, speech and language deficits in 40%, visual impairments in
40%, and hearing problems in 5–15%.24–28 Additional systems that may be affected include
the somatosensory (deficits in stereognosis and proprioception),29 genitourinary (enuresis,
urinary infections, and voiding dysfunction),30,31 gastrointestinal (dysphagia,
gastroesophageal reflux diease, constipation),32 respiratory (recurrent pneumonia,
atelectasis, bronchiectasis, restrictive lung disease),32 and endocrine (reduced growth and
osteopenia).33,34 Furthermore, 20% of individuals with CP have psychosocial and
behavioral problems, and 9% have an autism spectrum disorder.35 The severity of the motor
impairment, along with the presence and extent of accompanying disorders, determines the
functional level of individuals with CP, as well as the burden and challenges posed on
caregivers and ultimately on the health system.

Etiology
The etiology of CP has been attributed to a wide range of prenatal, perinatal, and postnatal
factors that may present as single, isolated findings or as a combination of multiple potential
risk factors. The presence and contribution of individual events varies to some extent
between gestational groups and CP subtypes.36 The most commonly reported risk factors
include prematurity, low birth weight, birth asphyxia, infection, inflammation, maternal
fever during labor, multiple gestations, coagulation disorders, ischemic stroke, maternal
thyroid disease, and placental pathology.37–39 However, despite the large number of known
and proposed etiologies, the specific causal mechanism remains elusive in the majority of
CP cases.

Perhaps the single, most studied, and still controversial, risk factor associated with CP is
birth asphyxia. Historically, and unfortunately still today in many groups, it is assumed that
inadequate oxygen delivery to the brain, caused by adverse intrapartum events, is the leading
cause of CP.40–42 Based on this hypothesis, it was proposed that detection and early
intervention in episodes of acute birth asphyxia would decrease the rate of CP and improve
long-term neurological outcomes of newborns at risk. To that extent, technologies such as
electronic fetal monitoring (EFM) during birth were developed and rapidly introduced into
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clinical practice, without adequate supporting evidence from scientific studies.43,44 EFM,
considered a standard of care, is now widely used to detect early fetal distress resulting from
hypoxia during delivery, and despite a five-fold increase in the rate of Cesarean sections
driven partly by the use of EFM, the rate of CP has not decreased over time.8,45,46

Moreover, large population-based, controlled studies, conducted in various countries, in
different time frames, and across different populations, have shown that birth asphyxia is an
uncommon cause of neonatal encephalopathy and accounts for less than 10% of CP
cases.3,5,47–50

Even though the vast majority of CP cases are not caused by birth asphyxia, and those that
are can rarely be prevented by obstetric intervention,51 an estimated 76% of obstetricians in
the United States have faced medical malpractice litigation, most often for alleged birth
mismanagement resulting in CP.44 A similar situation occurs in Australia, where 18% of the
total medical indemnity claims are attributed to the 2% of physicians that practice
obstetrics.52

In an effort to help clinicians, researchers, and law courts to determine whether an acute
intrapartum event was likely the cause of any particular case of CP, an objective template of
evidence was published by the International Cerebral Palsy Task Force.53 These guidelines,
supported by multiple medical colleges and societies worldwide, provide three essential and
five non-essential criteria to define an acute intrapartum hypoxic event (table 1). The
absence of any of the essential criteria strongly suggests that intrapartum hypoxia was not
the cause of CP.

An alternative hypothesis for the etiology of CP is that it is caused by many diverse and
individually rare genomic abnormalities, just like other developmental brain disorders, such
as intellectual disabilities,54 autism spectrum disorders,55 and epilepsy.56 However, as
opposed to other neurodevelopmental disabilities, the contribution of genomic abnormalities
to the occurrence of CP has been scarcely explored and likely accounts for a significant
proportion of the 70–80% of cases that are attributed to prenatal causes. Furthermore,
genomic abnormalities could also be the underlying cause in cases where “classic” risk
factors such as prematurity, coagulopathies, or difficult birth are identified.57 Indeed,
children with malformations of cortical development present with birth complications much
more frequently than others, which often results in the misdiagnosis of intrapartum
asphyxia.58

Evidence for genetic factors in CP
Several lines of evidence strongly support the contribution of multiple genetic factors to the
etiology of CP, as follows: 1) Mutations in multiple genes result in Mendelian disorders that
present with CP-like features (as discussed below) and several new single gene mutations
have been identified in idiopathic (i.e., non-syndromic) CP pedigrees.59–63 2) The
prevalence of congenital anomalies in individuals with CP (11–32%) is significantly higher
than the rate in the general population (2–3%).64,65 The majority of malformations in
children with CP are cerebral, of which microcephaly and hydrocephaly are the most
common. Among the non-cerebral malformations, the most frequent are cardiac,
musculoskeletal, and urinary abnormalities, as well as facial clefts.66,67 3) Register-based
studies have reported a significantly higher concordance rate for CP in monozygotic twins
when compared to dizygotic twin pairs.68 4) The risk of CP in consanguineous families is
approximately 2·5 times higher than the risk in outbred families.69,70 5) Familial aggregation
of CP cases has been reported by several studies, including the identification of identical CP
syndromes in the same family.71–75 6) A paternal age effect has been described in some
forms of CP.76 Furthermore, a quantitative analysis of risk factors conducted in 681
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individuals with congenital CP, from the west Swedish population-based CP study,
estimated that 60% of hemiplegic CP cases, 45% of spastic diplegics, and the majority of
cases with isolated ataxia, are genetically caused.77 The mathematical method used for this
study, which was based on medical history analysis of prenatal and perinatal risk factors, has
been previously validated and successfully applied to study individuals with intellectual
disabilities.78

In spite of the growing body of evidence for genomic causes of CP, it has been traditionally
proposed that genetic and metabolic abnormalities should be excluded before making a
diagnosis of CP.79 However, comprehensive genetic testing is rarely, if ever, offered as part
of the diagnostic workup of affected individuals, thus making CP gene discovery a
challenging task. Furthermore, in numerous studies where individuals with CP have been
studied and found to harbor genetic mutations, the diagnosis is often changed and CP is
regarded as an initial misdiagnosis.80 Not surprisingly, our knowledge of the genomic
component of CP lags behind that of other neurodevelopmental disorders.

The CP spectrum disorders: monogenic syndromes that often present as
CP

Since CP is a nonspecific clinical diagnosis based on the observation of signs and
symptoms, such as delayed motor milestones and abnormalities in posture, muscle tone,
coordination, and reflexes, it is not uncommon for individuals with a wide range of
neurodevelopmental conditions to be diagnosed as having CP.81 There are several single-
gene (Mendelian) disorders, inherited as autosomal dominant, autosomal recessive, or X-
linked, that often present with clinical features similar to CP (supplementary table 1). In
such cases, individuals may live with a diagnosis of CP for several years until specific
molecular or biochemical diagnostic testing is performed. Some of these disorders are
individually rare, but as a group they are not uncommon and should be considered when
assessing an individual with CP. Moreover, the spectrum of CP-like syndromes includes
some genetic conditions that, once identified, can be successfully treated with currently
available medications.

Of particular interest, due to the potential for genomically-guided therapeutic interventions,
is the group of dopa-responsive dystonic disorders caused by mutations in the GCH1 (GTP
cyclohydrolase 1), SPR (sepiapterin reductase), and TH (tyrosine hydroxylase) genes.82 If
untreated, individuals with these disorders can progress to a state of complete loss of
ambulation, whereas appropriate management with levodopa leads to a dramatic and
sustained improvement in symptoms, even in advanced cases.

Earlier this year, Lee et al. reported the case of a severely disabled young woman who
presented with bilateral pes equinovarus, stiffness of the trunk, neck, and upper limbs, and
inability to walk.83 She lived with a diagnosis of CP for more than 10 years until a small
dose of levodopa was prescribed and dramatically improved her condition prompting further
genetic testing. Sequencing of the GCH1 gene identified a pathogenic mutation and a
diagnosis of Dopa-responsive dystonia (DRD) was made. Indeed, due to shared clinical
features, up to 24% of patients with DRD are initially diagnosed with CP.84 Furthermore, a
recent report by Bainbridge et al. described a twin pair with DRD of unknown etiology
(previously diagnosed as CP), whose genomes were completely sequenced identifying
compound heterozygous mutations in the SPR gene.85 Since disruption of this gene leads to
a decrease in tetrahydrobiopterin (cofactor for the synthesis of dopamine and serotonin),
their management with levodopa was supplemented with a serotonin precursor (5-
hydroxytryptophan) resulting in symptomatic improvement after one week of treatment.
These striking examples illustrate the importance of conducting comprehensive genetic
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testing in individuals with disorders of the CP spectrum and provide compelling evidence
for genomically-oriented medical decision making.

Another group of genomic diseases that often times present as CP is the hereditary spastic
paraplegias (HSP). These disorders are characterized by lower limb weakness and spasticity
arising from length-dependent, distal axonopathy of the corticospinal tract fibers.86 More
than 40 loci have been mapped for HSP, which can be inherited in an autosomal dominant,
autosomal recessive, or X-linked fashion.87 A notable example of the overlapping
presentation of CP and HSP comes from a report by Rainier et al. who evaluated a 34-year-
old woman diagnosed with spastic diplegic CP since early childhood. When her 10-month-
old child presented with similar symptoms, the diagnosis was changed to autosomal
dominant, uncomplicated, early-onset HSP. Further genetic testing identified a heterozygous
mutation in the ATL1 (atlastin GTPase 1) gene responsible for spastic paraplegia type 3A.88

Additional Mendelian conditions that present with features of CP are summarized in
supplementary table 1 and include recognizable genetic disorders such as Rett (MECP2)89

and Angelman (UBE3A) syndromes,90 metabolic disorders including Lesch-Nyhan
syndrome (HPRT)91 and glutaric acidemia type 1(GCDH),92 heritable thrombophilias, like
protein C deficiency (PROC),57 and cerebral dysgenesis such as classic lissencephaly
(PAFAH1B1)93 and pontocerebellar hypoplasia type 1 (VRK1).94

New single gene causes of idiopathic CP
As described below, the identification of the first CP genes was accomplished by means of
positional cloning techniques, such as microsatellite-based linkage mapping, followed by
conventional (Sanger) sequencing of candidate genes in large multi-generational families
with multiple affected individuals.59 More recent studies have relied on high-resolution copy
number variation (CNV) analyses and next-generation sequencing technologies for gene
discovery.61–63 At the time of this review, the total number of genes with mutations causing
human disease is 2,687 (www.omim.org/statistics/geneMap), of which six are known to
cause Mendelian forms of CP (table 2). It is likely that the list of monogenic causes of CP
will continue to grow exponentially due to the increasing use of cutting-edge genomic
technologies to evaluate individuals with undiagnosed disorders of brain development.

GAD1
In 2004, Lynex et al. identified the first gene responsible for a Mendelian form of CP. They
reported two consanguineous families in which six individuals presented with congenital
spastic CP of unknown etiology.59 All individuals had global developmental delay,
moderate to severe ID, poor or absent speech, and spasticity with hypertonia and brisk
reflexes predominantly in the lower limbs. One of them also had microcephaly, contractures,
and kyphoscoliosis and another one bilaterally dislocated hips that required surgical
management. Using 290 polymorphic DNA markers for linkage mapping, a 5 centimorgan
(cM) region of homozygosity was identified on chromosome 2q24-q25 and subsequently
refined to 0·5 cM by microsatellite typing. The region included the GAD1 gene, encoding
the brain-expressed isoform of glutamate decarboxylase, which was considered to be a good
candidate gene for CP. Indeed, direct sequencing of GAD1 in affected and unaffected
individuals from both families revealed a homozygous missense mutation segregating with
the CP phenotype. Glutamate decarboxylase is responsible for the production of γ-
aminobutyric acid (GABA), the major inhibitory neurotransmitter, from its excitatory
counterpart glutamate. Both molecules, as well as the balance between excitatory and
inhibitory neurotransmission modulated partly by GAD1, are known to be critical for normal
brain development and synaptic plasticity.95
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KANK1
One year after the discovery of the first CP gene, Lerer et al. studied a large four-generation
pedigree in which nine children had CP.60 All affected individuals were born after normal
pregnancies and showed congenital hypotonia which evolved to spastic tetraplegia over the
first year of life. Additional features included moderate to severe ID, nystagmus, and brain
atrophy with ventriculomegaly. Using linkage analysis, a region in chromosome 9p24.3 was
suggested to harbor the causative gene. Further studies identified a 225 kb deletion in 9p24.3
involving a single gene, KANK1 (KN motif and ankyrin repeat domains 1, previously called
ANKRD15), in affected individuals in the family which was not observed in 210 control
individuals. KANK1 is expressed in the developing brain and is thought to play a role in
protein-protein interactions and adhesion complexes.60 Moreover, the KANK family of
proteins is known to regulate actin polymerization and cell migration.96

The AP-4 deficiency syndrome: AP4M1, AP4E1, AP4B1, and AP4S1
In 2009, Verkerk et al.61 reported a consanguineous Moroccan family in which five siblings
had CP. They presented with infantile hypotonia that progressed to spastic tetraplegia with
hypertonia and hyperreflexia, severe ID, absent speech, and lack of independent walking and
sphincter control. Additional features included microcephaly, drooling, and stereotypic
laughter. Neuroimaging studies showed diffuse white matter loss, ventriculomegaly, and
cerebellar atrophy. Postmortem neuropathologic examination of a patient who died at 17
months of aspiration pneumonia revealed reduced myelin in cerebral white matter and
abnormal dendritic arborization of cerebellar Purkinje cells. Using homozygosity mapping
followed by candidate gene sequencing, a homozygous mutation in the AP4M1 gene,
encoding the µ subunit of the adaptor protein complex-4 (AP-4), was identified in all
affected individuals.

Following this report, our group reported a Palestinian-Jordanian inbred kindred with two
siblings affected by a type of CP resembling that of the individuals previously described.62

Both subjects presented at birth with microcephaly and hypotonia that progressed to spastic
tetraplegia with hyperreflexia and generalized hypertonia. They also had severe ID,
generalized tonic-clonic seizures, absent speech, inability to walk or to control sphincters,
drooling, and outbursts of stereotypic laughter. Dysmorphic features included bitemporal
narrowing, downslanted palpebral fissures, broad nasal bridge, and short philtrum. Brain
imaging showed ventriculomegaly, cerebellar atrophy, reduced hippocampal volume, and
white matter loss. We performed copy number array analyses and identified a homozygous
deletion of chromosome 15q21.2 that includes exons 1–11 of the AP4E1 (ε subunit of AP-4)
gene in both individuals.

Based on these two unrelated CP pedigrees, each with a homozygous mutation in a different
subunit of AP-4 (AP4E162 and AP4M161), along with previous reports of mouse mutations
in a third subunit resulting in axonal abnormalities,97 we proposed that disruption of any one
of the four subunits of AP-4 (AP4E1, AP4M1, AP4B1, and AP4S1) would result in
dysfunction of the entire complex and lead to a distinct autosomal recessive CP disorder,
which we designated as AP-4 deficiency syndrome.62

Indeed, our hypothesis was rapidly confirmed by a recent study of eight individuals, from
three consanguineous families, that presented with a remarkably similar phenotype to that
described in the previous patients (summarized in table 3).63 In addition to sharing most of
the neurodevelopmental features, they had common dysmorphisms including wide nasal
bridge, bulbous nose, and coarse features. By means of autozygosity mapping followed by
either sequencing of candidate genes or whole exome sequencing, mutations in AP4E1,
AP4B1 (β subunit of AP-4), and AP4S1 (σ subunit of AP-4) were identified in affected
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individuals from each of the three pedigrees. Furthermore, a recent study of 136
consanguineous families with autosomal recessive intellectual disability identified mutations
in AP4E1 and AP4M1 in two unrelated families with five individuals affected by severe
intellectual disability, microcephaly, and spastic paraplegia.98

Altogether, 20 affected individuals, from seven unrelated consanguineous families, provide
compelling evidence for pathogenic mutations in each of the four genes encoding the AP-4
complex subunits.61–63 Furthermore, since all affected individuals presented with a
strikingly similar CP phenotype, the existence of an AP-4 deficiency syndrome is
confirmed, defining a clinically and genetically recognizable form of CP.

The AP-4 complex
The adaptor protein complexes, AP-1, AP-2, AP-3, and AP-4 are ubiquitously expressed
heterotetrameric structures that play a crucial role in vesicular trafficking of membrane
proteins along the late secretory and endocytic pathways.99 They create an interface between
cargo molecules and an outer coat protein, thus promoting the assembly of coated vesicles.
The AP-complexes are composed of four different subunits that come together to form a
heterotetramer: one large variable subunit (γ in AP-1, α in AP-2, δ in AP-3, and ε in AP-4),
one large subunit with higher homology between the complexes (β1–4), one medium subunit
(µ1–4), and one small subunit (σ1–4).100 Although all four AP-complexes share a common
structural pattern, each one selects a different set of cargo proteins to be included into coated
vesicles and sorted along a specific trafficking route.

The AP-4 complex is expressed in the central nervous system throughout the embryologic
and postnatal developmental stages.61,101 It selectively sorts proteins from the trans-Golgi
network to the postsynaptic somatodendritic domain, avoiding the presynaptic axonal
domain, thus helping to establish neuronal polarity.102 Known cargo molecules sorted by
AP-4 include α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and δ2
glutamate receptors, transmembrane AMPA receptor regulatory proteins, low density
lipoprotein (LDL) receptors, and Alzheimer’s disease amyloid precursor protein
(APP).97,101,103 Since AMPA receptors participate in excitatory synaptic transmission,
adequate AP-4-mediated trafficking of these receptors to their target membrane is critical for
neurotransmission and synaptic plasticity. Moreover, AP-4-dependent transport of APP
reduces γ-secretase cleavage of the precursor protein to the pathogenic amyloid-β
peptide.103 Therefore, deficiency of AP-4 has the potential to disturb critical
neurophysiologic processes leading to increased amyloidogenic processing of APP, as well
as abnormal synaptic transmission due to deficient cycling of glutamate receptors.

In an effort to define the role of AP-4 in neurons, Matsuda et al. disrupted the gene encoding
the β subunit of the complex.97 AP-4 deficient mice showed no major brain anomalies, but
performed poorer on the rotorod test when compared to wild type mice. Furthermore,
examination of cerebellar Purkinje cells and hippocampal neurons revealed axonal swelling
and accumulation of AMPA, δ2, and LDL receptors in autophagosomes near the axon
terminals. These findings suggest that AP-4 deficiency results in loss of somatodendritic-
specific sorting of cargo molecules, leading to mislocalization of such proteins to the axonal
domain and further degradation via the autophagic pathway. Together, these findings
highlight the crucial role of vesicular trafficking in brain development and function, and
illustrate how disturbances in different proteins along a shared biological pathway can lead
to disorders with similar clinical phenotypes. Furthermore, several other genes and proteins
involved in the AP-4-mediated vesicular trafficking pathway instantly become strong
candidate CP genes. Further studies are needed to establish the frequency of the AP-4
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deficiency syndrome and to explore the contribution of other genes in this pathway to the
etiology of CP.

Genetic association studies
Based on the hypotheses that abnormalities in the inflammatory system and the coagulation
cascade may contribute to the causal pathway of CP, numerous studies have explored
whether single nucleotide polymorphisms (SNPs), in a subset of genes involved in these
processes, confer an increased risk for CP. Some of the most studied polymorphisms are
located within genes that code for factor V Leiden, prothrombin, methylenetetrahydrofolate
reductase, apolipoprotein E (APOE, ε2 and ε4 alleles), interleukins 6 and 8, nitric oxide
synthase (endothelial and inducible), platelet activator inhibitor, endothelial protein C
receptor, mannose binding lectin, tumor necorsis factor α, and lymphotoxin-α.104 Despite
more than 20 case-control studies focused on these candidate genes, the results have been
inconsistent and often times conflicting. In an effort to increase the statistical power of
individual studies, Wu et al. conducted a meta-analysis exploring 17 polymorphisms in 2533
cases and 4432 controls from 11 studies and concluded that only one SNP within
interleukin-6 (rs1800795) had a significant association with CP.105

In 2009, O’Callaghan et al. applied the human genome epidemiology network (HuGENet)
guidelines to conduct a systematic review of 22 targeted association studies in individuals
with CP.106 Multiple polymorphisms were analyzed including 18 SNPs in thrombophilic
genes, eight in cytokine genes, APOE’s ε2, ε3, and ε4 alleles, and 23 polymorphisms in
genes involved in other systems. The authors concluded that due to limited sample sizes,
ethnically diverse cohorts, and inadequate controls in the majority of studies, proposed
associations of SNPs and CP outcome remained controversial.106 However, some candidate
genes, including factor V Leiden, methylenetetrahydrofolate reductase, lymphotoxin-α,
tumor necrosis factor-α, endothelial nitric oxide synthase, and mannose binding lectin, were
more promising than the rest. The most recent population-based, case-control study
exploring genetic polymorphisms in CP included 138 cases and 165 controls from 334,333
infants born at term or near-term in a health care organization in California.104 In an effort
to replicate previously proposed associations between genetic polymorphisms and CP, 15
well-studied SNPs were genotyped. After correcting for multiple comparisons, no
statistically significant association between any SNP and CP was identified.

Not surprisingly, genetic association studies have failed to reach strong, replicable results
when applied to complex, multifactorial, and highly heterogeneous groups of disorders, such
as CP. The genomic architecture of CP likely resembles that of other developmental brain
disorders resulting from multiple rare, and often times private, genetic variations that are
infrequently detected by association studies.55,107 Furthermore, since all CP association
studies to date have been hypothesis-driven, only a limited number of polymorphisms within
a small group of candidate genes have been explored. Currently, commercially available
genotyping platforms feature more than 1·5 million markers that can be used simultaneously
for genome-wide association studies and CNV analyses. The implementation of whole-
genome scans, as an unbiased approach to study individuals with CP, has the potential to
discover novel CP genes and biological pathways to further unravel the genomic
underpinnings of this disorder.

Whole-exome and genome sequencing: new opportunities for CP research
The longstanding quest to find the cause of some of the most common neurodevelopmental
disorders, as well as rare conditions with suspected genetic etiologies, has recently seen a
surge in progress with exciting new results. A major factor in this tremendous success comes
from recent advances in next-generation sequencing technologies, which have allowed rapid
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and cost-effective sequencing of the entire human genome or a subset which includes all
coding genes, referred to as the “exome”.108 Exome sequencing has been successfully
implemented to uncover the causative gene in a wide range of Mendelian disorders,
including MLL2 in Kabuki syndrome,109 DHODH in Miller syndrome,110 and KIF1A in
Hereditary Spastic Paraparesis.111

Furthermore, the widespread use of trio-based exome sequencing as the standard approach
to study complex neurodevelopmental disorders has resulted in the discovery of pathogenic
de novo mutations in multiple new genes for intellectual disability,112 autism spectrum
disorders,113 and schizophrenia.114 These findings support the notion that developmental
brain disorders such as CP are likely caused by hundreds of genes, and that systematic
family-based exome or genome sequencing has the power to uncover them.

Conclusions
The field of CP genetics is rapidly growing and has already changed our understanding of
the underpinnings of this complex disorder. There are multiple monogenic syndromes that
present with CP-like features (CP spectrum disorders) that should be considered as part of
the diagnostic evaluation of affected individuals. Furthermore, we now know of six genes
that can cause CP when disrupted and estimate that many other developmental brain genes
are likely to contribute to the genetic heterogeneity of this disorder. The availability of
personal and family-based genome sequencing has made it feasible to identify rare or private
mutations in CP families at a reasonable cost, currently for research and soon on a clinical
diagnostic basis. Moreover, the continuous discovery of genes and molecular pathways
disrupted in CP will increase the possibility of developing genomically-guided
pharmacological interventions for this condition. As the paradigm shift continues and more
researchers, clinicians, and the general population start to consider the cerebral palsies as a
group of neurogenetic disorders, it is likely that we will witness an increase in research
efforts, a change in the diagnostic approach, and eventually novel therapies for CP. This
exciting new era of CP genomics will unquestionably benefit this patient population.

Search strategy and selection criteria
References for this review were identified through searches of Pubmed with the search terms
“neurogenetics”, “genetics”, “genomics”, “genes”, “mutations”, “chromosomes”, and
“cerebral palsy” up to November, 2011. Articles were also identified through searches of the
authors’ own files. The final reference list was generated on the basis of originality and
relevance to the broad scope of this Review.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Criteria proposed by the International Cerebral Palsy Task Force to define an acute intrapartum hypoxic
event.53

Essential criteria

1. Evidence of a metabolic acidosis in intrapartum fetal, umbilical arterial cord, or very early neonatal blood samples (pH < 7·00 and base
deficit >12 mmol/l)

2. Early onset of severe or moderate neonatal encephalopathy in infants of >34 weeks' gestation

3. Cerebral palsy of the spastic quadriplegic or dyskinetic type

Criteria that together suggest an intrapartum timing but by themselves are non-specific

4. A sentinel (signal) hypoxic event occurring immediately before or during labor

5. A sudden, rapid, and sustained deterioration of the fetal heart rate pattern usually after the hypoxic sentinel event where the pattern was
previously normal

6. Apgar scores of 0–6 for longer than 5 minutes

7. Early evidence of multisystem involvement

8. Early imaging evidence of acute cerebral abnormality
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Table 2

Known cerebral palsy genes

Gene Name OMIM ID Inheritance Reference

GAD1 Glutamate decarboxylase 1 603513 AR Lynex et al.59

KANK1 KN motif and ankyrin repeat domains 1 612900 AD Lerer et al.60

AP4M1 Adaptor-related protein complex 4, mu 1 subunit 612936 AR Verkerk et al.61

AP4E1 Adaptor-related protein complex 4, epsilon 1 subunit 613744 AR Moreno-De-Luca et al.62

AP4B1 Adaptor-related protein complex 4, beta 1 subunit 614066 AR Abou Jamra et al.63

AP4S1 Adaptor-related protein complex 4, sigma 1 subunit 614067 AR Abou Jamra et al.63

OMIM, Online Mendelian Inheritance in Man; AR, autosomal recessive; AD, autosomal dominant
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Table 3

Summary of clinical findings in 15 individuals with AP-4 deficiency syndrome

Clinical features Frequency

Male/female ratio 1·1:1

Severe ID 15/15 (100%)

Hypotonia → hypertonia 14/14 (100%)

Hyperreflexia 11/11 (100%)

Short stature 8/8 (100%)

Absent speech 13/14 (93%)

Stereotypic laughter 13/14 (93%)

Spasticity 13/14 (93%)

Inability to walk 13/14 (93%)

Babinski sign 8/9 (89%)

Microcephaly 11/14 (79%)

Absent sphincter control 11/14 (79%)

Drooling 10/14 (71%)

Foot deformity 6/13 (46%)

Epilepsy 3/15 (20%)

Overweight 2/8 (25%)

Ventriculomegaly 5/6 (83%)

Cerebellar atrophy 3/6 (50%)

Abnormal white matter 3/6 (50%)
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