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A published predictor model in a single-site cohort study (questionable dementia, QD) that contained episodic verbal memory
(SRT total recall), informant report of function (FAQ), and MRI measures was tested using logistic regression and ROC analyses
with comparable measures in a second multisite cohort study (Alzheimer’s Disease Neuroimaging Initiative, ADNI). There were
126 patients in QD and 282 patients in ADNI with MCI followed for 3 years. Within each sample, the differences in AUCs between
the statistical models were very similar. Adding hippocampal and entorhinal cortex volumes to the model containing AVLT/SRT,
FAQ, age and MMSE increased the area under the curve (AUC) in ADNI but not QD, with sensitivity increasing by 2% in ADNI and
2% in QD for a fixed specificity of 80%. Conversely, adding episodic verbal memory (SRT/AVLT) and FAQ to the model containing
age, Mini Mental State Exam (MMSE), hippocampal and entorhinal cortex volumes increased the AUC in ADNI and QD, with
sensitivity increasing by 17% in ADNI and 10% in QD for 80% specificity. The predictor models showed similar differences from
each other in both studies, supporting independent validation. MRI hippocampal and entorhinal cortex volumes showed limited
added predictive utility to memory and function measures.

1. Introduction

Mild cognitive impairment (MCI) often represents a tran-
sitional state between normal cognition and Alzheimer’s
disease (AD) [1, 2]. Accurate prediction of transition from
MCI to AD aids in prognosis and targeting early treatment
[3]. Episodic verbal memory impairment and informant
report of functional deficits in complex social and cognitive
tasks are features of incipient AD, and impairment in these
domains is associated with transition from MCI to AD [4, 5].

Most biomarkers of MCI transition to AD are related to
the underlying disease pathology of amyloid plaques and
neurofibrillary tangles [6]. Hippocampal and entorhinal
cortex atrophy on MRI scan of brain [7], parietotemporal

hypometabolism on 18FDG PET [8], increased amyloid up-
take using PET [9], and decreased amyloid beta-42 (Aβ42)
with increased tau/phospho-tau levels in the cerebrospinal
fluid (CSF) [10, 11] each significantly predict transition from
MCI to AD. The apolipoprotein E ε4 allele increases AD risk,
but is not a strong biomarker of transition from MCI to AD
[3].

In a meta-analysis, memory deficits appeared to be supe-
rior to MRI hippocampal atrophy in predicting transition to
AD [12], but studies in the meta-analysis had highly variable
subject inclusion/exclusion criteria and assessment methods.
There has been a lack of direct head-to-head comparison
of clinical and neuroimaging predictors of transition across
different studies.
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In our single-site study (Questionable Dementia or QD
study) that evaluated and followed a broadly defined sample
of patients with MCI, a published predictor model that
included specific cognitive, functional, olfactory, and MRI
measures strongly predicted transition to AD [3]. In the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study,
cognitive and functional measures and several biomarkers
are assessed in samples of MCI, AD, and healthy control
subjects at baseline and serially during followup. In this
paper, the first goal was to test the accuracy of a combination
of predictor variables derived from the QD study to predict
transition from MCI to AD in a completely independent
ADNI sample. The validation of specific predictor combina-
tions, rather than individual measures, has rarely been done
in independent samples. This is essential before specific cut-
points, and ranges for specific predictors in such models
can be developed with confidence for eventual clinical
application. The second goal was to evaluate the relative
utility of clinical and MRI measures in predicting transition
from MCI to AD.

2. Methods

Patients with MCI in the QD and ADNI studies were in-
cluded, and patients with AD (ADNI) and healthy control
subjects (QD and ADNI) were excluded. The 3-year followup
samples were chosen because most transitions occur to AD
within 3 years of clinical presentation [13].

2.1. QD Study. As previously reported, patients 41–85 years
old who presented with subjective memory complaints for
clinical evaluation to a Memory Disorders Clinic were eligi-
ble if they had a Folstein Mini-Mental State Exam (MMSE)
score ≥22 out of 30, memory impairment defined as MMSE
recall ≤2/3 objects at 5 minutes or a Selective Reminding
Test (SRT) delayed recall score >1 SD below norms, and
absence of a consensus diagnosis of dementia made by
two experienced raters [3]. Patients could also be included
if they had other cognitive and functional deficits. This
study began before criteria for MCI were published [1, 2].
Baseline MCI subtype using the criterion of >1.5 SD below
norms on cognitive tests was determined post hoc by using
age, education, and sex-based regression norms derived
from 83 healthy control subjects [4]. Using this approach,
73% of patients met the Peterson criteria for single or
multidomain amnestic MCI, and this subsample was also
compared to ADNI. The presence of specific neurological
or major psychiatric disorders led to exclusion [3]. Patients
were followed every 6 months for up to 9 years, and the two
raters made a consensus diagnosis at each time point. The
sample comprised 148 patients with MCI at baseline, and 126
patients were in the 3-year followup sample.

2.2. ADNI Study. Data were obtained from the ADNI study
(http://adni.loni.ucla.edu/), a project launched in 2003 by
the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, the Food and
Drug Administration, private pharmaceutical companies,

and non-profit organizations as a $60 million, 5-year public-
private partnership. The primary goal is to test whether serial
magnetic resonance imaging, positron emission tomogra-
phy, other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the
progression of MCI and early AD.

Participants 55–90 years old were enrolled if they had
at least 6 years of education, spoke English or Spanish,
agreed to longitudinal followup and neuroimaging tests,
had single or multidomain MCI by the Petersen criteria
with MMSE scores between 24 and 30, a memory com-
plaint verified by informant, an abnormal memory score
(1.5 SD below age-adjusted cutoff) on the Logical Memory
II subscale (delayed paragraph recall) from the Wechsler
Memory Scale-Revised, and absence of a dementia diagnosis.
All participants had a Geriatric Depression Scale score of
<6 and a modified Hachinski score of ≤4. For a more
detailed account of the inclusion/exclusion criteria, please
see http://www.adni-info.org/. Raters at each site made
consensus diagnoses at six-month intervals that included
an evaluation of transition from MCI to AD, which was
reviewed by a central committee. Data were obtained from
ADNI on October 31, 2010. Of 394 individuals with MCI
at baseline evaluation, 282 subjects completed 3 years of
followup.

2.3. Comparable Baseline Measures Chosen for Analysis from
QD and ADNI. In the QD study, the SRT total recall (12
items, 6 trials) was the strongest predictor among the five
hypothesized neuropsychological predictors examined [3].
The SRT was not done in ADNI, but the comparable measure
of total recall across 6 trials in the Auditory Verbal learning
Test (AVLT) was not used for study inclusion criteria and was
available. Informant report of the patient’s functioning using
the Pfeffer Functional Activities Questionnaire (FAQ) total
score and MRI hippocampal and entorhinal cortex volumes
was additional predictors in the final model in QD [3] that
were also assessed in ADNI.

Both studies conducted MRI on 1.5T scanners: a single
GE scanner in QD, and GE or Siemens or Philips scanners
across 48 sites in ADNI. In QD, hippocampal volume was
assessed by a semiautomated method with specific anatomi-
cal landmarks used to define hippocampal boundaries, and
entorhinal cortex volume was computed from three slices
centered at the level of the mammillary bodies [7]. In
ADNI, MRI hippocampal and entorhinal cortex volumes
were derived from postprocessed image analysis that used
FreeSurfer (FS) version 4.3.0 by researchers at the University
of California, San Francisco (UCSFFSX); the data are
available at http://adni.loni.ucla.edu/. The volume derivation
process is described at http://www.loni.ucla.edu/twiki/bin/
view/ADNI/ADNIPostProc. For both studies, intracranial
volume was a covariate in all analyses of hippocampal and
entorhinal cortex volumes.

2.4. Statistical Analyses. Summary statistics were calculated
to describe the sample characteristics in the ADNI and QD
studies. For each study, Chi-square and t-tests were used

http://adni.loni.ucla.edu/
http://www.adni-info.org/
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Table 1: Baseline sample characteristics of patients with MCI with three years of followup.

Variables Alzheimer’s Disease Neuroimaging Initiative (ADNI) Questionable Dementia (QD) study

Total
N = 282%

Nonconverter
N = 125%

Converter
N = 157%

Group
difference

Chi-square
P value

Total
(N = 126)

%

Not
converted
(N = 93)

%

Converted to
AD (N = 33)

%

Group
difference

Chi-square
P value

Gender (% Male) 67.02 76.0 59.87 0.0063 26.19 48.39 39.39 0.3154

Race (%)

Caucasian 92.20 92.00 92.36 0.8913 75.40 77.42 69.70 0.8452

Hispanic 2.84 2.40 3.18 16.67 15.05 21.21

African
American

2.48 2.40 2.55 5.56 5.38 6.06

Other 2.48 3.20 1.91 2.40 2.15 3.03

ApoE ε4 56.03 40.00 68.35 <0.0001 27.27 25.27 33.33 0.5332

Mean (SD) Mean (SD) Mean (SD) t-test Mean (SD) Mean (SD) Mean (SD) t-test

Age (years) 74.59 (7.30) 74.63 (7.66) 74.56 (7.03) 0.9351 67.31 (9.72) 65.24 (9.69) 73.12 (7.21) <0.0001

Education (years) 15.76 (2.88) 15.95 (2.81) 15.60 (2.94) 0.3074 15.18 (4.03) 15.58 (3.77) 14.06 (4.58) 0.0507

MMSE 27.08 (1.80) 27.62 (1.74) 26.66 (1.73) <0.0001 27.52 (2.21) 28.02 (1.99) 26.12 (2.20) <0.0001

AVLT/SRT 34.14 (10.90) 39.73 (12.16) 29.69 (7.16) <0.0001 42.66 (9.49) 45.60 (8.26) 34.09 (7.50) <0.0001

FAQ 2.84 (2.79) 1.61 (2.08) 3.82 (2.90) <0.0001 1.69 (2.05) 1.28 (1.84) 2.73 (2.21) 0.0002

N = 274 N = 120 N = 154 t-test N = 118 N = 89 N = 29 t-test

Hippocampal volume 6.30 (1.10) 6.78 (1.01) 5.92 (1.02) <0.0001 4.20 (0.73) 4.37 (0.62) 3.69 (0.74) <0.0001

Entorhinal cortex
volume

0.33 (0.08) 0.36 (0.07) 0.30 (0.07) <0.0001 0.45 (0.10) 0.47 (0.09) 0.38 (0.09) <0.0001

Intracranial volume
1580.79
(166.15)

1602.50
(152.48)

1563.69
(174.67)

0.0549
1306.60
(126.83)

1317.43
(128.55)

1273.71
(117.49)

0.0919

MMSE: Mini-Mental State Exam, AVLT: Auditory Verbal Learning Test (sum of 6 trials), SRT: Selective Reminding Task (sum of 6 trials), FAQ: Pfeffer’s
Functional Activities Questionnaire (10 items), SD: standard deviation, AD: Alzheimer’s disease. Hippocampal, entorhinal, and intracranial volumes are in
cubic centimeters. Entorhinal cortex volumes measured in cubic millimeters in ADNI were converted to cubic centimeters. Intracranial volume in ADNI
covered all intracranial structures including the cerebellum, but intracranial volume in QD was restricted to supratentorial intracranial volume.

to detect differences in baseline categorical and continuous
variables between MCI patients with and without transition
to AD by three years of followup (there were few non-
AD dementia cases in both studies). The QD and ADNI
studies had different available followup duration times, and
therefore survival analysis was not used for comparisons.
For both datasets, specific sets of baseline predictors were
examined in logistic regression models for the binary
outcome of transition to AD within 3 years after baseline
evaluation. With each model, sensitivity and specificity
were calculated for all possible cut points on the predicted
risk of transition to AD to construct receiver operating
characteristic (ROC) curves. From the ROC curves, the area
under the curve (AUC) was compared statistically between
datasets and between nested models within each dataset.

3. Results

3.1. Demographic and Clinical Features of the Two Samples.
Compared to the QD sample, the ADNI sample was older,
had a greater proportion of males, had a higher proportion
with the apoE ε4 allele, and reported greater functional
impairment (Table 1). The samples did not differ in years of
educational attainment and MMSE scores.

3.2. Prediction of Transition from MCI to AD by 3-Year
Followup. The majority of patients in ADNI (157/282 or
55.6%) and a minority of patients in QD (33/126 or 26.1%)
converted to AD by 3-year followup; the disparity likely
related to more stringent inclusion criteria for memory
impairment in ADNI compared to QD. Based on logistic
regression analyses, the combination of age and MMSE was
a poor predictor in ADNI and showed low sensitivity at the
fixed level of 90% specificity in QD (top of Table 2). Models
that included age with MMSE and specific combinations
of AVLT or SRT total recall, FAQ scores, hippocampal and
entorhinal cortex volumes showed greater sensitivity, speci-
ficity, and predictive accuracy in the QD study compared to
ADNI (Table 2).

3.3. Comparison of AUCs. Three predictor models were com-
pared within and across studies with age and MMSE, which
are common clinical indicators, contained in all models.
Model 1 included AVLT/SRT and FAQ, Model 2 included
hippocampal and entorhinal cortex volumes, and Model 3
included AVLT/SRT, FAQ, and hippocampal and entorhinal
cortex volumes (Table 2). In each study, the increase in AUC
for Model 1 compared to Model 2 was marginal (around
0.04 in both studies) and not statistically significant (bottom
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Table 2: Predictive accuracy of specific combinations of predictor variables for classification of transition to Alzheimer’s disease (AD) by 3
years of followup in two independent samples (ADNI and QD) of older adults with Mild Cognitive Impairment, and comparisons of three
predictor models.

ADNI QD

Model Predictor variables AUC (SE)
Sensitivity at
specificity =
80% (90%)

Correct
classification %

AUC (SE)
Sensitivity at
specificity =
80% (90%)

Correct
classification %

Age 0.497 12.74 (5.73) 55.67 0.739 52.61 (29.85) 73.02

MMSE 0.655 37.88 (19.20) 65.54 0.778 41.41 (26.79) 76.00

Hippocampal vol. 0.725 48.05 (34.42) 64.60 0.753 62.07 (41.38) 80.51

Entorhinal volume 0.718 50.65 (35.71) 67.16 0.773 67.86 (50.00) 80.34

AVLT 0.756 49.47 (25.16) 44.33 0.849 71.63 (53.13) 80.00

FAQ 0.738 49.05 (35.90) 44.33 0.708 45.46 (32.83) 75.42

Age, MMSE 0.659 36.94 (18.79) 63.48 0.821 72.73 (39.39) 76.00

Hippocampal and
entorhinal volumes

0.744 55.84 (35.71) 68.98 0.824 67.86 (67.86) 88.03

AVLT/SRT and FAQ 0.811 62.74 (42.68) 72.70 0.879 78.13 (59.38) 82.05

Model 1
Age, MMSE, AVLT/SRT
and FAQ

0.828 (0.024) 73.25 (49.05) 73.40 0.921 (0.027) 90.63 (81.25) 87.07

Model 2
Age, MMSE,
Hippocampal and
entorhinal volumes

0.783 (0.028) 57.79 (40.26) 73.72 0.866 (0.046) 82.14 (71.43) 87.07

Model 3
Age, MMSE, AVLT/SRT,
FAQ, Hippocampal and
entorhinal volumes

0.865 (0.022) 75.33 (55.20) 77.01 0.940 (0.027) 92.59 (88.89) 89.72

Model comparisons AUC difference P value AUC
difference

P value

Model 1 versus Model 2 0.0396 0.2271 0.0428 0.3618

Model 1 versus Model 3 0.0428 0.0035∗∗ 0.0282 0.1979

Model 2 versus Model 3 0.0824 0.0001∗∗ 0.0710 0.0254∗

A threshold of 0.5 was used on predicted risk derived from the logistic regression models. Area under the curve (AUC) was derived from receiver operating
characteristic (ROC) analyses. N = 282 (157 converters) in ADNI and N = 126 (33 converters) in QD. The differences between models in AUCs are slightly
different from the direct subtraction of AUCs between models because of missing data that ranged from 1% to 4% for the variables examined in ADNI and
1% to 5% for the variables examined in QD.
∗P < 0.05, ∗∗P < 0.01.

of Table 2). The AUC increased consistently across the
two studies when episodic verbal memory (AVLT/SRT)
and function (FAQ) measures were added to the model
containing the combination of age, MMSE, and hippocampal
and entorhinal cortex volumes (P < 0.0001 in ADNI and P =
0.0254 in QD; Model 2 versus Model 3, bottom of Table 2
and Figure 1), with an appreciable increase in sensitivity for
a fixed specificity of 80% and 90% in both ADNI (increases
of 17% and 15%, resp.) and QD (increases of 10% and
17%, resp.; top of Table 2 and Figure 1). Conversely, adding
hippocampal and entorhinal cortex volumes to AVLT/SRT,
FAQ, age, and MMSE significantly increased the AUC in
ADNI (P = 0.0035) but not in QD (P = 0.20) and led to
a small increase in sensitivity for a fixed specificity of 80%
and 90% in ADNI (increases of 2% and 6%, resp.) and QD
(increases of 2% and 7%, respectively, top of Table 2).

In both samples, the differences in AUCs between the
three statistical models examined were very similar (bottom

of Table 2). Analyses of all combinations of predictors exam-
ined are in the supplemental Table 3. (see Supplementary
Material available online at doi: 10.1155/2012/483469).

When the QD sample was restricted to patients with
baseline amnestic MCI (32/90 transitioned to AD) using
comparable criteria to ADNI inclusion criteria for amnestic
MCI, the results were similar to the entire QD sample: 80.7%
were correctly classified for Model 1, 85.5% for Model 2, and
84.2% for Model 3. AUCs were 0.877 for Model 1, 0.905 in
Model 2, and 0.915 in Model 3 without significant differences
in AUCs, partly because of reduced sample size.

4. Discussion

Within each sample, QD and ADNI, the differences in
AUCs between predictor models were similar, suggesting
robustness and generalizability across outpatient settings.
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Figure 1: Comparison of receiver operating characteristic (ROC curves) for three statistical models in the ADNI and QD studies. Model 1
(red line) contained age, MMSE, AVLT/SRT and FAQ, Model 2 (blue line) contained age, MMSE, hippocampal and entorhinal cortex
volumes, and Model 3 (green line) contained age, MMSE, AVLT/SRT, FAQ, hippocampal and entorhinal cortex volumes. The vertical lines
at 80% specificity (0.2 on x-axis) indicate 20% false positives.

When advising patients and families about the likelihood
of transition from MCI to AD, a predictor model with
specificity over 80% is essential because a false positive rate of
over 20% (specificity less than 80%) is clinically unacceptable
[14, 15]. In the predictor model, adding hippocampal
and entorhinal cortex atrophy to age, MMSE, and the
episodic verbal memory and function measures increased
sensitivity only to a small extent at fixed specificities of
80% and 90%. These findings suggest limited added utility
for MRI hippocampal and entorhinal cortex volumes to
clinical assessment of memory and function in predicting
transition from MCI to AD. In contrast, adding measures
of episodic verbal memory and function to the model that
combined age, MMSE, and hippocampal and entorhinal
cortex volumes appreciably increased sensitivity for fixed
levels of 80% and 90% specificity in both samples. In
both studies, the model that included AVLT/SRT, FAQ, and
hippocampal and entorhinal cortex volumes with age and
MMSE showed the strongest predictive accuracy.

For episodic verbal memory measures, numerical ranges
and cutoffs for specific ages and education levels can inform
the likelihood of transition to AD. Although delayed recall
deficit is typical in AD, both immediate recall (incorporates
learning) and delayed recall show comparable predictive
accuracy for the transition from MCI to AD [4]. The use of
a single episodic memory measure in the predictor models
examined does not replace the need for a comprehensive
neuropsychological evaluation for diagnostic purposes [4].
Informant reports of FAQ scores reflect instrumental, social,
and cognitive functional impairments, but specific cutoffs

for prediction of transition to AD are not established
[5, 16]. International efforts to standardize MRI imaging
parameters and methods of volumetric assessment [17], both
of which have varied widely across studies, may lead to
the development of specific cutoffs for hippocampal and
entorhinal cortex atrophy that improve predictive accuracy.

The use of cognitive markers has some advantages over
neuroimaging: objectivity in scoring, comparative economy
in expense and time, and reliability. One argument is that
episodic verbal memory should not be used as a marker
because it is used for inclusion criteria and in the diagnostic
process. However, evaluation of severity of episodic verbal
memory deficit as a predictor in patients with amnestic MCI
who have episodic verbal memory deficits is analogous to
the established strategy of evaluating severity of depression
as a predictor of clinical course and treatment response in
major depression [18]. Further, using memory test scores
in prediction creates a statistical handicap, rather than an
advantage, by restricting the range in baseline memory test
performance [12]. Of note, the AVLT memory measure
examined as a predictor in this paper was not part of the
study inclusion criteria in ADNI (WMS-R logical memory
was used). The same rationale applies to the incorporation
of the MMSE, which is widely used and clinically relevant,
in predictor analyses even though it is part of the screening
criteria for study inclusion.

Informant report of functional impairment using the
FAQ was not part of the inclusion criteria in either QD or
ADNI, and the definition of MCI by the original Peters-
en criteria requires the absence of significant functional
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impairment [1, 2]. Therefore, the use of informant report
of functional impairment is independent of the diagnostic
criteria for MCI, and our findings indicate that this type of
assessment is important in predicting transition to AD [3, 5].

Clinical and neurobiological markers have been incor-
porated recently into diagnostic classification systems. An
international panel used the terms “prodromal dementia”
and “predementia” to indicate that neurobiological markers
may identify patients with incipient AD who cannot be
diagnosed clinically [19]. The new NIA diagnostic criteria
separate core clinical criteria from research criteria that
employ neurobiological markers [20], partly because diag-
nostic and predictive accuracy for neurobiological markers
has not been fully developed and validated. Our results
emphasize the need for such validation.

There have been few comparisons of predictor models
between studies. In a comparison of ADNI to a Finnish study,
classification performance did not increase after the inclu-
sion of 10 variables that included CSF measures, apolipopro-
tein E ε4, MRI measures, age, and education [21]. The overall
model was not strong, possibly because key cognitive and
functional measures were excluded. Another study compared
different samples of patients with MCI who had 18FDG PET
with generally positive results [22] but without cut-points
for clinical application. Our report represents a novel inde-
pendent validation of predictor models that included clinical,
memory, functional, and MRI measures. The consistency in
the differences between models in each study indicates that
this two-study comparison is broader and more clinically
relevant than prior validation attempts [21, 22].

From the ADNI database, several reports show moderate
predictive accuracy for weighted scores within a global
cognitive test [23] and moderately strong predictive accuracy
for specific neuropsychological test scores [24], consistent
with other studies [4]. The best possible fit from a high-
dimensional pattern classification approach using ADNI
MRI data [25] led to results similar to our report that
used volumetric measures, but other MRI analytic strategies
using ADNI data have led to lower predictive accuracy
[26, 27]. Entorhinal cortex volume enhanced prediction in
both ADNI and QD in our comparisons, supporting the
evaluation of entorhinal cortex volume as a predictor [7].

There were some limitations to this paper. The two
samples differed in sex and age distribution and cognitive
test scores, significant episodic verbal memory deficits were
required in ADNI compared to broader inclusion criteria
in QD that may partly account for higher transition rates
in ADNI, and different episodic verbal memory measures
and different MRI volumetric assessment methods were
compared. Nonetheless, within each sample for several
combinations of predictors the differences in AUCs were
similar. The high transition rate in ADNI suggests that
some patients diagnosed with MCI by 3-year followup may
convert in subsequent years, likely leading to a higher rate of
false negatives in ADNI. This may partly explain the lower
accuracy for predictor combinations in ADNI. In ADNI, the
smaller number of patients at 3-year followup was partly
related to some recently recruited patients not yet having
had the opportunity to reach 3-year followup at the time

of data analysis for this paper. This issue also precluded the
use of survival analysis in this sample. In QD, we derived
the strongest predictors from a set of a priori measures
in a large neuropsychological test battery and examined
comparable measures from the shorter ADNI neuropsycho-
logical assessment. While administering a comprehensive
neuropsychological test battery is important for diagnostic
purposes, our clinically relevant approach of examining
individual measures facilitates comparison across studies and
demonstrates the predictive strength of even a single episodic
verbal memory test. Baseline MRI measures were examined
because serial MRI measures were not available in QD.
It remains unclear if serial imaging measures are superior
to baseline imaging in predicting long-term outcome [28].
Serial imaging measures provide useful information about
structural changes associated with disease progression, but
they are expensive, not current clinical practice, and not
useful in early converters. Cerebrovascular disease may
contribute to cognitive decline in these patients [19, 20].
However, hyperintensities, lacunes, and infarcts could not be
assessed systematically in QD because of the MRI sequences
obtained (no FLAIR or comparable sequence) and therefore
could not be compared with ADNI. Absent neuropathologi-
cal validation, we considered examining CSF measures from
ADNI (not done in QD) for in vivo validation of transition
to AD, but CSF was not collected in approximately half the
ADNI sample and neuropathological validation of CSF tau
and Aβ abnormalities has not been established.

In QD, the pathophysiological measure [19] of olfactory
identification deficits (not done in ADNI) strongly predicted
transition to AD with limited overlap in prediction with the
SRT and MRI measures [3, 29]. In ADNI, 18FDG indices (not
done in QD) significantly predicted transition to AD and
were superior to the ADAS-cog [8], but the ADAS-cog is a
global cognitive measure used primarily in clinical trials of
AD patients and is not established as a strong predictor of
transition from MCI to AD. PET amyloid imaging discrim-
inates among AD, MCI, and controls [30] and correlates at
autopsy with amyloid plaques [9]. However, approximately
10–30% of healthy controls show increased amyloid uptake
[30] and whether these subjects have incipient AD needs
confirmation in long-term followup studies. The sensitivity
and specificity of CSF levels of Aβ42 and tau/phospho tau,
and their ratio, for predicting MCI transition to AD in ADNI
[31] and in a European multicenter study [32] ranged from
65% to 75%, which is slightly lower than that in other reports
[10, 11]. For CSF markers, further refinement of assay
technique and validation in long-term followup studies are
needed to establish more definitive cut-points for individual
and ratio measures that have varied to some extent across
studies [10, 11, 32].

This report suggests that volumetric evaluation of medial
temporal lobe atrophy adds only marginally to the informa-
tion obtained by cognitive testing and assessment of episodic
memory, and it cannot yet be recommended for wide clinical
use to assess the risk of patients with MCI being diagnosed
with AD during followup. In the clinic, visual inspection
ratings are likely to lead to lower predictive accuracy than
either the QD or ADNI volumetric assessments. Structural
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neuroimaging with MRI remains useful to rule out specific
causes of cognitive impairment, for example, stroke, tumor.
A key conclusion from this report is that conducting neu-
ropsychological evaluation is important, and interviewing
family members or other informants about the patient’s
functioning may be at least as important as conducting
an MRI scan. Several clinical and neurobiological markers,
including cognitive test scores, functional ability, and MRI
and 18FDG PET measures, are influenced considerably by age
and other demographic factors, and their utility needs to be
evaluated in more heterogeneous samples. The comparative
predictive utility of clinical and neurobiological markers
needs further assessment across different populations as
these measures improve in predictive accuracy.

Disclosure

Data used in the preparation of this paper included
data obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.ucla.edu/). As
such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided
data but did not participate in analysis or writing of this
report. Complete listing of ADNI investigators is available at
http://adni.loni.ucla.edu/.

Acknowledgments

Data collection and sharing for this project was funded
by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(National Institutes of Health Grant U01 AG024904). ADNI
is funded by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, and
through generous contributions from the following: Abbott,
AstraZeneca AB, Bayer Schering Pharma AG, Bristol-
Myers Squibb, Eisai Global Clinical Development, Elan
Corporation, Genentech, GE Healthcare, GlaxoSmithKline,
Innogenetics, Johnson and Johnson, Eli Lilly and Co.,
Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer
Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc.,
and Wyeth, as well as nonprofit partners the Alzheimer’s
Association and Alzheimer’s Drug Discovery Foundation,
with participation from the U.S. Food and Drug Adminis-
tration. Private sector contributions to ADNI are facilitated
by the Foundation for the National Institutes of Health
(http:/www.fnih.org/). The Grantee organization is the
Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimer’s Disease
Cooperative Study at the University of California, San Diego.
ADNI data are disseminated by the Laboratory for Neuro
Imaging at the University of California, Los Angeles. The
ADNI study research was also supported by NIH Grants P30
AG010129, K01 AG030514, 5R00NS060766, and the Dana
Foundation. Dr. Y. Stern was the Columbia University site
principal investigator in the ADNI study. The QD study
research was supported by NIH Grant R01AG17761 (Dr. D.
P. Devanand), and Dr. P. J. Brown’s effort was supported by

NIH Grant T32 MH20004. and Dr. E. D. Huey’s effort was
supported by NIH Grant 5R00NS060766.

References

[1] R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E.
G. Tangalos, and E. Kokmen, “Mild cognitive impairment:
clinical characterization and outcome,” Archives of Neurology,
vol. 56, no. 3, pp. 303–308, 1999.

[2] R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E.
G. Tangalos, and E. Kokmen, “Erratum: Mild cognitive im-
pairment: clinical characterization and outcome,” Archives of
Neurology, vol. 56, no. 6, p. 760, 1999.

[3] D. P. Devanand, X. Liu, M. H. Tabert et al., “Combining early
markers strongly predicts conversion from mild cognitive
impairment to Alzheimer’s disease,” Biological Psychiatry, vol.
64, no. 10, pp. 871–879, 2008.

[4] M. H. Tabert, J. J. Manly, X. Liu et al., “Neuropsychological
prediction of conversion to Alzheimer disease in patients with
mild cognitive impairment,” Archives of General Psychiatry,
vol. 63, no. 8, pp. 916–924, 2006.

[5] M. H. Tabert, S. M. Albert, L. Borukhova-Milov et al., “Func-
tional deficits in patients with mild cognitive impairment:
prediction of AD,” Neurology, vol. 58, no. 5, pp. 758–764, 2002.

[6] C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical
model of dynamic biomarkers of the Alzheimer’s pathological
cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128,
2010.

[7] D. P. Devanand, G. Pradhaban, X. Liu et al., “Hippocampal
and entorhinal atrophy in mild cognitive impairment: predic-
tion of Alzheimer disease,” Neurology, vol. 68, no. 11, pp. 828–
836, 2007.

[8] S. M. Landau, D. Harvey, C. M. Madison et al., “Comparing
predictors of conversion and decline in mild cognitive impair-
ment,” Neurology, vol. 75, no. 3, pp. 230–238, 2010.

[9] C. M. Clark, J. A. Schneider, B. J. Bedell et al., “Use of
florbetapir-PET for imaging beta-amyloid pathology,” Journal
of the American Medical Association, vol. 305, no. 3, pp. 275–
283, 2011.

[10] O. Hansson, H. Zetterberg, P. Buchhave, E. Londos,
K. Blennow, and L. Minthon, “Association between CSF
biomarkers and incipient Alzheimer’s disease in patients with
mild cognitive impairment: a follow-up study,” The Lancet
Neurology, vol. 5, no. 3, pp. 228–234, 2006.

[11] P. J. Visser, F. Verhey, D. L. Knol et al., “Prevalence and
prognostic value of CSF markers of Alzheimer’s disease
pathology in patients with subjective cognitive impairment
or mild cognitive impairment in the DESCRIPA study: a
prospective cohort study,” The Lancet Neurology, vol. 8, no. 7,
pp. 619–627, 2009.

[12] B. Schmand, H. M. Huizenga, and W. A. van Gool, “Meta-
analysis of CSF and MRI biomarkers for detecting preclinical
Alzheimer’s disease,” Psychological Medicine, vol. 40, no. 1, pp.
135–145, 2010.

[13] B. Winblad, K. Palmer, M. Kivipelto et al., “Mild cognitive
impairment—beyond controversies, towards a consensus:
report of the international working group on mild cognitive
impairment,” Journal of Internal Medicine, vol. 256, no. 3, pp.
240–246, 2004.

[14] Consensus report of the Working Group, “Molecular and
biochemicalmarkers of Alzheimer’s disease,” Neurobiology of
Aging, vol. 19, no. 2, pp. 109–116, 1998, The Ronald and Nancy

http://adni.loni.ucla.edu/
http://adni.loni.ucla.edu/
http://www.fnih.org/


8 International Journal of Alzheimer’s Disease

Reagan Research Institute of the Alzheimer’s Association and
the National Institute on Aging Working Group.

[15] Consensus report of the Working Group, “Molecular and
Biochemical Markers of Alzheimer’s Disease,” Neurobiology
of Aging, vol. 19, no. 3, p. 285, 1998, Erratum: The Ronald
and Nancy Reagan Research Institute of the Alzheimer’s
Association and the National Institute on Aging Working
Group.

[16] P. J. Brown, D. P. Devanand, X. Liu, and E. Caccappolo,
“Functional impairment in elderly patients with mild cog-
nitive impairment and mild Alzheimer disease,” Archives of
General Psychiatry, vol. 68, no. 6, pp. 617–626, 2011.

[17] G. B. Frisoni, N. C. Fox, C. R. Jack Jr., P. Scheltens, and P. M.
Thompson, “The clinical use of structural MRI in Alzheimer
disease,” Nature Reviews Neurology, vol. 6, no. 2, pp. 67–77,
2010.

[18] L. S. Schneider, J. C. Nelson, C. M. Clary et al., “An
8-week multicenter, parallel-group, double-blind, placebo-
controlled study of sertraline in elderly outpatients with major
depression,” American Journal of Psychiatry, vol. 160, no. 7, pp.
1277–1285, 2003.

[19] B. Dubois, H. H. Feldman, C. Jacova et al., “Revising the
definition of Alzheimer’s disease: a new lexicon,” The Lancet
Neurology, vol. 9, no. 11, pp. 1118–1127, 2010.

[20] M. S. Albert, S. T. DeKosky, D. Dickson et al., “The diagnosis
of mild cognitive impairment due to Alzheimer’s disease:
recommendations from the national institute on aging-
Alzheimer’s association workgroups on diagnostic guidelines
for Alzheimer’s disease,” Alzheimer’s and Dementia, vol. 7, no.
3, pp. 270–279, 2011.

[21] M. van Gils, J. Koikkalainen, J. Mattila, S. K. Herukka,
J. Lötjönen, and H. Soininen, “Discovery and use of effi-
cient biomarkers for objective disease state assessment in
Alzheimer’s disease,” in Proceedings of the IEEE Engineering
in Medicine and Biology Society, vol. 2010, pp. 2886–2889,
September 2010.

[22] C. Haense, K. Herholz, W. J. Jagust, and W. D. Heiss,
“Performance of FDG PET for detection of Alzheimer’s disease
in two independent multicentre samples (NEST-DD and
ADNI),” Dementia and Geriatric Cognitive Disorders, vol. 28,
no. 3, pp. 259–266, 2009.

[23] D. A. Llano, G. Laforet, and V. Devanarayan, “Derivation
of a new ADAS-cog composite using tree-based multivariate
analysis: prediction of conversion from mild cognitive impair-
ment to alzheimer disease,” Alzheimer Disease and Associated
Disorders, vol. 25, no. 1, pp. 73–84, 2011.

[24] M. Ewers, C. Walsh, J. Q. Trojanowski, and North Amer-
ican Alzheimer’s Disease Neuroimaging Initiative (ADNI),
“Prediction of conversion from mild cognitive impairment
to Alzheimer’s disease dementia based upon biomarkers and
neuropsychological test performance,” Neurobiology of Aging.
In press.

[25] C. Misra, Y. Fan, and C. Davatzikos, “Baseline and longitudi-
nal patterns of brain atrophy in MCI patients, and their use
in prediction of short-term conversion to AD: results from
ADNI,” NeuroImage, vol. 44, no. 4, pp. 1415–1422, 2009.

[26] R. Cuingnet, E. Gerardin, J. Tessieras et al., “Automatic clas-
sification of patients with Alzheimer’s disease from structural
MRI: a comparison of ten methods using the ADNI database,”
NeuroImage, vol. 56, no. 2, pp. 766–781, 2011.

[27] R. Wolz, R. A. Heckemann, P. Aljabar et al., “Measurement
of hippocampal atrophy using 4D graph-cut segmentation:
application to ADNI,” NeuroImage, vol. 52, no. 1, pp. 109–118,
2010.

[28] E. A. Murphy, D. Holland, M. Donohue et al., “Six-month
atrophy in MTL structures is associated with subsequent
memory decline in elderly controls,” NeuroImage, vol. 53, no.
4, pp. 1310–1317, 2010.

[29] M. H. Tabert, X. Liu, R. L. Doty et al., “A 10-item smell
identification scale related to risk for Alzheimer’s disease,”
Annals of Neurology, vol. 58, no. 1, pp. 155–160, 2005.

[30] M. A. Mintun, G. N. Larossa, Y. I. Sheline et al., “[11C]PIB
in a nondemented population: potential antecedent marker
of Alzheimer disease,” Neurology, vol. 67, no. 3, pp. 446–452,
2006.

[31] G. De Meyer, F. Shapiro, H. Vanderstichele et al., “Diagnosis-
independent Alzheimer disease biomarker signature in cogni-
tively normal elderly people,” Archives of Neurology, vol. 67,
no. 8, pp. 949–956, 2010.

[32] N. Mattsson, H. Zetterberg, O. Hansson et al., “CSF biomark-
ers and incipient Alzheimer disease in patients with mild
cognitive impairment,” Journal of the American Medical Asso-
ciation, vol. 302, no. 4, pp. 385–393, 2009.


	Introduction
	Methods
	QD Study
	ADNI Study
	Comparable Baseline Measures Chosen for Analysis from QD and ADNI
	Statistical Analyses

	Results
	Demographic and Clinical Features of the Two Samples
	Prediction of Transition from MCI to AD by 3-Year Followup
	Comparison of AUCs

	Discussion
	Disclosure
	Acknowledgments
	References

